SOLUTION BASED SYNTHESIS OF NANOCRYSTALLINE DIAMOND THIN FILMS

REU: Anne Rebecca Mentor: Dr. Adarsh D. Radadia

Rowan University Institute for Micromanufacturing, Biomedical Engineering Center, Louisiana Tech University

August 2014

SEARCH
 EXPERIENCES
 Image
 UNDERGRADUATES

- Methods
 - Results

Analysis

- Conclusion
 - Acknowledgements

Introduction: Detonation Nanodiamonds (DNDs)

Synthesis process.

TEM image

- First discovered by
 Russian scientists trying to discard ammunitions.
- Unit sizes are 4-10 nm.
- Usually exist as aggregates of 30-500 nm
- Produced by detonation process.
- ► TNT and RDX

Detonation Nanodiamonds (DNDs)

Highly tailorable surface chemistry

Functional groups on the surface (hydroxyl, carboxyl, amine, amide, ...)

Important for purification and application purposes.

Detonation Nanodiamonds (DNDs)

Low cytotoxicity

Applications in

biomedicine (Surgical implants, drug delivery), **Microelectromechanical** systems (MEMS), optical, tribology (low roughness), thermal management (highly conductive.

Materials

- 50 nm average diameter carboxylated DND aggregates
- 3 aminopropyltriethoxy-silane (Amino Silane)
- Deionized (DI) water
- 1 mM pH 6.5 KCl
- 1 mM pH 7 KCI
- 1 mM pH 4 HCI
- 1 cm × 1 cm silicon chips
- 1 cm × 1 cm glass chips
- 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)

Methods

- OH bonds created on the surface using oxygen plasma, so that surface reacts with amino silane
- EDC is a heterobifunctional, water-soluble, zero-length carbodiimide crosslinker that is used to couple carboxyl groups to primary amines.
- EDC activates carboxyl groups first and forms amine reactive Oacylisourea imtermediate that spontaneously reacts with primary amines to form an amide bond and isourea by-product.

Methods

Results

Scanning Electron Microscopy

Atomic Force Microscopy

Results

Transmittance

Reflectance

Conclusion

- Successful attachment of nanodiamonds to substrates (both glass and silicon).
- Increasing surface coverage as layers are building up.
- Average surface roughness about 50 nm for 5 layers.
- 4% decrease in optical transmittance.
- Electrical characterization performed with inconsistent conductivity of the films.
- Examination of chemical structure as future work.

Acknowledgement

- Dr. Steven Jones (Louisiana Tech University)
- Special thanks to Ashish Sharma, Kush Patel, Alex Ulrich, Wenli Zhang, Bo Hou, Amaka Obigazie (Louisiana Tech University)
- National Science Foundation (NSF) for the NSFEPSCoR Cooperative Agreement No. EPS-1003897 grant.

References

[1] Kulakova II (2004). Surface Chemistry of nanodiamonds. *Physics of the* Solid State., 46 (4): 636 – 643. doi: http://dx.doi.org/10.1134/1.1711440%l Nauka/Interperiodica%8 2004-04-01%A Kulakova, I.I.%P 636-643%G [2] Mochalin, V. N., Shenderova, O., Ho, D., & Gogotsi, Y. (2012). The properties and applications of nanodiamonds. *Nature Nanotechnology*, 7(1), 11-23. doi:http://dx.doi.org/10.1038/nnano.2011.209 [3] Shenderova O, Gruen D. Ultrananocrystalline Diamond [Electronic Resource] : Synthesis, Properties, And Applications / Edited By Olga A. Shenderova, Dieter M. Gruen [e-book]. Norwich, N.Y.: William Andrew Pub., c2006.; 2006. Available from: Louisiana Tech University, Ipswich, MA. Accessed July 17, 2014 [4] Williams, O. A., Nesladek, M., Daenen, M., et al. (2008) Growth, electronic properties and applications of nanodiamonds. *Diamond and Related Materials.*, 17 (7 – 10): 1080 – 1088. doi: 10.1016/j.diamond.2008.01.103