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ABSTRACT  

The code in a C/C++ Visual Studio project that is used to visualize bonds in atomistic 

configurations is further optimized via the use of linked lists. Benchmarking the original 

version of the code on a 2 x dual core, 3.22 GHz, Opteron when visualizing a Body 

Centered Cubic (BCC) lattice with all 8-bonded atoms showed that for having an 

interactive frame rate of 10 frames per second the upper limit on the number of atoms (= 

N) is ~33,600 when visualizing atoms alone and ~ 3,900 when visualizing bonds alone. 

The order N2 dependence of the execution time to determine the bonded atoms and then 

display the bonds is changed to order N via the use of liked lists thereby raising the limit 

to ~15,400 atoms when visualizing bonds alone.  The corresponding limit when 

visualizing both atoms and bonds is ~11,200 atoms. When applied to visualizing a 

configuration with ~47,000 atoms (4- and 6- bonded), from a molecular dynamics 

simulation of Alumina, the frame rate was 2.52 frames per second indicating the need for 

further optimization. 

 

INTRODUCTION [1] 

Visualizing atomistic configurations from simulations provides information 

complementary to numerical data and helps in identifying the mechanisms underlying the 

phenomena being studied [2]. Molecular dynamics simulations can have a large number 

of atoms: In many cases exceeding a million atoms. This makes it challenging for 

interactively visualizing the corresponding atomic configurations. For interactive 

visualization the frame rate must at least be 10 frames per second (fps) implying that the 
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time for displaying the configuration once must be ≤ 0.1 seconds. In this work an earlier 

version of a CAVE-library based C/C++ Visual Studio [1, 3] project in enhanced to 

increase the number of atoms that can be handled interactively.   

 The CAVE at Southern’s College of Engineering (Fig. 1) is an 8 ft x 8 ft x 8 ft 

space with four displays – three on screen-walls and the fourth on the floor. Active 

stereographic viewing is enabled via the use of eye-ware synchronized to the rapidly 

alternating display of images corresponding to the left and right eyes. The user’s 

viewpoint is detected via a sensor connected to the eye-ware and the corresponding 

perspective transformation for each of the displays is automatically carried out by the 

CAVE-Library. A second sensor is connected to a joystick and can be used for 

interacting with the user’s visualization application. The CAVE is driven by a two node 

cluster with the Master node collecting and handling the sensors’ information and the 

display node driving the projectors.  

 

 

 

Figure 1. Schematic [4] of 
the CAVE at Southern’s 
College of Engineering. 
Projection is via mirrors 
used to set the correct 
optical distance equal to 
the projector’s throw.  
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LITERATURE REVIEW 

Previous research [1, 3] developed the Visual Studio for visualizing atoms and 

bonds and tested the execution speed on the code on a 2.41 GHz, 2 x dual core Opteron 

machine when visualizing a BCC lattice with all 8-bonded atoms i.e. all nearest neighbor 

atoms are bonded. OpenGL display lists were used to render atoms of two types and 

bonds of one type. For having an interactive frame rate of 10 frames per second (fps) the 

upper bound on the number of atoms (= N) was ~30,000 when displaying atoms alone 

and ~3,000 when displaying bonds alone [1]. It was suggested that the bottleneck during 

the display of bonds may be overcome with the use of linked lists [1, 3].  

 

METHODOLOGY 

In order to measure improvements in execution speed on the current machine, the 

Master node in the CAVE (a 3.22 GHz, 2 x dual core Opteron), the execution of original 

code is benchmarked on this machine – in the non-stereo CAVE simulator mode as 

before [1, 3]. The entire configuration is visualized during this benchmarking as larger 

frame rates result when part of the configuration are beyond the user’s view – see the 

“Application” section for an example.  

When visualizing the BCC lattice, the execution time for displaying atoms alone 

scales linearly with N (Fig. 2a), as before [1], resulting in the upper bound of N = 33,600 

for an interactive frame rate. When displaying bonds alone the execution time scales as 

N2 (Fig. 2b), as before [1], with the corresponding limit of N = 3,900 for an interactive 

frame rate.  This N2 dependence of the execution time is due to the double loop over the 

atoms in the original code (Fig. 3) used to determine the bonded atoms.  
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Figure 2. Variation in the execution time of the original code on the 2 × dual core, 
3.22 GHz, Opteron when visualizing a BCC lattice with all 8-bonded atoms. (a) 
Only atoms displayed as spheres. (b) Only bonds displayed as cylinders.  
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Figure 3. Part of the 
original code 
determining the 
bonded atoms and 
then displaying the 
bonds.  
 

y	
  =	
  6.49E-­‐09x2	
  -­‐	
  5.55E-­‐07x	
  +	
  
6.85E-­‐03	
  

R²	
  =	
  1.00E+00	
  

0	
  
0.05	
  
0.1	
  
0.15	
  
0.2	
  

0	
   1000	
   2000	
   3000	
   4000	
   5000	
   6000	
  

Ti
m
e	
  
pe
r	
  
Fr
am

e	
  
(S
ec
on
ds
)	
  

Number	
  of	
  Atoms	
  	
  

Only	
  Bonds	
  Displayed	
  
Primitives	
  per	
  cylindrical	
  bond=	
  20	
  	
  
(b)	
  



6	
  
	
  

MODIFIED CODE 

The 2nd (inner) loop over the atoms (Fig. 3) is avoided by “putting atoms into boxes” of 

size equal to the bond length (Fig. 4a) and searching only the boxes neighboring a 

particular box (Fig. 4b) to determine bonded atoms.  

