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First Brillouin Zone

• Wigner-Seitz cell in reciprocal space.

e.g., 1st BZ for FCC

lattice 

(www.iue.tuwien.ac.at)

(Or could choose to use 

parallelepiped defined by 

b1, b2, b3)
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Irreducible Brillouin Zone

• Smallest wedge of the 1st BZ such that any wave-vector 

k in the 1st BZ can be obtained from a wave-vector k in 

the IBZ by performing symmetry operations of the 

crystal structure. 

e.g., for FCC

lattice

This wedge is the

Irreducible Brillouin zone.
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Brillouin Zone Sums

 Many quantities (e.g., density, total energy) involve 

integrals over k:

 k (wave-vector) is in the first Brillouin zone,

 n (band index) runs over occupied manifold.

 In principle, need infinite number of k’s.

 In practice, sum over a finite number: BZ “Sampling”.
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Brillouin Zone Sums

 In practice, sum over a finite number: BZ “Sampling”.

 For computational reasons, want # k’s to be small. 

 Number needed depends on band structure.

 Need to test convergence w.r.t. k-point sampling.
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Using the Irreducible BZ; Weights

• Need not sum over k’s in entire BZ; can restrict to 

Irreducible BZ, with appropriate weights.
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e.g., for FCC:

Count this only once.

Count this 8 x ½ = 4 times.

Count this 48 times.
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Special Points
• Can we use just one k-point?

• Just G (zone centre)? Usually bad choice!

• “Mean Value point”: Baldereschi: Phys. Rev. B 7 5212 (1973).

• A few k-points chosen  to give optimally fast convergence.

• Chadi and Cohen: Phys. Rev. B 8 5747 (1973).

• Cunningham: Phys. Rev. B 10, 4988 (1974).

e.g. for FCC(111) surface

(2-D hexagonal lattice)

fhi98md
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Monkhorst-Pack k-points

• Uniformly spaced grid of nk1  nk2  nk3 points in 

1st BZ:

nk1=nk2=3 nk1=nk2=4

• Note: This is slightly different from way grid defined in original 

paper [Phys. Rev. B 13 5188 (1976)] where odd/even grids 

include/don’t include the zone center G.

b1

b2

b1

b2

(Paper cited 10,279 times so far!) 
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Unshifted & Shifted Grids

• Can choose to shift grid so that it is not centered at G.

• Can get comparable accuracy with fewer k-points in IBZ.

• For some Bravais lattice types,  shifted grid may not have 

full symmetry. 

unshifted shifted
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Choosing Grid Divisions

• Space grid in a way (approximately) commensurate 

with length of primitive reciprocal lattice vectors b’s.

• Remember that dimensions in reciprocal space are 

the inverse of the dimensions in real space!
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Choosing Grid Divisions

• For artificially periodic supercells, choose only 1 division 

along  the dimensions that have been extended (in real 

space) by introducing vacuum region.
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Reciprocity of Supercells & BZ Sampling

x

y

kx

ky

Increase supercell in real space by a factor Ni along ai

EXACTLY same results obtained by reducing # divisions 

in k mesh (in the new smaller BZ) by factor Ni .

E
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Convergence wrt BZ sampling

Note: Differences in energy usually converge faster than 

absolute value of total energy because of error cancellation 

(if supercells & k-points are identical or commensurate).

Madhura Marathe
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Convergence wrt BZ sampling

Ghosh, Narasimhan, Jenkins & King, J. Chem. Phys. 126 244701 (2007).

e.g., Adsorption energy of CO on Ir(100):
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Problems with Metals

• Recall: 

• For metals, at T=0, this corresponds to (for  

highest band) an integral over all wave-vectors 

contained within the Fermi surface, i.e., for 

highest band, sharp discontinuity in k-space 

between occupied and unoccupied 

states…need many k-points to reproduce this 

accurately.

• Also can lead to scf convergence problems

because of band-crossings above/below Fermi 

level.
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Problems with Metals

The basic problem is that anything with sharp edges or 

features can’t be reproduced well if it is sampled coarsely…

…So smear out the quantity we are sampling into something 

that can be sampled coarsely…but of course…the 

procedure of smearing out may lead to errors…
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A Smear Campaign!

• Problems arise because of sharp 
discontinuity at Fermi surface / Fermi 
energy.

• “Smear” this out using a smooth 
operator!

• Will now converge faster w.r.t. number 
of k-points (but not necessarily to the 
right answer!)

• The larger the smearing, the quicker 
the convergence w.r.t. number of k-
points, but the greater the error 
introduced.

PhD Comics
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Fermi-Dirac Smearing

• Recall that the Fermi surface, 

which is sharply defined at T=0, 

becomes fuzzy as T increased.

• One way of smearing: occupy 

with Fermi-Dirac distribution for 

a (fictitious) temperature T > 0.
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The Free Energy

• When occupying with a finite T distribution, what is 

variational (minimal) w.r.t. wavefunctions and 

occupations is not E but F=E-TS

• What we actually want is E (0)

• E(0)  ½ (F+E)   (deviation  O(T3))

  
i

iiiiB ffffkS )1ln()1(ln2

Mermin, Phys. Rev. 137 A1441 (1965).

Gillan, J. Phys. Condens. Matter 1 689 (1989).
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• Now have a generalized free energy …E-TS,

where S is a generalized entropy term.

• Converges faster (w.r.t. k-mesh) than Fermi-Dirac.

• Problem: need not converge to the right value, can 
get errors in forces. 

• Want: fast convergence w.r.t. k-mesh to right answer!





















-
erf

E
Ef 1

2

1
)(

Gaussian Smearing

• Think of the step function as an integral of d-fn.

• Replace sharp d-fn. by smooth gaussian….

(this is what you get if you 

integrate a Gaussian)
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Convergence wrt grid & smearing
• Gaussian smearing:

Madhura Marathe
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Better Smearing Functions

• Methfessel & Paxton:

• Can have a successive series of better (but smooth) 

approximations to the step function.

• E converges fast [wrt  to E (0)

• Marzari & Vanderbilt:

• Unlike Methfessel-Paxton, don’t have negative 

occupancies.

Methfessel & Paxton, Phys. Rev. B 40 3616 (1989).

Marzari & Vanderbilt, Phys Rev. Lett. 82, 3296 (1999). 
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Convergence wrt grid & smearing

• Gaussian: • Methfessel-Paxton:

represents an energy difference of 1 mRy

Madhura Marathe
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Convergence wrt 

k-points & smearing width

R. Gebauer

e.g., for bcc Fe, using 14 14  14 grid:
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Smearing for Molecules

• Consider a molecule where HOMO is multiply 

degenerate and only partially occupied.

• If we don’t permit fractional occupancies…the code 

will occupy only one (or some) of the degenerate 

states, resulting in wrong symmetry.

• Smearing will fix this problem. 
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Summary

• For extended systems, need to sum over BZ.

• Smaller the cell in real space, larger # k-points needed.

• Always need to test for convergence wrt k-points.

• More k-points needed for metals than insulators.

• Problems with metals can be aided by “smearing”.

• All of this is true for all DFT codes (not special for plane 

waves & pseudopotentials).


