Using molecular simulations to predict protein-ligand binding and solvation

David Mobley

 $P + L \xrightarrow{\Delta G^0} PL$

 $P + L \xrightarrow{\Delta G^0} PL$

 Design molecules to manipulate protein function

 $P + L \xrightarrow{\Delta G^0} PL$

- Design molecules to manipulate protein function
- Recognize toxins

 $P + L \xrightarrow{\Delta G^0} PL$

- Design molecules to manipulate protein function
- Recognize toxins
- Identify enzyme functions

 $P + L \xrightarrow{\Delta G^0} PL$

- Design molecules to manipulate protein function
- Recognize toxins
- Identify enzyme functions
- Protein design: Design binders to target molecule

 $P + L \xrightarrow{\Delta G^0} PL$

- Design molecules to manipulate protein function
- Recognize toxins
- Identify enzyme functions
- Protein design: Design binders to target molecule
- Aid medicinal chemistry

 $P + L \xrightarrow{\Delta G^0} PL$

- Design molecules to manipulate protein function
- Recognize toxins
- Identify enzyme functions
- Protein design: Design binders to target molecule
- Aid medicinal chemistry
- Finally enable cold fusion

Drug design: Drug discovery is hard and expensive

- \$50B /yr in Pharma, billions at NIH
- Long, costly pipeline
 - –Screening: 10⁶ compounds
 - -Takes 12-15 years
 - –Average ~ \$1 billion per drug

Inhibitors can make good drugs

Fesik et al., Nature Reviews: Cancer, 5:876; Oltersdorf et al., Nature 435:677.

Small molecules can mimic binding partners

Binding free energies involve a ratio of partition functions

$\Delta G = -k_B T \ln Q_{PL}/Q_P Q_L$

Binding free energies involve a ratio of partition functions

$\Delta G = -k_B T \ln Q_{PL}/Q_P Q_L$

 Q_P

Binding free energies involve a ratio of partition functions

$\Delta G = -k_B T \ln Q_{PL}/Q_P Q_L$

Existing methods for predicting binding need improvement

 Docking can't calculate binding free energies, or even relative binding strengths

Warren et al, JMC. 49:5912 (2005); also Velec et al., JMC. 48:6296 (2005), Huang et al., JMC. 49:6789 (2006)

Wonderful experimental model system to improve binding calculations

- Simple nonpolar cavity
- Well characterized
- Easy to get structural data
- Experimental collaborators --Shoichet
- Opportunity for predictions
- Transferable insights

Wonderful experimental model system to improve binding calculations

- Simple nonpolar cavity
- Well characterized
- Easy to get structural data
- Experimental collaborators --Shoichet
- Opportunity for predictions
- Transferable insights

If this won't work on a simple binding site...

Here, docking performs poorly for relative binding strengths

Here, docking performs poorly for relative binding strengths

Here, docking performs poorly for relative binding strengths

Cycle: Boresch et al., J. Phys. Chem. B 107:9535 (2003) See also Gilson, Biophys J. 1997.

e also Gilson, Biophys J. 1997.

Our approach requires no knowledge of bound structure

Our approach requires no knowledge of bound structure

Generate starting conformations using docking

Test: In apolar cavity, docking performs poorly

Step 1: Free energy calculations do work better than docking

Problem: Multiple ligand orientations are hard to sample

Even 5 ns for each simulation is not enough

Solution: Separate calculations for different orientations

 $\Delta G^o = -k_B T \ln \left(e^{-\frac{\Delta G^o_1}{k_B T}} + e^{-\frac{\Delta G^o_2}{k_B T}} \right)$

Mobley et al, J. Chem. Phys. 125:084902 (2006)
Step 1: Docking + free energy calculations was promising

RMS error 3.5 kcal/mol

Step 2: Free energies improve when multiple orientations are included

RMS error 2.5 kcal/mol

Step 2: Free energies improve when multiple orientations are included

Remaining problems partly due to conformational change

From apo structure: ΔG =-3.0+/-0.1 kcal/mol From holo structure: ΔG =-7.3+/-0.1 kcal/mol Experiment: -4.6 kcal/mol

Solution: Confine-and-release

- Restrict protein
- Bind ligand
- Release protein

D. Mobley, J. Chodera, K. Dill, J. Chem. Theory. Comput. 3: 1231 (2007).

Confine-and-release approach works

From apo structure: ΔG =-3.5+/-0.2 kcal/mol From holo structure: ΔG =-3.4+/-0.2 kcal/mol Experiment: -4.6 kcal/mol

Step 2: Without confine-and-release

RMS error 2.5 kcal/mol

Step 3: Confine-and-release helps

The remaining problems aren't from sampling... What else could cause them?

