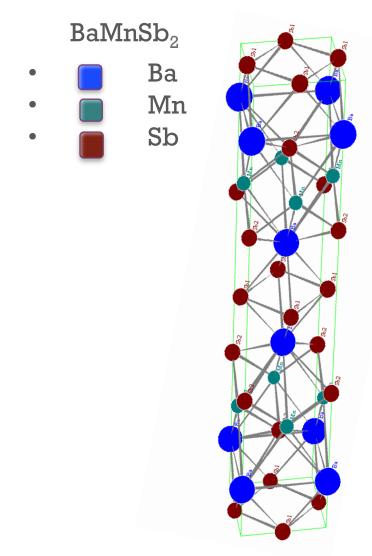
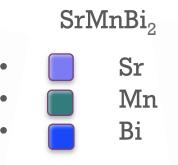
Growth of AMnT₂ (A= +Sr, Ba; T= Sr, Bi) Single Crystals

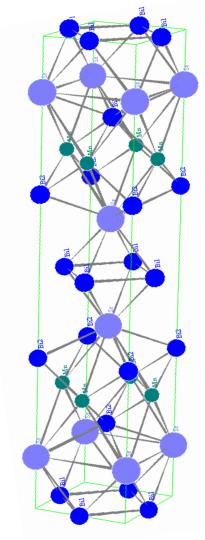
Rebecca DiTusa

Department of Physics and Astronomy at Louisiana State University in Baton Rouge

Introduction

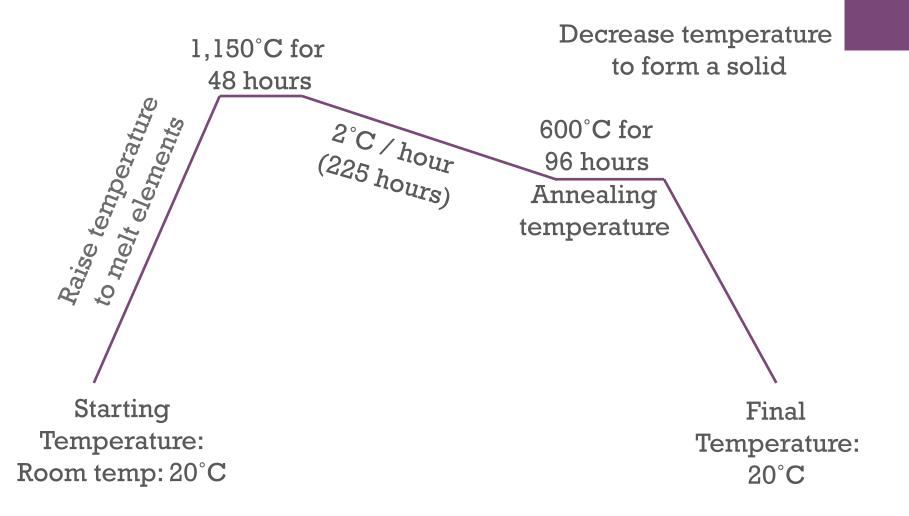

- My research is about growing single crystals. The goal of my research is to learn the process of making single crystals. We have attempted to grow BaMnBi₂, BaMnSb₂, SrMnBi₂, and SrMnSb₂. With the resultant product, we further identified their phases using the X-ray diffraction technique. Their physical properties were measured as well.


- Topological insulators are a new type of material that have an insulating bulk and conducting on the surface.
- Topological insulating properties were first discovered in the compound Bi₂Se₃.
- Although topological insulators may help make quantum computers, there is not enough information about their properties.
- We aim at studying a new set of materials to help learn how topological insulators work.



