
1	

	

LA-SIGMA REU-SUBR

Optimizing Stereographic Visualization of Bonds in

Atomistic Configurations Using Linked Lists

Jasmine Jones1, Sanjay Kodiyalam2, Amitava Jana2

1Department of Chemistry, Xavier University of Louisiana,

2Department of Mechanical Engineering, Southern University Baton Rouge2

7/26/2011

2	

	

ABSTRACT

The code in a C/C++ Visual Studio project that is used to visualize bonds in atomistic

configurations is further optimized via the use of linked lists. Benchmarking the original

version of the code on a 2 x dual core, 3.22 GHz, Opteron when visualizing a Body

Centered Cubic (BCC) lattice with all 8-bonded atoms showed that for having an

interactive frame rate of 10 frames per second the upper limit on the number of atoms (=

N) is ~33,600 when visualizing atoms alone and ~ 3,900 when visualizing bonds alone.

The order N2 dependence of the execution time to determine the bonded atoms and then

display the bonds is changed to order N via the use of liked lists thereby raising the limit

to ~15,400 atoms when visualizing bonds alone. The corresponding limit when

visualizing both atoms and bonds is ~11,200 atoms. When applied to visualizing a

configuration with ~47,000 atoms (4- and 6- bonded), from a molecular dynamics

simulation of Alumina, the frame rate was 2.52 frames per second indicating the need for

further optimization.

INTRODUCTION [1]

Visualizing atomistic configurations from simulations provides information

complementary to numerical data and helps in identifying the mechanisms underlying the

phenomena being studied [2]. Molecular dynamics simulations can have a large number

of atoms: In many cases exceeding a million atoms. This makes it challenging for

interactively visualizing the corresponding atomic configurations. For interactive

visualization the frame rate must at least be 10 frames per second (fps) implying that the

3	

	

time for displaying the configuration once must be ≤ 0.1 seconds. In this work an earlier

version of a CAVE-library based C/C++ Visual Studio [1, 3] project in enhanced to

increase the number of atoms that can be handled interactively.

 The CAVE at Southern’s College of Engineering (Fig. 1) is an 8 ft x 8 ft x 8 ft

space with four displays – three on screen-walls and the fourth on the floor. Active

stereographic viewing is enabled via the use of eye-ware synchronized to the rapidly

alternating display of images corresponding to the left and right eyes. The user’s

viewpoint is detected via a sensor connected to the eye-ware and the corresponding

perspective transformation for each of the displays is automatically carried out by the

CAVE-Library. A second sensor is connected to a joystick and can be used for

interacting with the user’s visualization application. The CAVE is driven by a two node

cluster with the Master node collecting and handling the sensors’ information and the

display node driving the projectors.

Figure 1. Schematic [4] of
the CAVE at Southern’s
College of Engineering.
Projection is via mirrors
used to set the correct
optical distance equal to
the projector’s throw.

4	

	

LITERATURE REVIEW

Previous research [1, 3] developed the Visual Studio for visualizing atoms and

bonds and tested the execution speed on the code on a 2.41 GHz, 2 x dual core Opteron

machine when visualizing a BCC lattice with all 8-bonded atoms i.e. all nearest neighbor

atoms are bonded. OpenGL display lists were used to render atoms of two types and

bonds of one type. For having an interactive frame rate of 10 frames per second (fps) the

upper bound on the number of atoms (= N) was ~30,000 when displaying atoms alone

and ~3,000 when displaying bonds alone [1]. It was suggested that the bottleneck during

the display of bonds may be overcome with the use of linked lists [1, 3].

METHODOLOGY

In order to measure improvements in execution speed on the current machine, the

Master node in the CAVE (a 3.22 GHz, 2 x dual core Opteron), the execution of original

code is benchmarked on this machine – in the non-stereo CAVE simulator mode as

before [1, 3]. The entire configuration is visualized during this benchmarking as larger

frame rates result when part of the configuration are beyond the user’s view – see the

“Application” section for an example.

When visualizing the BCC lattice, the execution time for displaying atoms alone

scales linearly with N (Fig. 2a), as before [1], resulting in the upper bound of N = 33,600

for an interactive frame rate. When displaying bonds alone the execution time scales as

N2 (Fig. 2b), as before [1], with the corresponding limit of N = 3,900 for an interactive

frame rate. This N2 dependence of the execution time is due to the double loop over the

atoms in the original code (Fig. 3) used to determine the bonded atoms.

