Fischer-Tropsch Synthesis

RET: Jeanine Edgecombe RET Mentors: Dr. Ramu & Dr. Wick Post-Doc: Dr. Ayo Hassan Graduate Student: Fernando Soto

Outlook

- Introduction
- Methodology
- Results
- Future Plans
- Educational Application

Introduction

- What is Fischer-Tropsch Synthesis?
 - Collection of chemical reactions that converts a mixture of carbon monoxide and hydrogen into liquid hydrocarbons to produce synthetic fuels
 - First produced in the 1920s
 - Used by Germans during WWII

Methodology

- Material Studio®
 - CASTEP
 - GGA/PBE
 - Geometry Optimizations
 - Medium Quality
 - Gamma k-point

CASTEP Calculation	
Setup Electronic Properties Job Control	
Task: Geometry (Dptimization 💌 More
Quality: Custo	omized 🗨
Functional:	GGA 💌 PBE 💌
🔲 Spin polarized	🔽 Use formal spin as initial
🔲 Use LDA+U	Initial spin: 0
	Charge: 0
Run	Files Help

Results

- Al_2O_3
- Imported from Material Studio[®]
- Lattice Parameters:
 - a= 6.996373 Å
 - b= 10.256929 Å
 - c= 18.302746 Å
- Number of atoms:
 - 35 atoms
- Final Energy:
 - -8793.25 eV

Addition of Cobalt

- Cobalt atom added near the surface of alumina above an oxygen atom
- Final Energy:
 - -9833.51 eV

Addition of Carbon Monoxide

- Carbon monoxide added near cobalt atom
- Final Energy:
 - -10426.68 eV

Addition of Hydrogen

- Hydrogen atom added to oxygen
- Final Energy:
 - -10441.07 eV

Addition of Hydrogen

- Second hydrogen atom added
- Final Energy:
 - -10455.42 eV

Removal of Water

- Water molecule separated from carbon.
- Final energy:
 - -10456.17 eV

Calculations (Single Cobalt Surface) Binding Energy of Co to Al_2O_3 = E(surface + Co) - [E(surface) + E(Co)] = -5.25 eV = -121.01 kcal/mol

Binding Energy of CO to Co = E(surface + Co + CO) - [E(surface + Co) + E(CO)]= -4.09 eV = -94.32 kcal/mol

Binding Energy of H to O = E(surface + Co + CO + H) - [E(surface + Co + CO) + E(H)]= -2.18 eV = -50.27 kcal/mol

Calculations (Single Cobalt Surface) Continued

Binding Energy of second H to O

 $= E(surface + Co + CO + H_2) - [E(surface + Co + CO + H) + E(H)]$

= -2.14 eV = -49.35 kcal/mol

Addition of Cobalt

- Three cobalt atoms

 added near the surface of
 alumina above an oxygen
 atom
- Final Energy:
 -11914.33 eV

Addition of Carbon Monoxide

- Carbon monoxide added near cobalt atom
- Final Energy:
 - -12507.40 eV

Addition of Second & Third Carbon Monoxide

- Carbon monoxide added near cobalt atom
- Final Energy:
 - -13692.41

Calculations (Three Cobalt Surface) Binding Energy of Co to Al₂O₃ = E(surface + Co) - [E(surface) + E(Co)] $= -5.25 \ eV = -121.01 \ kcal/mol$ Binding Energy of second Co to Al₂O₃ =E(surface + Co₂) - [E(surface + Co) + E(Co)] $= -5.55 \ eV = -127.98 \ kcal/mol$ Binding Energy of third Co to Al₂O₃ =E(surface + Co₃) - [E(surface + Co₂) + E(Co)] = -5.25 = -121.01 kcal/mol

Calculations (Three Cobalt Surface) continued

Binding Energy of CO to Co

 $= E(surface + Co_3 + CO) - [E(surface + Co_3) + E(CO)]$ $= -3.99 \ eV = -92.01 \ kcal/mol$

Binding Energy of second & third CO to Co = $E(surface + Co_3 + 3CO) - [E(surface + Co_3 + CO) + E(2CO)]$

 $= -6.85 \ eV = -157.96 \ kcal/mol$

Conclusions

- 1 1 0 surface is manageable for FT synthesis
- Binding energies are within an acceptable range

Future Plans

- Continue computational studies on Fischer-Tropsch
- Determine most effective catalysts for reactions

Educational Application

- Microbial Fuel Cell Kit
 - Investigate cellular respiration
 - Explore an alternative fuel source
 - See microbes in a new light

Prices:

- Kit: \$260.00
- •Refill: \$27.95

Educational Application continued...

- Bio-Energy Kit
 - Demonstrates how energy can be created from ethanol without combustion—and works, nonstop, for hours

Prices: Kit: \$99.99

Educational Application continued...

- Preparation and Properties of Biodiesel Fuel Student Laboratory Kit
 - The biodiesel fuel methyl stearate is prepared by mixing cooking oil with methyl alcohol and sodium hydroxide.
 - Students use common separation techniques to isolate the biodiesel fuel and then determine the fuel's heat of combustion using calorimeter.

Prices: Kit: \$30.10

THANK YOU!!!

Louisiana Alliance for Simulation-Guided Materials Applications

Dr. Ramu

Dr. Wick

Fernando Soto

Dr. Ayo Hassan

This material is based upon work supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents.