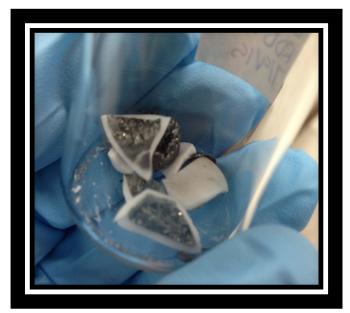
Structure: tetragonal

Structure: tetragonal



Procedure to Make Crystals

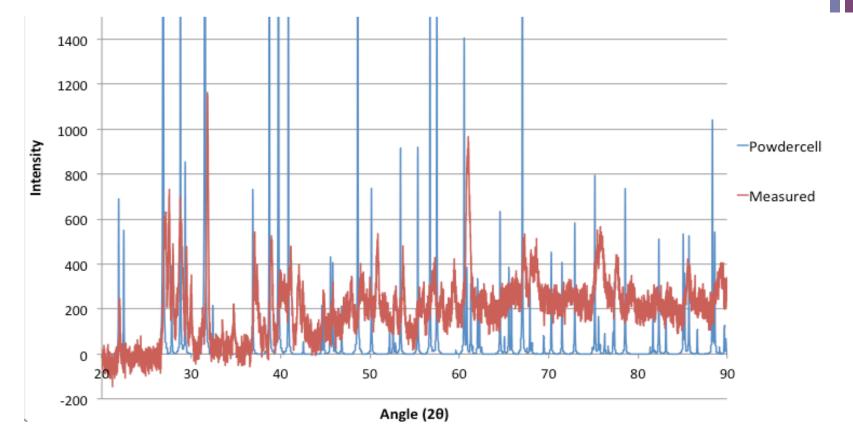
- We use the self-flux method to make samples. The following is the detailed information:
 - Measure out starting material
 - Mix starting materials with an appropriate ratio
 - Put mixture in a crucible
 - Create the seal on the bottom of the quartz tube
 - Put crucible in a tube, and make a neck
 - *Create a vacuum in the tube (15 mTorr)
 - Seal tube at the neck
 - Put in tube furnace and compute the program



Results of Crystal Growth

- Negative: BaMnBi₂ and SrMnBi₂ evaporated in the tube while in the tube furnace
- Positive: SrMnSb₂ did not evaporate
- Positive: BaMnSb₂ came out as the right phase

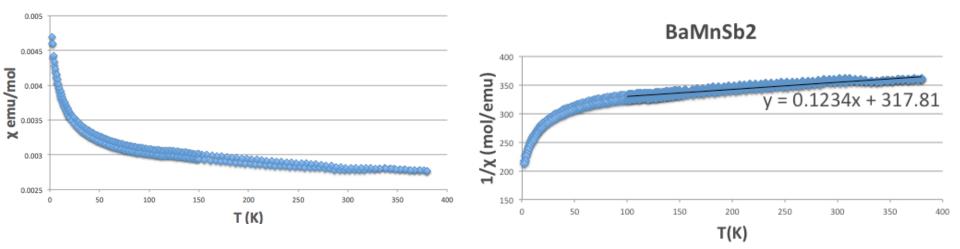
$BaMnSb_2$



 $SrMnBi_2$

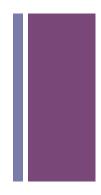
 $SrMnSb_2$

BaMnSb₂ came out as a single crystal with some impurities


+ Magnetic Properties

- Paramagnetic behavior
- No Magnetic Ordering

 $\chi = \frac{C}{T - T_c}$

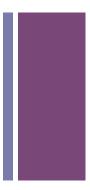

Curie-Weiss Law

■ T_c= - 2599

We have tried to make four new materials

How it came out:

BaMnSb₂ came out as a single crystal


BaMnBi₂, SrMnBi₂, and SrMnSb₂ did not come out as the right phase

For the future: come out with all single crystals

+ Acknowledgments

- This material is based upon work supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents.

- Reich, Eugenie. "Exotic Quantum Effects Could Follow from Compound Now Confirmed to Conduct Only at Surface." Nature (2012). Print.
- Moore, Joel E. "The Birth Of Topological Insulators." Nature: 194-98. Print.
- Yasuhara, Ryuichiro, Shunsuke Murai, Koji Fujita, and Katsuhisa Tanaka. "Atomically Smooth and Single Crystalline Indium Tin Oxide Thin Film with Low Optical Loss." Phys. Status Solidi C Physica Status Solidi (c) (2012): 2533-536. Print.