

Introduction

The increasing need for clean energy sources has led to the study of Fischer-Tropsch (FT) synthesis for the production of liquid hydrocarbons from synthesis gas (H₂ and CO). Currently, the most effective catalysts for the production of hydrocarbons are Co, Fe, Ni, and Ru transition metals. Recent studies indicate that Pd could also be a good promoter when added to Co in such reactions.

Objectives

- Study preferred adsorption sites and binding energies of a carbon monoxide molecule on CoPd core-shell and PdCo core-shell nanostructured catalysts of 13, 19, and 38 atoms in total
- Determine energy barriers of the different steps involved in the FT reactions on the modeled nanostructured catalysts
- Investigate the dynamics of the FT reactions at 25 °C and 200 °C

Methods

Density Functional Theory (DFT) and DFT-coupled Molecular Dynamics (DFT-MD) calculations were used to study Fischer-Tropsch reactions on **CoPd core-shell nanostructured catalysts**

Materials Studio 6.0 Module: DMol3 **Theory Level: LDA-PWC**

- 1. Built and optimized core-shell models of CoPd and PdCo catalysts of 13, 19, and 38 atoms total containing approximately 10%, 50% and 80% elemental core (ex. Pd7Co6 = 13 atoms, ~50% Pd core)
- 2. Built and optimized systems of the lowest energy catalysts in the presence of 1 CO molecule to determine preferred adsorption site of the CO molecule on the shell (top, bridge, or hollow position)
- 3. Calculated binding energy of CO to the nanocluster
- 4. Calculated the activation barriers for the following syngas (CO+ H_2) conversion to octane over the most favorable CoPd or PdCo coreshell catalyst according to: $8CO + 17H_2 \rightarrow C_8H_{18} + 8H_2O$

VANDERBILT UNIVERSITY

Effect of CoPd and Pd

Justine Ker, Ferna Chemical Engir Louisia

Calculation of the activation barrier of Pd7Co6 core-shell catalyst according to $8CO + 17H_2 \rightarrow C_8H_{18} + 8H_2O$

Molecular Cell Biology, Sixth Editio

Reactant

PSC Ndo Soto, Neering c Na Tech l	h Re Suraj C Ind Insti Jniversit	eac Wayali, tute for <i>N</i> ty, Rustor	tions Dr. Daniela Manufactur h, LA 71272	S. Mainardi ring (IFM)	ΓS Ο
Nano Ano Ano Ano Ano Ano Ano Ano Ano Ano A	DeV dge hat Pd7Co s one of th	ers for the low being the sub-	br FTS	 Fockurst Foc	r both Co isters wi nding eno ngth) eferred b nocluste sitions
Binding ecule) – En	3 Ene ergy (cata) Bond	rgy alyst) – En d Lengt	ergy (CO mole	ecule) • Co syn fav 8C • Ru dyn inv ocf cat	ntinue to ngas (CO orable C 0 + 17H ₂ n Density namics (l estigate ane over alysts
Co15Pd4	Co19Pd	119 Pc	d19Co19	CO CO Position Top Bridge	mpare si

n Fischer-

Conclusions

CoPd and PdCo Core-Shell nanoclusters, ith ~50% core-shell ratio expressed the lowest nergy of CO to the cluster (and longest CO bond

pinding site on the Co or Pd shell of the r were more often the bridge or hollow

Future Work

calculate activation barriers for the following **D+H**₂) conversion to octane over the most CoPd or PdCo core-shell catalysts according to: $\rightarrow C_8 H_{18} + 8 H_2 O$

y Functional Theory coupled molecular DFT-MED) simulations at 25 °C and 200 °C to the conversion of CO and 2H₂ molecules to r the most favorable CoPd and PdCo core-shell

iterature review on FTS and current challenges; imulation results with work found in literature

ustine Ker erbilt University

Suraj Gyawali Louisiana Tech University

Fernando Soto Louisiana Tech University

Acknowledgements

This material is based upon work supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents

