SYNTHESIS AND INVESTIGATION OF MAGNETIC AND TRANSPORT PROPERTIES OF LA_{0.5}SR_{0.5}MNO₃ NANOSTRUCTURED MATERIAL

David Scott¹

July 29, 2011 Southern University and A&M College Baton Rouge, LA

¹ LaSIGMA REU Scholar. Home institution, Norfolk State University; Norfolk, VA 23504

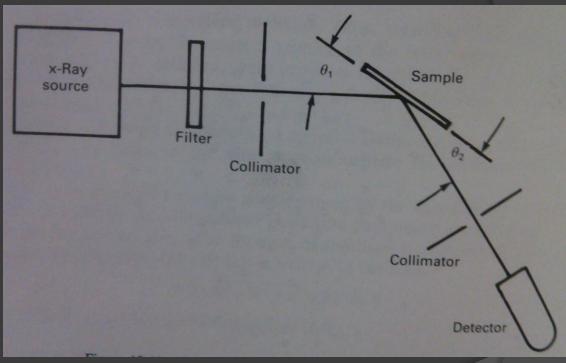
Today's Topics

- Project Objective
- Background
 - Solid State Reactions
 - X-ray Diffraction (XRD)
 - Resistivity
- Experimental Methods
- Results
- Conclusions
- Acknowledgements
- References
- Q&A

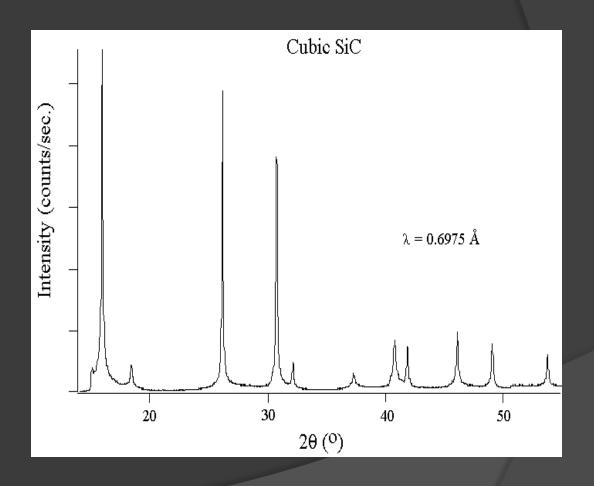
Project Objective

This project's goal was to synthesize La_{0.5}Sr_{0.5}MnO₃ with grain size in the nm range.

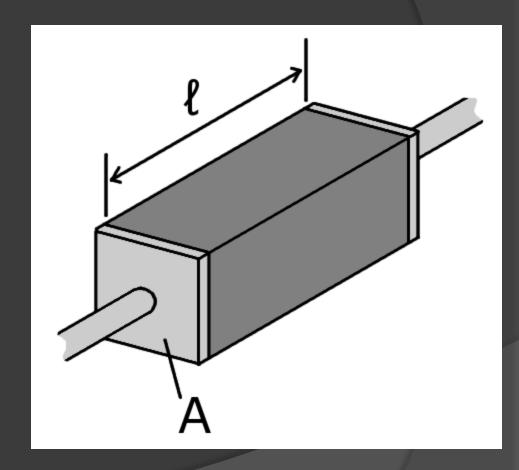
Solid State Reactions


- Solventless
- Addition of Heat
- Advantages

X-Ray Diffraction (XRD)


- Structural and Composition information
- Emitting X-rays

XRD Continued


Diffractogram

Resistivity

$$\rho = \frac{RA}{t}$$

where ρ= Resistivity,
 R= Resistance, A =
 cross sectional area
 and [= length

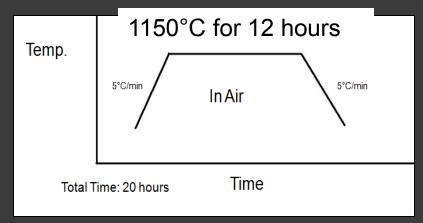
Experimental Methods

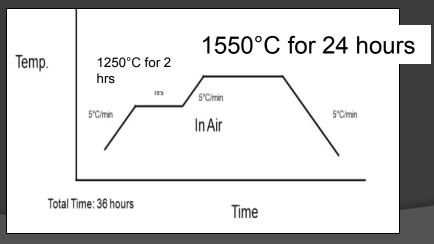
○ $2La_2O_3 + 4SrCO_3 + 8MnO_2 \rightarrow 8La_{0.5}Sr_{0.5}MnO_3 \rightarrow 4CO_2 + O_2$

