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The Goal Computational and CTCI| Teams:
Build transformational common toolkits
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GPU: Program Optimization V.

* Programming GPUs (for example, the NVIDIA GPUs
using CUDA or OpenCL) is still tedious:

— Performance of GPU highly sensitive to the formulation of the
kernel; needs significant experimentation

— Programmers may like this low level of control (suitable for
library development; compilers and tools are not highly
helpful here)

« Strategy at LSU (Yun, Ramanujam):

« Understand the impact of and interactions among program
optimizations for HF-QMC, PT and VMC

 Develop and use effective transformation and optimization
strategies

« Code partitioning between CPU and GPU

» Strategy at LaTech (Leungsuksun):

« Parallel Programming Tool Development based on Single
Assignment C (SaC) toolset that enables parallel application
developers expressing their problems in a high-level
language

O



GPU Programming Team

 GPU Programming Team of
roughly 25 faculty, students,
and postdocs from LSU, LA
Tech & Lousiana School for
Math, Sciences, and the Arts
(HS).

* Housed in the Collaboratorium
at LSU and containing 12
GPU-enabled desktop
computers.

« LSU “Condo” — LA-SIGMAto
purchase GPU-enabled nodes
on CCT/LSU’s Tezpur upgrade.

* Another GPU cluster (Shelob)
from NSF CRI funding
(significant LA-SIGMA role)

Nvidia GTX 460,
http://www.nvidia.com/obje
ct/product-geforce-gtx-460-
us.html
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Parallel Tempering (See poster) V@Y

* The main goal here is to develop an efficient Parallel Tempering
Monte Carlo code on GPU, with which we can study systems with
complex energy landscapes.

* Developed a full-featured Ising model simulation program for
CUDA GPUs.

 Studying phase transition of spin glass in a finite magnetization
field.

* Results:

» The FPGA design (custom hardware) of Montovani et al.
delivers the best time of 16 picoseconds per spin flip
proposal (PS/spin).

»We achieve 39 picoseconds per spin flip proposal
(PS/spin) on a single commodity GPU card, which is 3X
better than other 2D GPU implementations.

»Our GPU version is about 600 times faster than our
prototype CPU implementation.




Hirsch-Fye Quantum Monte
Carlo-1 (See poster)

« This project simulates the interaction of conducting
electrons in a metal.

» Using the Hirsch-Fye method mapped to a problem of
electrons scattering of an Ising field in space and
(Imaginary) time.

« The configurations of the Ising field are sampled using
Monte Carlo techniques.




Hirsch-Fye Quantum Monte ‘.(
Carlo-2 (See poster)

* A key optimization for GPUs is replacing a single
outer product with a panel-panel matrix
multiplication by employing the technique of
delayed updating. This increases the
computation to memory access ratio.
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Seeding the Experimental Inverse
Problem (see Poster)

From X-ray and neutron scattering
data to images of flame retardants in
polymer blends
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Using results of actual observations to infer the
values of the parameters characterizing the system
under investigation
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Graduating to National Leadership A4
Class (NLC) Machines \

Explore parallelism and scalability

Get experience with code development on
smaller clusters such as LONI/TeraGrid-XSEDE

Demonstrate how your codes will scale to the
NLC machines

Apply for compute time on NLC machines




Current XSEDE Allocations 2012  Y@”

* Bishop @LaTech: 7.8MSU
* Mobley @UNO: 1.2MSLUL
 Morena @LSU: /.5MSU
« Sun @Tulane : 200,000 SU




The Little Fe Project:

Recruiting the next users.

SuperComputing 2011: Little Fe Build Out Session.
Groups Selected by Application/proposal process
12 Little Fe's Awarded: 3 in Louisiana
Louisiana Tech
Louisiana School Science Math and the Arts (High School)
LSU

V.V




Computers LA-SIGMA can access

* A 8-node Dell PowerEdge R70 GPU cluster:
-2 Sandy Bridge 2.5GHz CPUs, 64GB mem

*2 NVIDIA Tesla M2090 6GB GPU
* The new SuperMike:

*Minimum of 146 CPU Tflops in 382 CPU nodes:

«2x Sandy Bridge 8-core 2.6GHz, 32GB mem
*66 GPU Tflops from 50 GPU M2090 nodes
«2x Sandy Bridge 8-core 2.6GHz, 64GB mem

*2X NVIDIA M2090 GPUs

Speedup

Cc = N W s U O N

2x CPUs
{16 cores)

