
 

To investigate how the running time varies with 
matrix size and how the versions that use shared 

memory and non-shared memory compare in terms 
of wall time. 

 

 

 

Jonah Njenga 

LASIGMA – RET 2012 - Teachers 

 

 

 

East Baton Rouge Public School System 

 

 

July 13, 2012 

  



Acknowledgment 

This summer research experience was supported by the 

National Science Foundation under the NSF EPSCoR 

Cooperative Agreement No. EPS-1003897 with additional 

support from the Louisiana Board of Regents. 

 

  



Abstract 

 
In this activity, an example of Matrix Multiplication was 
used to study the basics of GPU computing in the CUDA 
environment.   
The use of CUDA and the nvcc compiler made it possible 
to write programs in C which was run on an ordinary host 
computer (Linux). 
 
Matrix multiplication was implemented on a CUDA-
enabled graphics card. 
Programs were run to see how running time varied with 
the matrices sizes. 
Comparison of running time between shared memory 
version and not shared memory version. 
 
Gnuplot was used to plot running time against dimensions 
of the matrices. 
 
 



 

 

  



Introduction 

Matrix definition 

 
A matrix (plural, matrices) is a rectangular array of 
numbers. 
We can abbreviate the array as S = [sij].   
The size of a matrix is the number of rows by the number 

of columns.  Thus, S is a i  j matrix. 
 
Importance: 
 

- Useful and fundamental mathematical objects in 
scientific computation.  
 

Applications include:  
- Computer graphics (3D) 
- solving systems of equations  
- DNA sequence comparison 
- Modeling electrical circuits or computer networks 

 
Matrices Operations: 
Addition, subtraction, multiplication and, division.  
The ability to multiply matrices allows modeling of many 
problems. 
 
There is need to optimize the compute capability, which 
can be described as the general computing power of 
GPUs. 
 
 



4 multiprocessors, 32 cores 
 

- Dramatic difference in running times  
- For  matrices of size 1000 X 1000,  a factor of  seven 

improvement  
- Ratio seems to be increasing as matrix size 

increases. 
 
 
 

 
 

Robert Hochberg, April 5, 2012 

 
 
 
 
 
 
 



6 multiprocessors, 48 cores 
 
-Ratio approaches 2 as matrix size approaches 1000.  
-Increase in multiprocessor enhances improvement in 
non-shared memory version 
- Improvement in the shared memory version due to better    
coalesce memory access. 
  

 
 

Robert Hochberg, April 5, 2012 
 

 
 



 14 multiprocessors, 448 cores 
 
- Ratio of about 1.7  
- Location of card affects performance. 
- For matrices of size 8000 x 8000, the shared memory 
   Version is faster by a factor of 2.6. 
 
 
 

 
 

Robert Hochberg, April 5, 2012 
 

 



Results and Discussion 

 

a) MultShare memory version 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



b)   Mult-NoShare Memory version 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



c) Multi-plot : Share/No-Share Comparison (N<600) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



d) Multi-plot : Share/No-Share Comparison (N> 600) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



e) Multi-plot : Share/No-Share Comparison (N> 3000) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Conclusion 
 

- As the size of a matrix increases the running time 
increases. 

- Share memory    version have are generally faster 
than the non-shared memory version. 

- The advantage of share memory is evident when the 
matrix size increases. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Reference 
 

Matrix Multiplication with CUDA | A basic introduction 
to the CUDA programming model, Robert Hochberg, April 5, 2012 
 


