Student Researcher: Jackie Model

Mentor: Dr. Steven A. Jones

Platelet Adhesion Studies

Introduction

- Currently, after major arterial damage arterial stents are placed inside blocked or damaged arteries
- Platelets in blood lead to cell growth that can reclog arteries
- Study the use of fibrinogen to prevent stent complications
- Platelet adhesion is to be studied on or near the fibrinogen stripe

Stent Construction

Demo of Stents with fibrinogen

Background information

- Platelets are cells found in blood that help with clotting (thrombus)
- Fibrinogen is a muscle fiber that is produced by the liver
 - Main functions are overseeing blood clotting and inflammation
 - When bleeding occurs protein will become a fiber and act as a platform for platelets to attach
 - Use fibrinogen and platelets in this study to see how both would react in the body
- Collagen (being used in current study) is a protein abundant in the skin
 - Major structural proteins found in skin
 - In blood adhesion collagen fibers fall off the damaged vessel wall
 - The platelets have a specific activator on cell membrane to attach to the parts where collagen fell
 - Use collagen and platelets in study to see how both would react in the body

Experimental Methods

- Bovine whole blood perfused through micro-channels
- Micro-channels were coated through layer-by-layer assembly
- Single stripe of FITC-labeled fibrinogen was added across the width of each channel

Experimental Methods cont.

- Channels were tagged with Acridine Orange (AO)
- Examined under a flouroscent microscope
 - FITC was used to examine fibrinogen stripe and TRITC was used to for platelets

Chemicals in channels

Glutaraldehyde

Isopropyl Alcohol

AO Stain

Results

- Expected to see platelet adhesion near stripe's edge
- Before testing, fibrinogen stripe was clear and distinct under FITC imaging
- After blood was perfused, fibrinogen stripe became indistinct

A change up

- Had to identify chemical causing fibrinogen stripe to disappear
- Each channel was perfused with only one of the following:
 - Bovine whole blood
 - Glutaldehyde
 - Isopropyl Alcohol
 - Phosphate Buffered Saline (PBS)
- Results showed fibrinogen stripe was still clear in all channels
- Suggests that either a combination of chemicals or untested chemical Acrindine Orange was responsible

New Results

- Tests with multiple chemical combinations occurred
- Whenever
 Acridine Orange
 was added to the
 channels the
 fibrinogen
 became eroded

Before picture

Just Glutaraldehyde

AO stain and glutaraldehyde

AO stain, glutaraldhyde, and isopropyl alcohol

Under the Microscope

Platelets under bright light

Fibrinogen stripe under TRITC lighting

Fibrinogen stripe under FITC lighting 12

New Test methods

- After AO seemed to be the culprit different methods to keep the fibrinogen attached were developed
 - Make a solution of fibrinogen and PBS to make it more basic
 - Make a solution of fibrinogen and Tris Buffer solution to make stripe more basic
 - Flow AO through channels slower in order to prevent erosion
- After observing all three new methods results were the same
- Another experiment idea to use collagen instead of fibrinogen to see if the AO fibrinogen reaction is causing the erosion

Conclusion

- Acridine orange stain led to erosion of the fibrinogen protein
- Address this issue:
 - Use collagen to study whether or not AO or fibrinogen is the problem
 - Find an alternative way to stain the platelets
 - Find an alternative way to attach the fibrinogen

Acknowledgements

- Dr. Jones who was my advisor during the entirety of the project
- Doctoral student Varun for teaching me how to make micro-channels and advancing my knowledge in them

THANKYOU! Any questions?