2x CPUs
+ 1x GPU

2x CPUs
+ 2x GPUs

e NAMD: apal

= NAMD: flatpase

== NAMD: strmv

e AMBER: JAC_NVE

== AMBER: JAC_NPT

=@ AMBER: FactorlX_NVE

S AMBER: FactorlX_NPT

s AMBER: Cellulose _NVE
AMBER: Cellulose_NPT

e LAMMPS: EAM

= LAMMPS: AU

2x CPUs 2x CPUs 2x CPUs Speedup
Appitcaion i (16 cores) | +1xGPU | +2xGPUs | with 2 GPUSs
NAMD aplal 1.78 0.98 0.50 3.52
(days/ns) flatpase 5.28 1.26 0.92 5.72
st 19.58 4.95 2.94 6.66
JAC_NVE 10.72 33.29 46.18 4.31
JAC_MPT 9.42 28.79 38.79 4.12
AMBER FactorlX_NVE 2,50 9.39 13.07 5.23
(ns/day) Factorl¥_NPT 2.28 8.30 11.41 5.00
Cellulase_NVE 0.57 2.04 2.90 5.09
Cellulose_MPT 0.55 199 2.78 5.07
LAMMPS EAM 600.94 129.36 4.85
{loop time sec) AL 458.20 113.31 4.04

* NSF CRI (H. Liu, PI) purchase an NVIDIA Kepler (K20) system

*At least 24 GPU nodes with:

2 Intel Sandy Bridge-EP processors, 64GB memory,

*At least 2 Kepler K20 GPUs.
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Density Functionals and
Force Fields (rsv)

Perdew group has developed a | PRL03 026403 2009 EWYRICAT REVIEW LEFPTERS 10 Y 300
11 .
WO rk' h orse semi Iocal Workhorse Semilocal Density Functional for Condensed Matter Physics and Quantum Chemistry
. "
fU nCtIOnal [P hyS . Rev. Lett. John P. Perdew,' Adrienn Ruzsinszky.' Gibor L. Csonka,” Lucian A. Constantin,' and Jianwei Sun’

'Depamnem of Physics and Quantum Theory Group, Tulane University, New Orleans, Louisiana 70118, USA

1 O 3 y O 2 64 O 3 (2 O O 9)] fo r I arg e *Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1521 Budapest, Hungary

(Received 24 March 2009; published 10 July 2009)

electronlc Systems th at yields Semilocal density functionals for the exchange-correlation energy are needed for large electronic

. systems. The Tao-Perdew-Staroverov-Scuseria (TPSS) meta-generalized gradient approximation (meta-
accu ra‘te Iattlce Constants GGA) is semilocal and usefully accurate, but predicts too-long lattice constants. Recent “GGA's for

! solids™ yield good lattice constants but poor atomization energies of molecules. We show that the
construction principle for one of them (restoring the density gradient expansion for exchange over a wide

S u rface e n e rg I eS ) an d range of densities) can be used to construct a “‘revised TPSS™ meta-GGA with accurate lattice constants,
- - - surface energies, and atomization energies for ordinary matter.
atomization energles.

 This functional has been incorporated into
VASP, a massively parallel DFT code.

« We are constructing force fields combining ab
Initio calculations of small clusters with different
DFT functionals and bulk

simulations/calculations. Cu,O,H, cluster
LSU (Hall, Dellinger), La Tech (Wick,

Ramachandran)
O
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Ensemble Based MD Simulation Challenges
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Nucleosome Simulations on XSEDE
336 Systems * 20ns = 6,720 tasks
64-128cpu/task * 8hrs ~ 3.5 MSU
5Gb/task * 6720 ~ 34 TB Data
NAMD with BigJobs

160,000 atoms per system

DNA: Simulations on LONI
4 Systems * 1000ns = 4,000 tasks
128 cpu/task * 2.5hrs ~ 1.3 MSU
1Gb/task * 4000 ~ 4TB Data
Amber with ManyJobs

4 sequences (18bp) = 4 systems

47,000 atoms per system D




Scale Across
(Bishop & Jha)

» efficiently distribute computations across computers:
XSEDE
LONI
Local Clusters

1) run big-job o—.
Simulation > .
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BigJobs

« SAGA: Slide in API for Grid
Applications

Sublobs

* LONI, XSEDE and
national grade infrastructure

0 50 100 150 200 250 300 350

* Recently restructured
and deployed on XSEDE
Advert service on XSEDE VM Data

Quarry.