5	

	

Figure 2. Variation in the execution time of the original code on the 2 × dual core,
3.22 GHz, Opteron when visualizing a BCC lattice with all 8-bonded atoms. (a)
Only atoms displayed as spheres. (b) Only bonds displayed as cylinders.

y	
 =	
 2.90E-­‐06x	
 +	
 2.64E-­‐03	

R²	
 =	
 9.98E-­‐01	

0	

0.02	

0.04	

0.06	

0.08	

0.1	

0.12	

0	
 10000	
 20000	
 30000	
 40000	

Ti
m
e	

pe
r	

Fr
am

e	

(S
ec
on
ds
)	

Number	
 of	
 Atoms	

Only	
 Atoms	
 Displayed	

Primitives	
 per	
 spherical	
 atom	
 =	
 400	
 (a)	

Figure 3. Part of the
original code
determining the
bonded atoms and
then displaying the
bonds.

y	
 =	
 6.49E-­‐09x2	
 -­‐	
 5.55E-­‐07x	
 +	

6.85E-­‐03	

R²	
 =	
 1.00E+00	

0	

0.05	

0.1	

0.15	

0.2	

0	
 1000	
 2000	
 3000	
 4000	
 5000	
 6000	

Ti
m
e	

pe
r	

Fr
am

e	

(S
ec
on
ds
)	

Number	
 of	
 Atoms	
 	

Only	
 Bonds	
 Displayed	

Primitives	
 per	
 cylindrical	
 bond=	
 20	
 	

(b)	

6	

	

MODIFIED CODE

The 2nd (inner) loop over the atoms (Fig. 3) is avoided by “putting atoms into boxes” of

size equal to the bond length (Fig. 4a) and searching only the boxes neighboring a

particular box (Fig. 4b) to determine bonded atoms.

Figure 4. Part of the modified code that replaces the original code (Fig. 3)
determining the bonded atoms. (a) shows construction of the BoxHeader and
LinkedList arrays. (b) shows use of the BoxHeader and LinkedList arrays to
determine the bonded atoms. The OpenGL code for displaying bonds as
cylinders is the same as in the original code (Fig. 3).

(a)	

	

	

	

	

	

(b)	

7	

	

Atoms are “put into boxes” spanning the entire system based on their position.

The size of the box is chosen to be equal to the bond length so that only neighboring

boxes need to be “looked at” to identify the bonded atoms. To do so two arrays are

defined: The BoxHeader array identifying an atom in the box and a LinkedList array that

then identifies other atoms in the box. Construction of the two arrays proceeeds as

outlined in Fig. 4a while sanning over all the atoms once. Whenever an atoms is found to

be in a particular box the corresponding BoxHeader points to this atom via its index in

the Position array while the LinkedList of the newly found atom’s index points to the

previous value of the BoxHeader i.e. the previously found atom. When completed, this

construction results in the BoxHeader(s) pointing to the last atom found in the box(es)

with the LinkedList identifying the other atoms in the boxes found earlier in the

construction process. Both arrays are initialized to a negative number to indicate an

empty box (as in BoxHeader) or scanning past all the atoms in the box (as in LinkedList).

Bonded atoms are identified by first scanning through all the atoms – as contained

in the boxes (Fig. 4b). This step is similar to the first (outer) loop over atoms of the

original code (Fig. 3) – the number of operations being proportional to N. The inner loop

of the original code is replaced with the construction of a list of all the atoms in the boxes

neighboring a particular box (the array NeighborList in Fig. 4b). It is this step that makes

the search for bonds scale as O(N) rather than O(N2) - as in this step, in a system of

spatially uniform atom density, the number of operations is fixed number M unlike the

search carried out by the inner loop in the originl code (Fig. 3) wherein the number of

operations is again proportional to N. For every atom in the initial box selected, scanning

8	

	

through the NeighborList, the bonded atoms are then determined as before [1, 3]: to be

those that are spatially seperated by a distance less than the bondlength. Duplicate

determination of bonded atoms is avoided by a careful choice of only 13 of the 26 boxes

neighboring a particular box – as encoded in the allnb array (Fig. 4b).

RESULTS AND DISCUSSION

The use of linked lists make the execution time for the search for bonded atoms

scale as N - as reflected in the timing for the display of bonds alone (Fig. 5a). The

corresponding limit on the number of 8-bonded atoms of the BCC lattice, for an

interactive frame rate of 10 fps, increases to 15,400. It must be noted that there is a

decrease in execution time when duplicate determination of bonded atoms was avoided as

described earlier via the choice of scanning over only 13 of the 26 boxes neighboring a

particular box rather than via a comparison of the indices of the bonded atoms’ in the

Position array while scanning over all 26 boxes neighboring a particular box: The

execution time for scanning over 13 of the neighboring boxes is .129s, and the execution

time for scanning over all 26 neighboring boxes is .137s.

y	
 =	
 6.49E-­‐09x2	
 -­‐	
 5.55E-­‐07x	
 +	

6.85E-­‐03	

R²	
 =	
 1.00E+00	

y	
 =	
 6.55E-­‐06x	
 -­‐	
 9.55E-­‐04	

R²	
 =	
 1.00E+00	

0	

0.05	

0.1	

0.15	

0.2	

0	
 5000	
 10000	
 15000	
 20000	

Ti
m
e	

pe
r	

Fr
am

e	

(S
ec
on
ds
)	

	

	

Number	
 of	
 Atoms	

Only	
 Bonds	
 Displayed	

Primitives	
 per	
 cylindrical	
 bond	
 =	
 20	

	

Before	
 Linked	

List	

After	
 Linked	

List	

Figure 5. Variation in the
execution time of the
modified and original codes
for the display of bonds
alone. The quadratic
dependence of the execution
time of the original code on
the number of atoms is
changed to a linear one via
the use of linked lists in the
modified code.

