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Introduction 
The LONI Institute (LI) was created to build a statewide collaborative computational science 
environment of faculty, staff, and students who will take advantage of the hardware investments 
made in LONI to advance research, education, and economic development in Louisiana. 

The first year of the project was primarily aimed at recruiting faculty, staff, and students for the 
project.  While we have not filled all the positions available within the LI, many faculty and staff 
have been recruited.  Most of the faculty started during our second year of the project (fall 2008), 
and have already started addressing the LI milestones.  Recruitment for the unfilled faculty and 
staff positions is ongoing.  The student positions were successfully filled. Senior Investigators 
(SIs), and LI Faculty had conference calls to coordinate the search and chose one student per LI 
site, making a total of six students (twelve in two years).  These students have used LONI 
facilities to advance their research. 

With LI faculty and computational scientists in place, the group has started concentrating more 
on the research and education, and, in the future, will concentrate on economic development 
activities outlined in the LI strategic plan. 

In terms of hires, in year 1 (Y1), we hired the first five LI faculty, who started their appointments 
in year 2 (Y2);  while in Y2, we hired other four LI faculty members, two of them will start their 
appointments in Y3. 

In Y2, the existing LI faculty and staff (the PIs and SIs), the staff of LONI itself, and the staff of 
the Center for Computation & Technology (CCT) continued to worked together on numerous 
projects and proposals, and have held outreach and training sessions across the state.  The largest 
of these projects is, again, the $12M NSF-EPSCOR RII project entitled CyberTools (see 
http://cybertools.loni.org), which was awarded in October 2007, involves most of the LI 
Institutions and many of its members, and aims to develop an advanced cyberinfrastructure for 
statewide research.  As this project keeps moving forward, and as LI personnel continue to be 
hired, CyberTools and the LI are becoming tightly connected, and we expect many new projects 
to emerge from these.  One can view these two projects as layered on top of the LONI 
infrastructure, with CyberTools focusing on software, services, and applications, and the LI 
focusing on collaborations and projects.  

One important proposal is led by Mark Jarrell, LI Faculty and PI.  His team, consisting of a large 
number of researchers in the state of Louisiana, is working on the next NSF-EPSCOR RII 
proposal with a material science focus, and under the umbrella of the LI. 

On February of this year, we kicked off what we call the LI projects.  These projects are 
proposed by researchers of the State of Louisiana, and approved by the LI scientific committee to 
receive support from one of our computational scientists.  In the first round, based upon technical 
merit and ability to further LI goals, the scientific committee decided to support 8 projects out of 
23 submissions.  

In summary, with the new hires in place, research in the main areas that pertain to the LI and 
other project activities, such as the LI projects, are ramping up, and more faculty, staff, and 
students are recruited. 



Outline of this report 
The Board of Regents has requested reports that provide information in the following sections:  
(1)  Personnel;  (2)  Activities and Findings;  (3)  Publications and Products; (4)  Contributions; 
and (5)  Project Revision.  The LI project has many milestones and deliverables that do not 
necessarily match such a format.  Therefore, in the following sections, we discuss in detail the 
progress towards these specific milestones and deliverables, and we have attempted to group in 
roughly this order.  However, we have combined sections (1) and (2), and reported on the 
requested activities as appropriate. 

Progress on LONI Institute Specific Milestones and Deliverables 
As stated in the proposal for this project, the LI has defined numerous metrics to measure project 
progress and success. These metrics include the hiring of faculty and researchers, creating 
statewide interdisciplinary research projects and obtaining federal follow-on funding for such, 
developing corporate partnership programs and start-up companies, developing and following 
interdisciplinary and multi-institutional collaborations, and creating new educational programs. 
The performance measures are discussed in detail below, accompanied by project milestone 
estimates. Deliverables for Y1 are highlighted in yellow, deliverables for Y2 are highlighted in 
cyan, while deliverables for “the end of year x”, including Y2, are highlighted in green. 

At the end of each item, we provide information collected for this second annual report.  We 
highlight specific progress by institution where notable.  

