Synthesis of Novel Iron-Oxide-Based Superparamagnetic Nanoparticles for MRI Contrasting Agent

Kevin Kerim Willis, Pavel Kucheryavy, Denis Nilov, Galina Goloverda, and Vladimir Kolesnichenko Xavier Univeristy of Louisiana New Orleans, Louisiana

Nanoparticles: The Properties

- Properties depend on the size and the properties of their surface
- Color
 - Size dependent
 - Composition independent

Semiconductor Quantum Dots

360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650 660 670 680 690 700 710 720 730 740

Wavelength of visible light, nanometers

Nanoparticles: The Properties (cont.)

Fluorescense of CdS colloids coated with variable amount of HgS, increasing from left to right.

Nanoparticles: Magnetism

Includes

- Elements (C, Si, Ge, Sb, Bi, Fe, Co, Ni, Cu, Ag, Au, Pt, Pd, etc.)
- Some alloys
- Metal oxides (Fe₂O₃, Fe₃O₄, CoFe₂O₄)
- Metal chalconides (CdS, CdTe) semiconductor quantum dots
- Metal pnictides (GaAs, InP) semiconductor quantum dots
- These lead to
 - Ferromagnetics
 - Superparamagnetics
 - Ferrofluids

Nanoparticles: Superparamagnetism

Magnetic domains

- Crystal-containing regions of unpaired spins
- Each domain is magnetized in a different direction
- Domains' magnetism align when magnetic field is applied
 - Much greater than the sum of magnetic moment of unpaired electrons
 - No magnetization of the particle when the field is removed

MRI Contrasting Agents

- MRI contrasting agents
 - work by altering the relaxation rates of water protons that are trying to realign
 - Used under
 - Magnetic field and
 - radiofrequency (RF) pulses
- 2 types
 - T1
 - Longitudinal relaxation
 - 'positive contrast'
 - T2
 - Transverse relaxation
 - 'negative contrast' (aka dark spots)
- Currently the gadolinium agents are used

MRI image with T1 where protons inphase shows a hyperintense mass in the liver.

T1-weighted image with Gadolinium treatment reveals a hyperenhancing mass.

Example

MRI image where the mass drops out with T1 agent and protons out-of-phase and indicates fat content

Further T1-weighted image with Gadolinium treatment reveals a subtle slightly hyperenhancing mass.

T2-weighted image with fat suppression reveals that the mass has subtle hyperintensity.

Final T1-weighted image with Gadolinium treatment shows that the mass has washed out but now demonstrates a thin capsule.

"Requirements" for a Nanoparticle to be a MRI Contrasting Agent

Must be biocompatible and non-toxic.

Must be comparable in size with the nanocore.

Covalently bound is preferred.

Must be hydrophilic & stabilize aqueous colloids.

Must have appropriate terminal group.

Fe₃O₄ Nanoparticle: Synthesis

Synthesis of Superparamagnetic Iron Oxide Nanoparticle $[Fe(HDEG)_2] + 2[Fe(HDEG)2CI] + 2H2O + 2OH^- \rightarrow Fe_3O_4 + 5H_2DEG + 2CI^-$

Oxygenation of Superparamagnetic Iron Oxide Nanoparticle $4Fe_3O_4(H_2DEG) + O_2 \longrightarrow 4Fe_3O_4(HDEG) + 2H_2O$

Synthesis of Fe₃O₄ Galactarate Nanoparticle

Fe₃O₄ Galactarate Nanoparticle: Results

Reaction	Size (nm)	
Fe3O4+DEG	5.827	
Fe3O4+DEG+ox	9.452	
Fe3O4+DEG+ox+ Mu+250mmL AGE	8.401	
Fe3O4+DEG+ox+ Mu+500mmL AGE	16.35	
Fe3O4+DEG+Mu+ 750mmLAGE	11.57	
Fe3O4+DEG+ox+ Mu+1mL AGE	8.533	
Fe3O4+DEG+ox+ Mu+1mL AGE (final)	234.3	

Fe₃O₄ Galactarate Nanoparticle: Results

Modified Synthesis of Fe₃O₄ Galactarate Nanoparticle

Modified Synthesis of Fe₃O₄ Galactarate Nanoparticle: Results

Reaction	Size (nm)
Fe3O4+DEG	5.827
Fe3O4+DEG+ox	9.452
Fe3O4+DEG+ox+ Mu+300mmLAGE	9.798
Fe3O4+DEG+ox+ Mu+600mmLAGE	7.608
Fe3O4+DEG+Mu+ 900mmLAGE	8.272
Fe3O4+DEG+ox+ Mu+1200mmLAGE	13.42
Fe3O4+DEG+ox+ Mu+1200mmLAGE (final)	6.172

Modified Synthesis of Fe₃O₄ Galactarate Nanoparticle: Results

Synthesis of Fe₃O₄ Tartarate Nanoparticle

Synthesis of Fe₃O₄ Tartarate Nanoparticle: Results

		80 – 80
Reaction	Size (nm)	Í
Fe3O4+Tar	8.845	% ₆₀ -
Fe3O4+Tar+ LDA/AllBr	8.409	- 05 -
		rar

Synthesis of Fe₃O₄ Tartarate Nanoparticle: Results

Superparamagnetic Iron Oxide Applications

Magnetic filter

Superparamagnetic Iron Oxide Applications (cont.)

Cell Tracking: biodistribution of stem cells after implantation by monitoring their migration and trafficking, and determine the success of celltransplantation therapy over six weeks

Drug Delivery and MRI Contrasting Agents

Future Work

Basic media decomposition for further analysis

- Repeat the Galactarate reaction under optomized conditions
 Acknowledgements
- Dr. Denis Nilov
- Dr. Pavel Kucheryavy
- Dr. Galina Goloverda
- Dr. Vladimir Kolesnichenko
- Department of Chemistry, XU
- NSF, LA Board of Regents
- LASIGMA

NSF

of R

 This material is based upon work supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 (LASIGMA) with additional support from the Louisiana Board of Regents