The remaining problems aren't from sampling... What else could cause them?

Parameters?

Partial charges are important

Mobley et al, J. Phys. Chem. B. 125:084902 (2007)

Step 3: With confine-and-release and original charges

Step 4: Better partial charges improve agreement with experiment

RMS error 1.8 kcal/mol

Putting it all together: A blind test

	Name	Predicted ∆G (kcal/mol)	Expt. ∆G (kcal/mol)
CI	1,2-dichlorobenzene	-5.6	-6.4
H ₃ C ^{-N}	N-methylaniline	-5.4	-4.7
N CH ₃	1-methylpyrrole	-4.3	-4.4
SH SH	1,2-benzenedithiol	-2.8	< -2.7
N S	thieno[2,3c]-pyridine	-2.6	> -3.6

Successfully predicts bound orientations

1-Methylpyrrole

Mobley et al., JMB, 2007

Consider multiple orientations

Consider multiple orientations

Charge model is important

Consider multiple orientations

Charge model is important

Conformational change is key

Consider multiple orientations

Conformational change is key

Systematic improvements possible with physics-based modeling

 We use explicit solvent MD and alchemical free energy calculations analyzed with BAR

Calculated hydration free energies correlate well with experiment

- (AM1-BCC v1 charges)
- Statistics:
 - RMS error 1.23+/-0.01 kcal/mol
 - $-R^2 = 0.89 + / -0.01$
 - Mean error
 0.651+/-0.002 kcal/mol

Mobley, Cooper, Bayly, Shirts, and Dill, submitted, 2008.

Explicit solvent gives more accurate results than implicit solvent

Mobley, Chodera and Dill, J. Phys. Chem. B. **112: 938-946 (2008).**

- Explicit solvent
 - Does the "average" response look like that of a continuum solvent model?
 - What about the nonpolar part?

- Explicit solvent
 - Does the "average" response look like that of a continuum solvent model?
 - What about the nonpolar part?

Artificial solutes provide a sensitive probe of water's electrostatic response

Consider two artificial ring-shaped solutes:

Hydration free energy: -26.01 kcal/mol

Hydration free energy: -16.38 kcal/mol

Artificial solutes provide a sensitive probe of water's electrostatic response

Consider two artificial ring-shaped solutes:

Hydration free energy: -26.01 kcal/mol

Hydration free energy: -16.38 kcal/mol

Difference (hydration free energy asymmetry): -9.63 kcal/mol

Artificial solutes provide a sensitive probe of water's electrostatic response

Consider two artificial ring-shaped solutes:

Hydration free energy: -26.01 kcal/mol

Hydration free energy: -16.38 kcal/mol

Difference (hydration free energy asymmetry): -9.63 kcal/mol

• In implicit solvent, the hydration free energies are equal!

Water does *not* respond as a dielectric continuum – structure is crucial

Hydration asymmetry is driven by the structure of water

What did we learn about water?

What did we learn about water?

Water's electrostatic response is asymmetric with respect to charge

What did we learn about water?

Water's electrostatic response is asymmetric with respect to charge

This asymmetry is due to the inherent asymmetry of the water molecule

Possible points of collaboration

- Computational studies of:
 - Biomolecular binding/interactions
 - Thermodynamic properties (transfer free energies, solubility, etc.)
 - Proteins/nucleic acids
 - Organic solvents
- Testing/improving molecular dynamics simulations and algorithms

Acknowledgments

- Lysozyme:
 - Apolar: Alan Graves, John Chodera, Andrea McReynolds, Brian Shoichet, Ken Dill
 - Polar: Sarah Boyce, Brian Shoichet, Ken Dill
- 504 molecule set:
 - Christopher Bayly, Matthew Cooper, Michael Shirts (WCA separation), Ken Dill
- Asymmetry:
 - Alan Barber II, Christopher Fennell, Ken Dill