This report not only contains work done by LI faculty, staff and students, but also data from 
people who are associated with LI. 

 

1. PERSONNEL, ACTIVITIES AND FINDINGS 
In this section, we have combined the first two required sections of the report:  1.  Personnel, and 
2.  Activities and Findings.  We provide a description of all the personnel hired during the year, 
along with activities and findings, as appropriate. 

1.I. Personnel Objectives, Metrics and Success Criteria  
According to our strategic plan, we have the following personnel Objectives, Metrics, and 
Success Criteria for measuring when these objectives are achieved, as well as dates expected: 

Objective Metric Success Criteria Status 

LONI Fellows Full-time faculty hires, 
2 per institution 

6 by EOY2; 12 (total) by 
EO Y3. Nucleation of 6 
new multi-institutional 
research groups by Y3. 

9 fellows hired by 
the EOY2 (Sec. 
1.I.a). 

Development Individual hired 1 hire, Fall Y1; new hire Individual was 



Coordinator in 6 months if position 
becomes vacant 

hired in Y1. 

LI Graduate 
assistantships 

Graduate students 
funded by Institute 

6 in each 2 year period; 
18 students total over 
life of project 

12 Graduate Fellow 
positions funded so 
far (Sec. 1.I.c). 

LI Computational 
Scientist 

Individual hired 6 hired in Fall Y1; new 
hire in 6 months if 
position becomes vacant 

4 CSs hired in Y1 
(Sec. 1.I.d). 

LI-seeded growth of 
LONI to national 
status 

Receive federal 
funding for additional 
staff 

12 staff funded from 
federal sources by 
EOY5 

12 positions funded 
in Y2 (Sec. 1.I.b). 

 

1.I.a) Full-time faculty hires 
Concerning the full-time faculty hires, our success criterion is to hire of 6 faculty members by 
the end of Y2. During Y1, five LONI Fellows (LI Faculty) were hired, with most of them having 
a start date in Y2. These LI Faculty were introduced in the first annual report, and are Drs. 
Abdelkader Baggag, Dentcho Genov, Mark Jarrell, Damir Khismatullin, and David Mobley.  

During Y2, four faculty were hired, with two having a start date in Y3. ULL and LSU continue 
their searches, review of applications, and interview process. Here is the list of the LONI Fellows 
by institution, hired in Y2: 

SUBR: SU has hired two new LONI faculty members: Dr. Rachel Vincent-Finley (in the 
Computer Science Department starting in May 2009) and Dr. Zhenyu Ouyang (in the Mechanical 
Engineering Department starting in August 2009).  Dr. Vincent-Finley’s primary research 
interests include numerical analysis, particularly the interface between numerical linear algebra 
and numerical solution techniques, which occur in applications to biology, chemistry and 
biomolecular dynamics. More generally, she is interested in computational methods and high 
performance computing hardware and software methodology for molecular modeling including 
data structures and computer visualization. 

Tulane: During the fall of 2008, Tulane University successfully conducted a search for the 
second full-time LONI Fellow.   Dr. Cortez, Director of the Center for Computational Science at 
Tulane (CCS), acted as the liaison between departments and the CCS by participating in the 
search committees and meeting with the candidates.  The new LONI Fellow is Dr. Caroline 
(Caz) Taylor, who will join the department of Ecology and Evolutionary Biology in July 2009. 
Her research includes computational models of bird migration that use optimization techniques 
to find bird stopover sites and length of stay. The approach is agent-based models with temporal 
and spatial features and stochastic components. Dr. Taylor will be an active participant at the 
CCS and is expected to initiate new computational projects, teach computation courses, and 
supervise multidisciplinary students. 



ULL: UL Lafayette has interviewed multiple candidates for the two LONI faculty positions, one 
in the College of Science and the other within the College of Engineering. The finalists for both 
positions have been identified and job offers are being made for a starting date of Fall 2009. 

