
GPU implementation of spin glass simulation with parallel tempering
C. Thomasson1, S. Hall2, Y. Fang2, S. Feng2, A. Papke2, and K.-­‐M. Tam2

1. Department of Computer Science, Louisiana State University
2. Department of Physics and Astronomy, Louisiana State University

Abstract
Most magnetic materials form magnetic ordering at low

temperatures. The discovery of a metallic alloy which
fails to do so has been a puzzle for the last few decades.

Unfortunately, analytical calculations cannot provide a convincing
answer to the problem. On the other hand, numerical

Monte Carlo simulations require a long equilibration time. The parallel
tempering method has been proven to be powerful method to

alleviate the long equilibration time. Since the parallel tempering
method is inherently parallel, this can fully utilize the architecture

multi-threaded environment.

Spin Glass
Magnetic materials such as Iron, Nickel, and Magnetite posses
magnetic moments with a strong interaction. The interaction

is predominately dominated by the electronic exchange process,
which results in a short range ferromagnetic coupling. When the

Temperature, and thus the thermal fluctuation is small, the
magnetic moments will line up in a parallel direction.

However, in spin glass materials, the interactions among
magnetic moments are usually random and frustrated. This

results in the random ordering pattern as shown in the figure.

K.-M. Tam and M. J. P. Gingras, arXiv:0810.0854v1

Edwards-Anderson Model
Within the Ising model, the magnetic moments, often referred to as
Spins, are coupled via the ferromagnetic coupling. The Hamiltonian

which describes the energy of the model can be written as

where the coupling J is a constant, usually set at -1. For the
canonical spin glass model, Edwards-Anderson model, the

coupling J is randomly chosen from +1 or -1.

Monte Carlo method
The physics of the model can be obtained by calculating the

physical quantities, for example, magnetization, magnetic
susceptibility, spin glass correlation length, etc

the partition function. The partition function is given by

The calculation of the partition function involves a summation over
all the spin configurations. However, the number of spin

configurations grows by 2N for N particles, directly performing the
summation is not feasible. The Monte Carlo method is used to sample

the partition function stochastically. In principle, if the number of
Monte Carlo steps is large enough, reliable estimates of the physical

quantities can be obtained.

Parallel Tempering
The two essential conditions for spin glass, frustration and

Disorder, present a rugged free energy landscape for different
spin configurations. The Monte Carlo simulation has a very long

equilibration time, especially at low temperatures. Parallel
tempering is a technique which uses the idea of swapping

between the spin configurations at low temperature and high
 temperature to shorten the equilibration time.

H = J i,j si s j

s=Z exp

Free energy

Spin configuration

A B

Free energy barrier

GPU IMPLEMENTATION
The PTMC inherently possesses parallelization as the update of
the bipartite lattice can be assigned to independent threads. The

CPU initializes the joint energy J and a random configuration,
then calls the GPU kernel in which one 16*16*16 3D lattice is

assigned to a multiprocessor. This process has multiple replicas
to fully utilize the computational power where concurrency

comes from the combination of various

COMPULATIONAL LIMITATION
1. For each spin update, the GPU reads from memory 7 times

and references a pre-generated table using a random index.
The arithmetic operations are relatively less complex such

that the simulations bottleneck is memory access.

 2. We currently fill the entire lattice into shared memory for
optimization. However, this design limits the simulation scale no
larger than 18*18*18. This is a trade-off between scale capability

and speed.

3. The implementation needs references to a pre-generated table
of random integers. Due to its irregular access pattern, a naive
design of reading from the global memory is very inefficient.

Traditionally used
for graphics
display, the GPU
is also a powerful
tool for
computations.
The GPU can be
used to speed up
calculations
tremendously, but
is lacking in
memory

FUTURE WORKS
We aim to find the balance between calculations and memory

accesses using global memory to texture memory pre-fetching,
awareness of the texture cache for random table look up, and
employing register or shared memory as much as possible.

 Acknowledgements
This material is based upon work supported by the National

Science Foundation under award EPS-1003897