Time (mins)

Updated documentation and examples
https://github.com/sagaproject/BigJob/wiki Nucleosome Ensemble

P J gapro] J 63 Simulations * 192 Core
12,096 CPU on Kraken

Min 4hr Run time

1 ns of 160,000 atom system A




ManyJobs

« Python Based with ssh (gsi-ssh)
* “no prerequisites”
» Easy deployment

R5

e Clusters, LONI, XSEDE

R4

R3

R2

DNA Ensembles
4 Simulations * 128 Core
5 LONI Machines
Min 2hr run time for 1ns ]
3,600 ns of 40,000 atom systems

R1




ManyJobs
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The Ascona B-DNA Consortium Simulation Effort
Coordinating > 20 Int.’l research groups and > 100,000 Simulations
Bishop: 3 month run period ~ 3500 simulations ~ 900,000SU on LONI




Progress: XSEDE 12 Vo

Running Many Molecular Dynamics Simulations on Many Supercomputers

Rajib Mukherjee, Abhinav Thota, Hideki Fujioka, Thomas C. Bishop and Shantenu
Jha

The Anatomy of a Successful ECSS Project: Lessons of Supporting High
Throughput High Performance Ensembles on XSEDE

Melissa Romanus, Pradeep Mantha, Yaakoub El Khamra, Andre Merzky,Shantenu
Jha, Matt McKenzie and Thomas C Bishop

XSEDE Campus Bridge Early Adopter Program:
Global Federated File System (GFFS) Pilot Project:

Goal to incorporate GFFS technology into High Performance High Throughput
Simulation Workflow.

C.Stewart, R.Knepper, T.Miller, A. Grimshaw, T.C. Bishop, S. Jha.




Posters

Rocky Brown, REU from Radford

Geometric Analysis of DNA in Molecular Dynamic

s

Simulations of Nucleosomes

Louisiana Alliance for Simulation-Guided Materials Applications

Abstract Results Methods of Analysis
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Molecular Dynamics

Molecular dynamics can simulate changes in 3
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he range of conformations accessible © a

D a large molecule is know
cing on thase atoms.

> The bonded interaction energy terms describe the
S geometrical arrangement of atoms that are held
Non-Boruid Interactinng

together by chemical bonds. The torsion energy In MD.

i primarily used © correct the other encrgy terms.
rather than 1o represent a physical process.
orsional energy represenss the amount of energy that
must be added 1o or subtracted from the Streiching
Enery + Bending oy + N-Bonded Imeracion
Energy term 1o make the Wial cnergy agree with
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Nucleosome Energetics of Highly Occupied Sequences

Simulations

The NAMD energy plug-in for VMD (23) was used 10 calculate the energles displayed in
Figures | through 6 displayed below. The energiex were calculated from sved simulation
ecels miag oaly e st nesomacond (152008 of sy ghven simdagn. A sl of 100
snapshots were cvaluated for N(h jon, The DNA_self-energy represents the energetics
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Models:
We dentified 16 sequences corresponding (o the 16 most well-positioned nucleosomes of
yeast, one sequence for each chromasome (2], We expanded the sequences o inclule 20
additional base palrs, 10 upstream and 10 down siream (mm the kst postion. Al siom
sneleosome midels weecreaied by desling ech 147 basepulr sbsccece o the 167 base
lbid T The 2 llow us 1o
assess positoning over a full wm of the DNA helix on each e ot e experimentally
determined positioning sequence.  For each model nucleosome, the 147bp oligomer is
extended by adding two G:C basepairs on each end. This helps stabilize the ends during
simulation. An explicit TIP3 safvent shell and sufficient NaCl to both neutralize the system
charge and provide a bulk lon concentration of 150mM are added 1 each nucleosome model,
Each fully solvated system contains approximately 160,000 atoms.
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To date only seven sets out of the sixieen set of simulations have been analyzed. Neither the
DA self-energy nor s interaction with the environmental exhibited a clear pattern consistent
with 4 single well po jne. However both the DNA self energy and the
electrostatic Interactions between DNA and the environment show some endency o “curve
up” on each plot, suggesting that a shallow minimum may exist

Conclusions
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employed here. This i consistent with the biologic fact that nucleosomes must fold any

soquence of DNA i order w achiev ther primary function of compacting DNA into the cell
cleus,




Computational Tools for A,
Multi-scale Simulations (Dua, LaTe\,.'

25

Goal: To develop techniques, algorithms,
and strategies for extracting
Information and knowledge from
data generated by Science Drivers
and create Computational Tools
related efforts.
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Fig. 1 Avg. pairwise Euclidean distance v/s
dimensions

Efforts over the past year:
 Data adaptive rule based approach to supervised learning.
* A grid based agglomerative approach to unsupervised learning.

Future Efforts:
* Distributed data mining frameworks.
* Proposed system architecture.

s * Integration of variants of the abgige approaches to proposed architectur-
Ox Y e Eb
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Data adaptive rule e
based supervised learning

Goal: To develop a data-adaptive partitioning .
schema of feature space for rule-based
classification.

Objectives :
To develop a data adaptive partitioning scheme

To develop a method for rule extraction

To exploit the extracted rules for supervised learning

/ classification Fig. 2. Histogram plotted for one
feature of a dataset.

