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Motivation

** To create a code that tracks the diffusion of nanoparticles (NPs) through a computational
model of a physical hydrogel

** Understand the contribution of various interactions to the diffusion of NP through a
polymer network

Introduction

¢ Physical hydrogels have many uses ranging from cell encapsulation and tissue-
scaffolding, to drug delivery.

** These are transient polymer networks that rely on physical entanglements, ionic
interactions, and hydrogen-bonding as a means to resist dissolution.

** The degree and method of swelling is dependent upon the polymers that make up the
hydrogel; that is, whether thermo-responsive or pH sensitive polymers are present.
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total particles in the hydrogel
are released

The process starts all over.

The simulation continues till
60% of all molecules are
released or a predetermined
volume fraction of the
hydrogel is achieved.
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Figure 10: Release profile for the first 20% of NPs
from a generic physical hydrogel.

Figure 9: Visualization of a hydrogel sample

Conclusions

A 3-D coarse grain Monte Carlo model based on the Boltzmann transport was used to
simulate the release profiles and diffusion of molecules into and out of physical
hydrogels.

In the case studied 20% of total NPs were released.
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Figure 1: Schematic representation of polymer
orientation in physical and chemical hydrogels.
Reproduced from ref [1].

Figure 2: SEM of chemical and
physical PVA/cellulose hydrogel cross

sections Reproduced from ref [2]. Figure 5: Flowchart detailing the methodology of the model used in this study

Methodology Results

A random walk Monte Carlo algorithm is used to determine the most energetically
favorable movements for the NP and polymer chains as the hydrogel swells or
contracts.

The model was executed using MATLAB to simulate the diffusion through a 1 um?
partitioned box containing a physical hydrogel.
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The NPs undergo molecular diffusion in the system considered.
The model developed is a promising alternative to the computationally intensive
molecular dynamics approach to simulating diffusion.

Future Work

Validate simulations with experimental data

Build a model for cross-linked hydrogels

Extend model for pH, temperature, and electromagnetic fields responsive hydrogels.
Derive coefficients such as the molecular weight between crosslinks (M) and
determine a predictive model to estimate these coefficients
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Van der Waal and Columbic interactions play in this process.
A Java code was used to visualize the diffusion process through the polymer network.

We consider the hydrodynamic radius of the solute/NPs diffusing out of the hydrogels
The hydrogel considered is a generic physical hydrogel.

Motion of Polymer

Motion of Particles

** A new position for the polymer strand is tested, using the
force on it as a bias.

** Polymer strands are allowed to move if the total energy of
the system after the move is less than or equal to the
energy of the system before the move. (including the energy
associated with bending and stretching).

s If the total energy increases, the move is accepted with
Boltzmann probability.

For each new configuration NPs are moved as follows:

¢ Particles are allowed to move in any random direction if the
total energy of the system after the move is less than or
equal to the energy of the system before the move.

s If the total energy increases, the move is accepted with
Boltzmann probability.

s Any move is rejected if the particle overlaps with any other
particle or with any polymer strand.
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Figure 3: Contribution of the polymer
strands to the total energy of the system
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Figure 4: Contribution of the diffusing NPs
to the total energy of the system

Figure 6: Visualization of the hydrogel Figure 7: Visualization of NPs diffusing
model into of the hydrogel

Figure 8: Visualization of NPs diffusing
out of the hydrogel

Figure 9: Visualization of both solute and
solvent molecules

Calculate how a change in coefficients, such as M, influences diffusion through a
hydrogel
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