Extraction of Human DNA Replication Timing Patterns from Discrete Microarray Data

Anindya Dutta, Neerja Karnani, Ankit Malhotra, Gabriel Robins, and **Christopher M. Taylor**

Outline

- Introduction
- Data Collection
- Temporal Specificity and Allelic Variation
- Time of Replication of 50% (TR50) of a Locus
- Smoothing
- Segregation
- Results
- Summary
- Acknowledgements and Data Availability
- Collaboration Avenues

DNA Replication

- A crucial step in the cell cycle
 Passing on genetic information
- Replication initiates at origins

 Origins fire at different times during S-phase
- Goal: Profile DNA replication timing

The Cell Cycle

Profiling DNA Replication Timing

- Ideal: f(chr, bp) = rtime
- Isolate DNA replicated in discrete parts of S-phase
 - One cell is not enough
 - Synchronize S-phase entry
 - Apply drugs
 - Release together
 - Synchronization error
 - Label in intervals of duration L
- Allelic Variation
 - mf(chr, bp) = {rtime1, rtime2, ...}

Allelic Variation

- Fluorescent in-situ Hybridization (FISH)
 - Replication timing at a given site
 - HeLa cells show 3 alleles at locus

Temporally non-specific replication (TNS)

Temporally specific replication (TS)

Initial Processing

// Is there evidence that all alleles are replicating together? If (max sum of two adjacent time periods > (1 - 1/N) * total) then {probe is temporally specific} // Is at least one allele replicating apart from the majority? Else If (max sum of two adjacent time points not including the maximum time point $\geq 1/N * \text{total}$) then {probe is temporally non-specific} // Isolated signal is not strong enough to be an allele. Else

{probe is temporally specific}

- **Classification Algorithm**
 - Temporally Non-Specific Replication (TNSR)
 - Alleles replicate separately
 - Temporally Specific Replication (TSR)
 - Time of Replication of 50% (TR50)

Time of Replication of 50% (TR50)

- Computed for each probe on array ^{10hr, 100%}
- Linearly interpolate the time that 50% of a probe's signal occurred
- Discard probes with no signal
- Example \rightarrow
 - TR50 value occurs at 5hr

4hr, 30%

8hr, 80%

6hr, 70%

5hr, 50%

2hr, 10%

0hr, 0%

Plotting TR50

Chromosomal Position (in millions of bp)

- Smoothed TR50 curve recovers replication pattern
- Local minima → Possible locations of replication origin

Segregation Algorithm

- Sliding window passes over probes to generate intervals
 - − Density (dens) of probes in window \ge MPD \Rightarrow Generate Interval
 - Ratio of TSR to TNSR probes determines temporal specificity
- Generates two disjoint sets of intervals (TSR and TNSR)

Complete Replication Profile

Validation and Feedback

- Replication Profiles
 - Over 90% concordance with independent biological experiments (FISH)
 - IGF2/H19 Locus (known imprinted) is TNSR
 - Beta Globin (known origin) is a TR50 trough
 - Results used to design additional experiments
 - Probe selection
 - Signal partitioning (select representative samples)
 - Correlation with other genomic markers
 - Histone marks, transcription, gene density, etc

Scaling Up to Whole Genome

Summary

- General framework for profiling DNA replication
 timing data from discrete replication pools
- High concordance with independent experiments
 and feedback to experimental design
- Efficient algorithms allow processing of whole human genome data in under 10 hours
 - Parallelization speedup 10-fold
- Data available through world-wide collaboration with NIH ENCODE consortium

Acknowledgements

- Funding:
 - National Institutes of Health (NIH)
 - National Human Genome Research Institute (NHGRI)
- Data Availability:
 - Microarray Data: ArrayExpress E-MEXP-708
 - TR50 & Segregation: UCSC Genome Browser
- Collaborators:
 - Anindya Dutta, Neerja Karnani, Ankit Malhotra, Gabriel Robins

Collaboration Avenues

- Molecular Biologists
 - UNO Biology: Dr. Vaniyambadi Sridhar (NSF)
 - RIC: 12 Biology Research Faculty
- Computational Biologists
 UNO CS: Dr. Dongxiao Zhu (LaBoR)
- Other Complementary Scientists
 - Statisticians (Hardcore Math)
 - Distributed Computing (LONI)