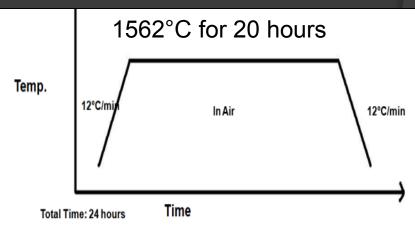
Sample #062011 and Sample #062911

0.6824 g 1.706 g

0.8044 g 2.011 g

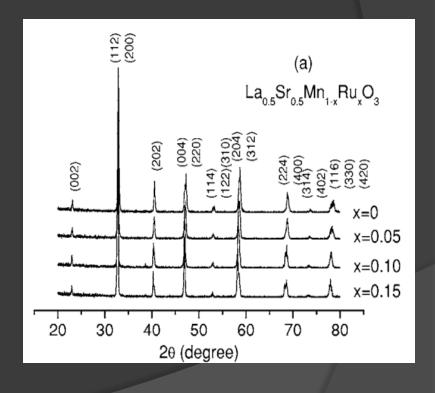



0.7536 g 1.884 g


Experimental Methods Cont.

Sample #062011

Sample #062911



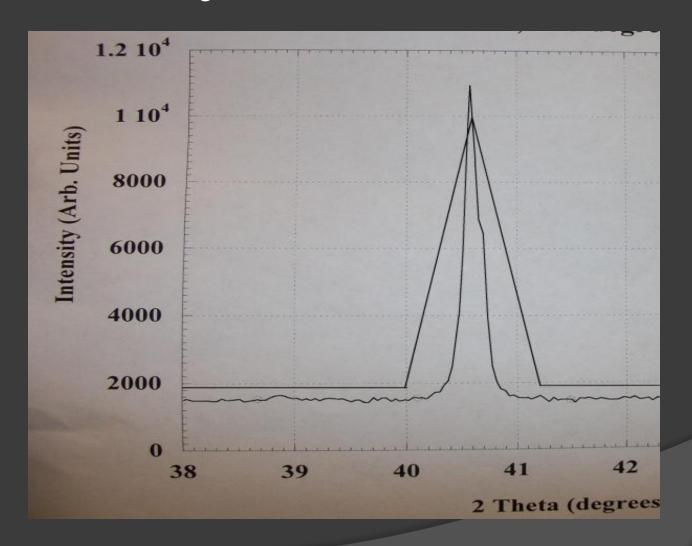
Results: XRD

Slow Scan XRD sample #062911 Sintered at 1478°C for 20 hours in air Intensity

2θ (degrees)

Results: XRD Cont.

Peak Position La _{0.5} Sr _{0.5} Mn _{1-x} Ru _x O ₃ For x=0	Peak Position Sintered Sample #062911	% Difference	Crystal Size (Angstroms)
	23.3	1.29	
23			
32.5	32.9	1.22	119
40.6	40.8	0.49	103
46.9	47.4	1.06	97.54
52.6	53.3	1.32	
58.2	58.7	0.85	144.5
68.5	68.7	0.29	126.5
73.7	73.7	0	
78.7	78.7	0	

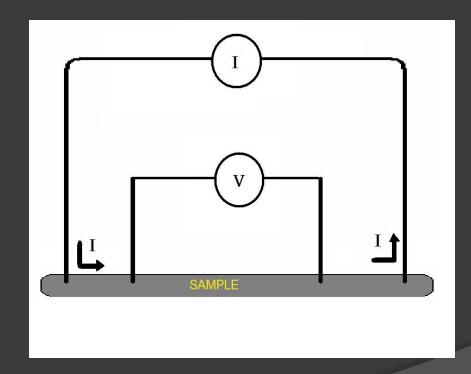

Results: Crystallite Size

Scherrer's equation

$$\tau = \frac{K\lambda}{\beta\cos\theta}$$

• τ is is the mean size of the crystallites, K is the shape factor, usually 0.9, λ, which =1.54 Angstroms, is the x-ray wavelength of the kalpha radiation of the copper x-ray target, β is the (FWHM) width of the peak at half the maximum intensity in radians and θ is the angle in degrees where the peak is located.