UNO: Dr. Christopher Taylor started on August 2008, he joined in the Department Computer 
Science.  His research primary research involves designing algorithms to analyze genomic data 
where he focuses on DNA replication, new sequencing technologies, and developmental cancer. 
He collaborates directly with molecular biologists to investigate biological phenomena using 
genomic tools such as DNA microarrays and high-throughput sequencing systems. 

LA Tech:  There were other hires with non-LI funding, this include, Shengnian Wang (Chemical 
Engineering/IfM), Eric Guilbeau (Biomedical Engineering), Jean Gourd (Computer Science), 
Paul Hummel (Electrical Engineering – Lecturer), Niel Crews (Mechanical Engineering/IfM), 
Leland Weiss (Mechanical Engineering/IfM), June Feng (Biomedical Engineering, started on 
January 2008). 

A description of the research done by LI Faculty can be found in appendix A. 

 

1.I.b) Federal funding for additional staff 
The LI encourages submission of proposals that add federally-funded staff to LONI.  We have 12 
staff positions currently funded by the LONI HPCOPS project from NSF. We refer you to 
http://www.hpc.lsu.edu/about/staff . LA Tech, is also funding 2.5 FTE research support staff on 
federal grants who were already on soft-funded positions. UNO has hired numerous additional 
staff, such as post-docs and graduate students using federal funding from a variety of sponsors 
including NSF, NIH and DoD. 

 

1.I.c) LI Graduate Fellows 
The LI supports LONI Institute Graduate Student Research Assistants. Assistantships are 
available at all member institutions. Research can be in any area of science, engineering, social 
sciences, or arts and humanities, although the fellow awards are intended to support graduate 
students whose research projects require access to high-end computing facilities, networks, 
distributed data archives, and more generally cyberinfrastructure. The awards include a $20,000 
stipend and tuition waiver. 

The LI Graduate Student Fellows were selected on the basis of  

 - Excellence in research in the disciplines 

 - Potential to utilize and advance the infrastructure under development across LONI 

 - Promise for external funding in the future  

 - Potential to meet the metrics for success of the LI 



Below, we show a list of the Y2 LI Graduate Student Fellows. We also provide a description of 
the research they have done in appendix D. 

Graduate Fellow Institution Field 
Christopher Clayton / Kimberlee Lyles SUBR Computer Science 

Jeremy Dewar Tulane Mathematics 
A. Murat Eren UNO Computer Science 

John Jack LA Tech Computer Science, Institute for 
Micromanufacturing  

Jijun Lao LSU Mechanical Engineering 
Philip Schexnayder, Jin-Feng Chen ULL Physics, Computer Engineering 

 

1.I.d) LI Computational Scientists: 

A crucial component of the LI is a strong contingent of advanced staff computational scientists. 
The LI proposal states that “the LI will support 6 PhD level computational scientists, typically 
with preexisting postdoctoral experience, to help State research groups take advantage of 
advanced cyberinfrastructure deployed across LONI and the nation. Distributed across the 6 
participating campuses, these staff will be experts in the use of LONI hardware and 
cyberinfrastructure, including parallel computing, networks, visualization, grids, computational 
mathematics, and data management. These staff will work closely together, using HD video on 
all campuses, and will meet biweekly at LSU (supervised by SI Katz). Each of the computational 
scientists will be assigned 4-5 projects, with duration of 1-2 years each, so that significant 
progress can be made. These projects will be based on applications from all State campuses, with 
the applicants being encouraged to commit some internal resources. At least 50% of the projects 
will be in computational biology and materials science applications; however, we expect projects 
from other areas of importance to the State, in disciplines ranging from astrophysics, CFD, 
coastal science, medicine, engineering, digital arts and humanities, and business. This is a total 
of 70-90 projects over 5 years. Application teams from all State campuses and all companies will 
be eligible to apply for LI partnerships to develop applications that make use of LONI hardware 
and the staff.” 