Significance & Applications:
*Data adaptive partitioning ensures reduction in the number of rules

*Ensure the choice of rules that are both high in sensitivity and specificity
*Modular development of algorithm for easy distribution
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Initial Results \

Overall accuracy of proposed data adaptive partitioning classification results
have compared with rule-based classifiers and non-rule based classifiers.

Classifiers Overall Classifiers Overall Classifiers Overall
Accuracy (%) Accuracy Accuracy (%)
%

Rule Based Classifiers Non-rule based C|assif(iezs Proposed data adaptive
Conjuctive Rule 66 Naive Bayes 84 partitioning
Decision table 77 Logistic 73 Slope based 82.2
DTNB 82 Multi Layer 59 partitioning
JRIP 66 Perceptron Non-slope 86
NNGE 75 RBF Network 86 SEEEE
One R 62 Simple Logistic 77 ECILUIDTNG
PART 77 SMO 86
Ridor 82 Random Forest 80
ZeroR 33




Grid-based agglomerative v~
clustering algorithm

Goal: The goal of this research is to develop a
data mining algorithm for clustering
multidimensional datasets.

Objectives:

*To develop an algorithm for multi-level data Fig. 7. (a) A uniform grid for 2D data, (b) A non-
adaptive grid generation. uniform grid for 2D data

*To develop a data preprocessing algorithm for
sparseness reduction.

To develop a grid based agglomerative
hierarchical clustering algorithm.

Dimension 2

1 2 3 4
Dimension 1
Fig. 8. Atwo dimensional grid with grid cell
numbering

Significance & Applications:

*Clustering algorithms augmented with a data preprocessing through sparseness

reduction are more accurate and produce better clustering results.

*Our developed algorithm is generic, and is easily adaptable for other scientific
;é&mpllcatlons

z




Initial Results - scalability analysis

Grid generation Clustering algorithm

50

1800

—+—Dimensions= 10 ——Dataset size= 2000
45 ——Dimensions= 20 1600 4 —a—Dataset size= 4000
——Dimensions= 30 —— Dataset size= 6000
740 1 —+—Dimensions= 40 7 1400 1 —+—Dataset size= 8000
2 2 ——Dataset size= 10000
6 35 - bod
] 8 1200
4]
@ 30 - ?
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(4] 25 E
E £ 800 4
c 20 - c
0 2
2 = 600 -
215 A °
0 X i
X 10 o 400
5 | 200 -
0 . . . . 0
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Dataset Size Dimensions
Fig.11. Execution time v/s dataset size Fig.12: Execution time v/s dimensions
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Proposed extension

Based on the MapReduce

programming paradigm. me MJ
/S \

Apache Hadoop

*Hadoop - Distributed File

SyStem Map Map Map Map
task 1 task 2 task 3 task N

*Hadoop - MapReduce.

*Map function. L/ |

*Reduce function.

Reduce Reduce Reduce
task 1 task 2 task N

% Output files -
— -
L)




. . Vo
Data Mining using MapReduce

Requirements:

Scalability: We mean that the system can easily be altered to
accommodate changes in the number of users, resources and
computing entities.

Reliability: Difficult to achieve as it is closely related to the complexity of
the interactions between simultaneously running components.

Availability: The system can restore operations, permitting it to resume
providing services even when some components have failed.

Evolution: Keeping up with changes to the system with newer
computational features and newer requirements.




Funding and Outreach N

INCITE proposal (in collaboration with Pacific Northwest National
Laboratories) for compute cycles on Jaguar and Titan

XSEDE Allocation and GFFS incorporation into Biglobs
Manylobs with LONI-CS: Hideki Fujioka

NSF CRI proposal for GPU cluster (Shelob) funded (includes several LA-
SiGMA faculty members)

NSF proposal for ScaleMS Bishop and Jha
Indo-US Center (IUSSTF)
SCiDAC and other DOE proposals
Outreach:
— Summer REU and RET programs
— Beowulf Boot Camp for High School Students and Teachers
— Little Fe
— FEScUE with Colorado State University (Bishop)
— GPU and Execution Management regular video meetings
— Conference tutorials on GPUs:
* International Symp. on Code Gen. & Opt., April 2012
* Intl. Conf. Parallel Arch. & Comp. Tech., Oct. 2011

) |
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Summary

e CTCI: Leveraging the exponential increase in
computer power

—Recruiting new and graduating existing users to
national leadership class machines

—Preparing users for next-generation computers
— Developing common computational toolkits

—Expanding collaborations within LA-SiGMA and
developing partnerships with national labs

“The glue” that binds the SDs 5




Thank You