9	

	

As expected the execution time for the simultaneous display of both atoms and

bonds now scales as order N – with upper limit of N = 11,200 for an interactive frame

rate (Fig. 6). It is interesting to note that the slope of the execution time curves when

displaying both atoms and bonds (Fig. 6) is less than the sum of the slopes of the curves

when displaying atoms alone (Fig. 2a) and when displaying bonds alone. This

observation suggests that there may be operations common to the display of both atoms

and bonds – requiring further study for confirmation/identification of these operations.

APPLICATION

Applying the code to the entire ~47,000-atom configuration of Alumina (Fig. 7a)

obtained from a molecular dynamics simulation, the execution time per frame is 0.397 s

when displaying both atoms and bonds. As mentioned first under the Methodology

section, this time is significantly smaller (0.285 s) when parts of this system were beyond

user view. For the same system the executions time is 0.144 s when displaying atoms

only, and 0.259 s when displaying bonds only. While the time for displaying atoms alone

Figure	
 6.	
 Variation	
 in	
 the	

execution	
 time	
 of	
 the	

modified	
 code	
 to	
 display	

both	
 atoms	
 and	
 bonds.	
 The	

linear	
 dependence	
 of	
 this	

execution	
 time	
 on	
 the	

number	
 of	
 atoms	
 follows	

from	
 the	
 same	
 dependence	

when	
 displaying	
 atoms	

alone	
 (Fig.	
 2a)	
 or	
 bonds	

alone	
 (Fig.	
 5).	
 	

	

y	
 =	
 8.99E-­‐06x	
 -­‐	
 1.11E-­‐03	

R²	
 =	
 1.00E+00	

0	

0.05	

0.1	

0.15	

0	
 5000	
 10000	
 15000	
 Ti
m
e	

pe
r	

Fr
am

e	

(S
eo
on
ds
)	

Number	
 of	
 Atoms	

	

Both	
 Atoms	
 and	
 Bonds	
 displayed	

Primitives:	
 400/atom,	
 20/bond	

	
 	

	

10	

	

is as expected by extrapolation of the curve in Fig. 2a, the time to display bonds alone is

significantly smaller than expected by extrapolation of the linear curve in Fig. 5. This is

due to the complex structure of the material (Fig. 7b) – with 4- and 6-bonded atoms.

CONCLUSION AND FUTURE WORK

Linked lists make the execution time to determine the bonded atoms scale as the

number of atoms. For an interactive display of atoms and bonds the current limit on the

number of atoms is 11,200 (with 8-bonded atoms in a BCC lattice). Possible future

optimization steps are off loading the task of determining bonded atoms from the display

Figure	
 7.	
 Application	
 of	
 the	
 code	
 to	
 an	
 Alumina	
 system.	
 (a)	
 shows	
 a	
 full	
 view	

with	
 ~47,000	
 atoms.	
 Blue	
 spheres	
 represent	
 Aluminum,	
 green	
 spheres	

represent	
 Oxygen,	
 and	
 bonds	
 are	
 in	
 red.	
 (b)	
 shows	
 a	
 close-­‐up	
 view	
 of	
 the	

system.	
 The	
 structure	
 is	
 complex	
 with	
 6-­‐bonded	
 Aluminum	
 atoms	
 and	
 4-­‐
bonded	
 Oxygen	
 atoms.	
 	

	

(a) (b)

11	

	

loop to the main loop of the CAVE library, and Automatic lower resolution for atoms and

bonds at a large distance from the viewer [5].

ACKNOWLEDGEMENTS

This work was funded by the Louisiana Board of Regents, through LASIGMA

[Award Nos. EPS-1003897, and NSF (2010-15)-RII-SUBR]. One of the authors (Jasmine

Jones) thanks Dr. Diola Bagayoko for the opportunity to conduct research with the LA-

SiGMA REU.

REFERENCES

1. C. Vanderlick, S. Kodiyalam, A. Jana, “Optimizing Stereographic Visualization of

Atomistic Configurations”, LA-SiGMA REU Paper, 2012.

2. S. Kodiyalam, M. Benissan, S. Akwaboa, P. Mensah, A. Jana, and D. Bagayoko,

“Molecular Dynamics Simulation and Visualization of Thermal Barrier Coatings,”

Proceedings of the 2012 RII LA-SiGMA Symposium, July 23
rd

, Baton Rouge,

Louisiana.

3. G.R. Wright, S. Kodiyalam, A. Jana, “Stereographic Visualization of Molecular

Configurations in a CAVE” LA-SiGMA 2011 REU Report.

4. Figure from http.cs.uic.edu/~kenyon/conference/GILKY/CAVE_DOD.html

5. A. Sharma, A. Nakano, R. K. Kalia, P. Vashishta, S. Kodiyalam, P. Miller, W. Zhao,

X. Liu, T. J. Campbell, and A. Hass, “Immersive and Interactive Exploration of

Billion-Atom Systems,” Presence: Teleoperators and Virtual Environments 12, 85

(2003).