In Y1, we hired 4 computational scientists, Dr. Hideki Fujioka (Tulane), Dr. Raju Gottumukkala 
(ULL), Dr. Shizhong Yang (SUBR), and Dr. Zhiyu Zhao (UNO). In Y2, LA Tech has had 
difficulty attracting a suitable candidate for the LI Computational Scientist (non-tenured) 
position.  An offer was made to an outstanding candidate who met all of our expectations; 
however, he declined.   A part-time CS has been appointed (Mr. Abdul Khaliq) who is providing 
considerable amount of support for the modeling and simulation work in microstructures and 
devices, quantum chemistry, computational fluid dynamics, and electromagnetics. At LSU, Mr. 
Andre Merzky worked for the LI part time. LSU has been conducting interviews, and will be 
bringing in two candidates this summer. 

A description of their research can be found in appendix B. 



 

1.II. Research Objectives, Metrics and Success Criteria  

Objective Metric Success Criteria Status 

LONI 
Computational 

Scientists 

 

LI projects underway 12 new projects underway 
by EOY1; 18 new projects 
per year thereafter; at least 
80 total; 25% projects 
permitted to be continued 
for new advances; 25% 
corporate 

10 LI projects 
(Sec. 1.II.a). 

State faculty, staff, 
and student trained 
and using LONI 
infrastructure 

 

Number of applications 
for time, projects using 
compute, data, network, 
and software services 

 

All LI projects use LONI, 
12 personnel trained each 
year from each LI member, 
medical centers and 
community college system, 
400 active LONI users from 
State by Y5 

826 users, 168 
of them have 
logged on in 
the past 6 
months (Sec. 
1.II.b). 

National proposals LI-funded faculty-led 
national funding agency 
proposals, submitted and 
funded 

 

50% of LI projects lead to 
proposals to agencies 
outside State (e.g., NSF, 
DOE, NIH) or industrial 
funding in Y2 and 
subsequent years; 2 
proposals submitted per 
year, per LI Fellow, starting 
in Y2, 96 total, 10 new LI 
Fellows projects funded 
total 

See Sec. 1.II.c 

Research computing 
project resources 

 

Successful computational 
infrastructure/cycle 
applications 

 

50% of projects lead to 
nationally-judged 
computational infrastructure 
awards in Y2 and 
subsequent years 

 

See Sec. 1.II.c 

Research publicity Invited presentations and 
lectures outside LA 

Each project leads to 2 
presentations/lectures per 
year starting in Y2; 160 

See Sec. 1.II.e 



total 

Scientific & 
Engineering 

Results 

Peer-reviewed conference 
and journal publications 
that acknowledge LI 
support 

3 per LONI Fellow per 
year; 1 per LI project per 
year; over 150 total 

Numerous 
acknowledging 
LONI and LI 
(Sec. 1.II.d). 

National Computing 

Center 

 

LI personnel successful 
in obtaining federal 
funding  

1 national federally-funded 
center, funded with at least 
$70M 

None yet. 

LI research impact New non-LI-funded 
faculty working with LI 

6 per year starting in Y2 

 

See Sec. 1.II.f 

 

1.II.a) LI Projects underway 

Late last year, the LI put out a call for what we call LI projects 
http://institute.loni.org/liprojects.php), and by February, the LI scientific committee had chosen 8 
out of 23 projects for the LI Computational Scientist (CS) to work on. The criteria the committee 
used were the relevance of the research proposed, how the project would help the LI achieve its 
milestones, and an interdisciplinary, inter-, and/or intra-institutional component in each project, 
among others. We also asked for some of these projects to be adapted so that they will have one 
of these components, and these turned into other accepted projects. These projects are:  

1. "Infrastructure for Accurate and Efficient Binding Affinity Calculations"; PIs: David Mobley 
(UNO), Steve Rick (UNO), and Shantenu Jha (LSU); LI CS: Hideki Fujioka (Tulane). 

2. "Spatial Modeling of the Dynamics of Invasive Nutria"; PI: Azmy Ackleh (ULL); LI CS: Raju 
Gottumukkala (ULL). 

3. "Coupling LONI Institute Computational Scientists, CyberTools and Science Drivers at the 
Molecular Level"; PIs: Thomas Bishop (Tulane), Shantenu Jha (LSU), and Nayong Kim (LSU); 
LI CS: Andre Merzky (LSU) at the first stage of the project.  

