Computational material research and bioinformatics study at SU

E. Khosravi October 31, 2008

Outline

- 1. Introduction to Southern LONI people
- 2. Thermal barrier coating research
- 3. gK and UL20 virus protein structure prediction homologe analysis
- Simulation of raising bubble(Fluid dynamics)

Southern's LONI people

SU Faculty: Habib Mohamadian **Michael Stubblefield Dwayne Jerro** Ebrahim Khosravi **Edgar Blevins Michael Ralph Computational Scientist: Shizhong Yang Graduate Fellow:** Frank DeTiege **Christopher Clayton Collaborators: SU CEES Center**

New LONI faculty at SU

- Dr. Rachel E. Vincent-Finley (Computer Science) Numerical analysis, Molecular dynamics with reduced coordinate space
- 2. Wei Zhang ? (Mechanical Engineering) Composite material fabrication and analysis

New Highly Reflective Thermal Barrier Coatings

Dr. Shengming Guo(LSU ME) Dr. E. Khosravi(LONI/SU CMPS) Dr. Shizhong Yang(LONI/SU CMPS)

Motivation:

- TBCs are used in the hot section of rocket and jet engines to safeguard them under extreme working temperatures, ~1600°C.
- Regular YSZ, is translucent in both visible and infrared bands.

Method I: The TBC with Multilayer of Alternating Reflectance

- Ab initio Molecular Dynamics simulations was used to calculate ZrO2/Al2O3 interface under different T and P. VASP package was used.
- Optical properties will be calculated to guide the experimental study.

Method II: Ni doped ZrO2

25% Ni doped ZrO2 models

Properties studied:

- Elastic constants
- Bader charge
- Density of states
- Bonding
- Stability
- Optical property

Prediction of Conserved and Divergent Secondary Structure Features of Virus UL20p and gK Proteins

Dr. Shuji Bai; Dr. Ebrahim Khosravi Dr. K. Gus Kousoulas; Dr. Marcia Newcomer Dr. Shizhong Yang; Mr. Christopher Clayton

Motivation:

 Understanding the secondary structures of trans-membrane virus gK and UL20 could greatly facilitate predicting functional domains of each protein that may be involved in multiple functions through the virus lifecycle

Methods used:

•Hiden Markov Model

Neuro Network

Works done:

- 1. Tested all the available codes and compared gK results with experimental data.
- 2 . Hiden Markov is better than Neuro Network method in gK virus structure prediction.
- 3. Successfully predicted signal peptides for both gK and UL20.

Future works:

• gK and UL20 homolog alignment and functional analysis

• Molecular dynamics study the interaction between gK and UL20.

Simulation of Rising Bubble

Dr. H. Dwayne Jerro Dr. Samuel Ibekwe Frank DeTiege: LONI graduate fellow

Motivation:

• Fluid Dynamics: The ultimate goal of this research is to safely enhance the heat transfer between a nuclear reactor and its coolant without raising the reactor's operation temperature by boiling through microstructures.

Research Focus:

• This research is focused on a three dimensional simulation of vapor bubbles being generating and rising in the presence of microstructures.

Solution Setup

- Gambit Specifications
 - Water Column 0.5m by 1.5m
 - Mesh faces: 14700 control volumes
 - FLUENT® was used.

- FLUENT Universal Procedure Part 1
 - Unsteady Solver
 - Multiphase Model
 - Volume of Fluid with Implicit Body Force
 - Definition surface tension between phases
 - Operating Conditions
 - Gravity
 - Specified Operating Density
 - Reference Pressure
 - Boundary Conditions
 - Top Wall Pressure Outlet
 - Right and Bottom Wall Wall
 - Left wall Symmetry
 - Solution
 - Body Force Weighted for Pressure
 - Residual

Solution Setup Continued

- FLUENT Universal Procedure Part 1
 - Unsteady Solver
 - Multiphase Model
 - Volume of Fluid with Implicit Body Force
 - Definition surface tension between phases
 - Operating Conditions
 - Gravity
 - Specified Operating Density
 - Reference Pressure
 - Boundary Conditions
 - Top Wall Pressure Outlet
 - Right and Bottom Wall Wall
 - Left wall Symmetry
 - Solution
 - Body Force Weighted for Pressure
 - Residual

Solution Setup Continued

- FLUENT Process Procedure Part 2
 - Initialization
 - Iterate
 - Time Step Size = 0.001s
 - Number of Time Steps = 1000
 - Max Iterations per Time Step = 100
 - Region
 - Circle with a radius of 0.1m
 - Reference location (X,Y): 0.25m, 0.3m
 - Patch
 - Solution Animation
 - Iterate

Results

• Simulated rising bubble by use of the "patch" built in function.

	L.010+D0		
	9.50e-0l		
	9.00 c -Dl		
	8.50e-Dl		
	8.00e-Dl		
	7.50e-01		
	7.00 c -Dl		
	6.50e-Dl		
	6.00e-Dl		
	5.50 c -01		
	5.00e-D1		
	4.5D⊖-DL		
	4.00e-Dl		
	3.50 c -Dl		
	3.00e-DL		
	2.50e-01		
	2.00e-01		
	1.50 0 -01		
	1.0 0e-D 1	\sim	
	5.00e-02		
	0.01 c +D0		
Contours of Volume fraction (water) (Time-4.2000e-02)			

Works finished:

• A two-dimensional simulation of an air bubble rising in a water column has been successfully created by using a built in function called "patch".

Future Plans

 Three dimensional simulation of bubble column

Thank you for coming.

•Questions?