Figure 4. Part of the modified code that replaces the original code (Fig. 3) 
determining the bonded atoms. (a) shows construction of the BoxHeader and 
LinkedList arrays. (b) shows use of the BoxHeader and LinkedList arrays to 
determine the bonded atoms. The OpenGL code for displaying bonds as 
cylinders is the same as in the original code (Fig. 3).   

(a)	
  
	
  
	
  
	
  
	
  
	
  
(b)	
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Atoms are “put into boxes” spanning the entire system based on their position. 

The size of the box is chosen to be equal to the bond length so that only neighboring 

boxes need to be “looked at” to identify the bonded atoms. To do so two arrays are 

defined: The BoxHeader array identifying an atom in the box and a LinkedList array that 

then identifies other atoms in the box. Construction of the two arrays proceeeds as 

outlined in Fig. 4a while sanning over all the atoms once. Whenever an atoms is found to 

be in a particular box the corresponding BoxHeader points to this atom via its index in 

the Position array while the LinkedList of the newly found atom’s index points to the 

previous value of the BoxHeader i.e. the previously found atom. When completed, this 

construction results in the BoxHeader(s) pointing to the last atom found in the box(es) 

with the LinkedList identifying the other atoms in the boxes found earlier in the 

construction process. Both arrays are initialized to a negative number to indicate an 

empty box (as in BoxHeader) or scanning past all the atoms in the box (as in LinkedList).  

Bonded atoms are identified by first scanning through all the atoms – as contained 

in the boxes (Fig. 4b). This step is similar to the first (outer) loop over atoms of the 

original code (Fig. 3) – the number of operations being proportional to N. The inner loop 

of the original code is replaced with the construction of a list of all the atoms in the boxes 

neighboring a particular box (the array NeighborList in Fig. 4b). It is this step that makes 

the search for bonds scale as O(N) rather than O(N2)  - as in this step, in a system of 

spatially uniform atom density, the number of operations is fixed number M unlike the 

search carried out by the inner loop in the originl code (Fig. 3) wherein the number of 

operations is again proportional to N. For every atom in the initial box selected, scanning 
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through the NeighborList, the bonded atoms are then determined as before [1, 3]: to be 

those that are spatially seperated by a distance less than the bondlength.  Duplicate 

determination of bonded atoms is avoided by a careful choice of only 13 of the 26 boxes 

neighboring a particular box – as encoded in the allnb array (Fig. 4b).  

 

RESULTS AND DISCUSSION 

The use of linked lists make the execution time for the search for bonded atoms 

scale as N - as reflected in the timing for the display of bonds alone (Fig. 5a).  The 

corresponding limit on the number of 8-bonded atoms of the BCC lattice, for an 

interactive frame rate of 10 fps, increases to 15,400. It must be noted that there is a 

decrease in execution time when duplicate determination of bonded atoms was avoided as 

described earlier via the choice of scanning over only 13 of the 26 boxes neighboring a 

particular box rather than via a comparison of the indices of the bonded atoms’ in the 

Position array while scanning over all 26 boxes neighboring a particular box: The 

execution time for scanning over 13 of the neighboring boxes is .129s, and the execution 

time for scanning over all 26 neighboring boxes is .137s.  
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As expected the execution time for the simultaneous display of both atoms and 

bonds now scales as order N – with upper limit of N = 11,200 for an interactive frame 

rate (Fig. 6). It is interesting to note that the slope of the execution time curves when 

displaying both atoms and bonds (Fig. 6) is less than the sum of the slopes of the curves 

when displaying atoms alone (Fig. 2a) and when displaying bonds alone. This 

observation suggests that there may be operations common to the display of both atoms 

and bonds – requiring further study for confirmation/identification of these operations.  

 

 

APPLICATION 

Applying the code to the entire ~47,000-atom configuration of Alumina (Fig. 7a) 

obtained from a molecular dynamics simulation, the execution time per frame is 0.397 s 

when displaying both atoms and bonds. As mentioned first under the Methodology 

section, this time is significantly smaller (0.285 s) when parts of this system were beyond 

user view. For the same system the executions time is 0.144 s when displaying atoms 

only, and 0.259 s when displaying bonds only. While the time for displaying atoms alone 
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is as expected by extrapolation of the curve in Fig. 2a, the time to display bonds alone is 

significantly smaller than expected by extrapolation of the linear curve in Fig. 5. This is 

due to the complex structure of the material (Fig. 7b) – with 4- and 6-bonded atoms.  

 

   

CONCLUSION AND FUTURE WORK 

Linked lists make the execution time to determine the bonded atoms scale as the 

number of atoms. For an interactive display of atoms and bonds the current limit on the 

number of atoms is 11,200 (with 8-bonded atoms in a BCC lattice). Possible future 

optimization steps are off loading the task of determining bonded atoms from the display 
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loop to the main loop of the CAVE library, and Automatic lower resolution for atoms and 

bonds at a large distance from the viewer [5]. 
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