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Abstract

In this activity, an example of Matrix Multiplication was
used to study the basics of GPU computing in the CUDA
environment.

The use of CUDA and the nvcc compiler made it possible
to write programs in C which was run on an ordinary host
computer (Linux).

Matrix multiplication was implemented on a CUDA-
enabled graphics card.

Programs were run to see how running time varied with
the matrices sizes.

Comparison of running time between shared memory
version and not shared memory version.

Gnuplot was used to plot running time against dimensions
of the matrices.
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Introduction

Matrix definition

A matrix (plural, matrices) is a rectangular array of
numbers.

We can abbreviate the array as S = [s;].

The size of a matrix is the number of rows by the number

of columns. Thus, Sis a i x j matrix.

Importance:

- Useful and fundamental mathematical objects in
scientific computation.

Applications include:
- Computer graphics (3D)
- solving systems of equations
- DNA sequence comparison
- Modeling electrical circuits or computer networks

Matrices Operations:

Addition, subtraction, multiplication and, division.

The ability to multiply matrices allows modeling of many
problems.

There is need to optimize the compute capability, which
can be described as the general computing power of
GPUs.



4 multiprocessors, 32 cores

Dramatic difference in running times

For matrices of size 1000 X 1000, a factor of seven

improvement

Ratio seems to be increasing as matrix size

Increases.
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6 multiprocessors, 48 cores

-Ratio approaches 2 as matrix size approaches 1000.
-Increase in multiprocessor enhances improvement in
non-shared memory version

- Improvement in the shared memory version due to better
coalesce memory access.
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14 multiprocessors, 448 cores

- Ratio of about 1.7

- Location of card affects performance.
- For matrices of size 8000 x 8000, the shared memory
Version is faster by a factor of 2.6.
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Results and Discussion

a) MultShare memory version
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b) Mult-NoShare Memory version
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c) Multi-plot : Share/No-Share Comparison (N<600)
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d) Multi-plot : Share/No-Share Comparison (N> 600)
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e) Multi-plot : Share/No-Share Comparison (N> 3000)
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Conclusion

- As the size of a matrix increases the running time
Increases.

- Share memory version have are generally faster
than the non-shared memory version.

- The advantage of share memory is evident when the
matrix size increases.
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