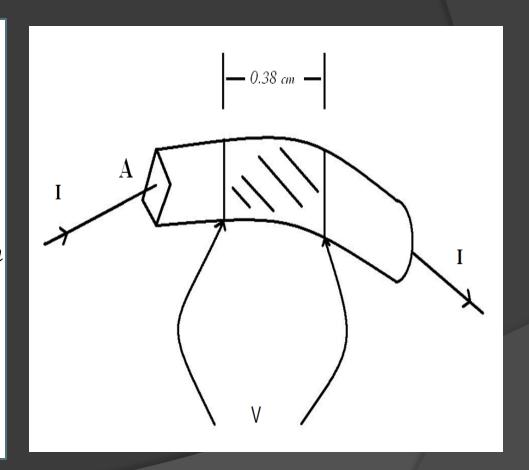
Results: Crystallite Size Cont.


Results: Crystallite Size Cont.

Peak Position $La_{0.5}Sr_{0.5}Mn_{1-x}Ru$ $_{x}O_{3}$ For x=0	Peak Position Sintered Sample #062911	% Difference	Crystal Size (Angstroms)
23	23.3	1.29	
32.5	32.9	1.22	119
40.6	40.8	0.49	103
46.9	47.4	1.06	97.54
52.6	53.3	1.32	
58.2	58.7	0.85	144.5
68.5	68.7	0.29	126.5
73.7	73.7	0	
78.7	78.7	0	

Results: Resistivity

Four Probe method


$$R = \frac{V}{I}$$

Results: Resistivity

 $\rho = \frac{RA}{l}$, where $\rho =$ Resistivity, A = cross sectional area and l = length

$$\rho = \frac{RA}{l} = \frac{(0.11 \Omega)(0.011 cm^2)}{(0.38 cm)}$$
$$= \frac{0.0021 \Omega \cdot m}{0.38} = 3.18E^{-3} \Omega \cdot m$$

Results: Physical Characteristics

- Low Resistance
- Paramagnetism

Conclusions and Future Work

- Synthesis was successful
- Future work for this project includes the development of a suitable method to produce nanoparticles. The PI plans to investigate and modify the magnetic and charge transport properties of the nanoparticles.

Acknowledgements

- LA-SiGMA REU Program
- National Science Foundation
- Department of Physics at Southern University and A&M College
- Dr. E. Walker and Scott Wicker for help with the XRD component
- Dr. Laurence L. Henry who was my mentor for the project.

References

- "Basics of X-Ray Diffraction." Scintag, Inc, 1999. Web. 13 July 2011. http://epswww.unm.edu/xrd/xrdbasics.pdf.
- Anglin, M. R. "What Is a Solid State Reaction?" WiseGEEK: Clear Answers for Common Questions. Conjecture Corporation, 9 June 2011. Web. 13 July 2011. http://www.wisegeek.com/what-is-a-solid-state-reaction.htm.
- P. Scherrer, "Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen," Nachr. Ges. Wiss. Göttingen 26 (1918) pp 98-100.
- Schields, Paul J. "Bragg's Law and Diffraction." Earth Science Educational Resource Center. Web. 13 July 2011.
 http://www.eserc.stonybrook.edu/ProjectJava/Bragg/.
- Ying, Yue, Jiyu Fan, Li Pi, Zhe Qu, Wenqin Wang, Bo Hong, Shun Tan, and Yuheng Zhang. "Effect of Ru Doping in La_{0.5}Sr_{0.5}MnO₃ and La_{0.45}Sr_{0.55}MnO₃." *Physical Review B* 74.14 (2006). Print.

Questions

Thank You

Behold The Green and Gold