To investigate how the running time varies with
matrix size and how the versions that use shared
memory and non-shared memory compare in terms
of wall time.

Jonah Njenga

LASIGMA — RET 2012 - Teachers

East Baton Rouge Public School System

July 13, 2012



Acknowledgment

This summer research experience was supported by the
National Science Foundation under the NSF EPSCoR
Cooperative Agreement No. EPS-1003897 with additional
support from the Louisiana Board of Regents.



Abstract

In this activity, an example of Matrix Multiplication was
used to study the basics of GPU computing in the CUDA
environment.

The use of CUDA and the nvcc compiler made it possible
to write programs in C which was run on an ordinary host
computer (Linux).

Matrix multiplication was implemented on a CUDA-
enabled graphics card.

Programs were run to see how running time varied with
the matrices sizes.

Comparison of running time between shared memory
version and not shared memory version.

Gnuplot was used to plot running time against dimensions
of the matrices.



20000

18660

166080

1408608

12668

16668

8608

66008

40008

2800

"nultNoShéreLoopResults: 2
"nultShareLoopResults,

168

200

368

4808 568

668



Introduction

Matrix definition

A matrix (plural, matrices) is a rectangular array of
numbers.

We can abbreviate the array as S = [s;].

The size of a matrix is the number of rows by the number

of columns. Thus, Sis a i x j matrix.

Importance:

- Useful and fundamental mathematical objects in
scientific computation.

Applications include:
- Computer graphics (3D)
- solving systems of equations
- DNA sequence comparison
- Modeling electrical circuits or computer networks

Matrices Operations:

Addition, subtraction, multiplication and, division.

The ability to multiply matrices allows modeling of many
problems.

There is need to optimize the compute capability, which
can be described as the general computing power of
GPUs.



4 multiprocessors, 32 cores

Dramatic difference in running times

For matrices of size 1000 X 1000, a factor of seven

improvement

Ratio seems to be increasing as matrix size

Increases.

25

15

0.5

WA

)

S

et ——

0

200 400 600 800 1000

1200

s==Shared Mem

=N ot Shared Mem

Robert Hochberg, April 5, 2012




6 multiprocessors, 48 cores

-Ratio approaches 2 as matrix size approaches 1000.
-Increase in multiprocessor enhances improvement in
non-shared memory version

- Improvement in the shared memory version due to better
coalesce memory access.

0.6

05

04

03 N A @ Shared Mem.

v w/ @ \ot Shared Mem.
0.2

01

0 I 1 1
0 200 400 600 800 1000 1200

Robert Hochberg, April 5, 2012



14 multiprocessors, 448 cores

- Ratio of about 1.7

- Location of card affects performance.
- For matrices of size 8000 x 8000, the shared memory
Version is faster by a factor of 2.6.

25

20

0

1000

2000

3000 4000 5000 6000 7000  80OC

9000

s==Shared Mem

@\ Shared Mem

Robert Hochberg, April 5, 2012




Results and Discussion

a) MultShare memory version

le+87 T T T T

"nulItShar‘ELuuplkesults.t:-l:t"

9e+86

Be+d6

fe+db

Ge+d6

Se+d6

de+d6

Je+d6

2e+86

le+86

H 1 1 1 1 1 1
a 18688 28488 3eaa 4888 Saa8 6888 faa8 it lal]




b) Mult-NoShare Memory version

35068 T T T T

"nulItHDShar‘elLuupResullts LExt Y —

Jaaa8

25088

20008

156688

18888

5068

a 1688 288 388 488 568 688 Fae 88 988 18688



c) Multi-plot : Share/No-Share Comparison (N<600)

20000

18660 -

16600 -

146868 -

126800 -

180868 -

geee -

6608 -

4000 -

2800

"nultNoShéreLoopResulté.
"nultSharelLoopResults,

1 1 1 1 1
a 160 2008 300 480 5668

600



d) Multi-plot : Share/No-Share Comparison (N> 600)

25000 T T T

"nultShelireLoopResults'.txt " —
"nultNoSharelLoopResults,txt" e

20000

15606

166086

5608

8 160 200 368 460 500 660



e) Multi-plot : Share/No-Share Comparison (N> 3000)

908888

“nult’iHuShareLuupResuits LEHL" —
"multShareLoopResults, tat" m—

doBaea

foBaea

6868068

So8a88

408888

joBaes

208068

1868068

1 1 1 1
haa 18688 1588 28688 2388 Joea



Conclusion

- As the size of a matrix increases the running time
Increases.

- Share memory version have are generally faster
than the non-shared memory version.

- The advantage of share memory is evident when the
matrix size increases.



Reference

Matrix Multiplication with CUDA | A basic introduction
to the CUDA programming model, Robert Hochberg, April 5, 2012