4. "Automated Data Archiving with PetaShare"; PIs: Tevfik Kosar (LSU), Gabrielle Allen 
(LSU), Sumeet Dua (LA Tech), Frank Löffler (LSU), and Erik Schnetter (LSU); LI CS: Hideki 
Fujioka (Tulane). 

5. "Developing a High Performance Computational Biology and Material Science Lab at 
Southern University (HPC-BMSL)"; PIs: Ebrahim Khosravi (SUBR), Shuju Bai (SUBR), Rachel 
Vincent-Finley (SUBR), Shizhong Yang (SUBR); LI CS: Shizhong Yang (SUBR). 



6. "Data Management for Disaster Management though PetaShare"; PIs: Ramesh Kolluru (ULL), 
Tevfik Kosar (LSU), Raju Gottumukkala (ULL), Rusti Liner (ULL); LI CS: Raju Gottumukkala 
(ULL). 

7. "Application Profiling on LONI"; PIs: Erik Schnetter (LSU), Maciej Brodowicz (LSU), Steve 
Brandt (LSU), and Mayank Tyagi (LSU); LI CS: unassigned. 

8. "Surface Plasmon Excitation in inhomogeneous metal-dielectric Composites"; PIs: Dentcho 
Genov (LA Tech), and Shizhong Yang (SUBR); LI CS: Shizhong Yang (SUBR). 

9. “Refinement of Integral Membrane Protein Structure Predictions”; PIs: Christopher Summa 
(UNO), Steven Rick (UNO), and Zhiyu Zhao (UNO); LI CS: Zhiyu Zhao (UNO). 

10. "Parallel-GIS: A High Performance Open Source Geospatial Analysis"; PIs: Ramesh Kolluru 
(ULL), Baker Kearfott (ULL), Raju Gottumukkala (ULL); LI CS: Raju Gottumukkala (ULL). 

Details regarding these projects are provided in appendix C, with more information in appendix 
B, where our LI CSs explain their research. 

Here we list other projects that involve LI SIs, by institution: 

LA Tech: 

LABRIN, the NIH/INBRE project in Louisiana, is a collaboration between several universities in 
Louisiana including Louisiana Tech.  LA Tech is also part of the current RII project, 
“CyberTools.”  Two PKSFI projects (in addition to the LONI Institute project) at LA Tech have 
the involvement of LSU and AMRI (UNO), respectively. 

Sumeet Dua and Jean Gourd: "DINER: Distributed Information Discovery Laboratory," 
November 2008, Louisiana Board of Regents, $50,156. A BoR Enhancement grant designed to 
be a stepping point for students to transition from single-CPU computers to LONI. 

Collin Wick: “Molecular level modeling of air/liquid and liquid/liquid interfaces.” We are 
carrying out investigations of the uptake of possible carcinogens onto fog droplets with 
molecular simulation, which is in collaboration with experimental researchers at LSU.  We are 
calculating the conductivity in polymer electrolytes for rechargeable lithium batteries.  Finally, 
we are developing molecular models to understand fundamental processes at the air-water 
interface, including the acidity of the air-water interface, how the interface influences simple 
reaction rates, and how different ions bind to the air-water interface. 

Z. Dick Greenwood: “Monte Carlo Production and Data Analysis for the Dzero and ATLAS 
Experiments.” The D0 and ATLAS codes require 32-bit compatibility executables and libraries 
on the Intel EM64T architecture systems. The codes also require the bash/tcsh, python, and perl 
scripting languages, as well as standard C/C++ libraries. While the D0 binaries are not graphical 
applications, they do require the OpenMotif, Mesa/OpenGL, and certain X11 libraries. Also, 
legacy software such as an older glibc is required in some cases. 



Natalia Zotov, “Data analysis for LIGO collaboration.”  Gravitational wave data from various 
simulations are analyzed to understand detector behavior and key signatures of possible cosmic 
events.  Grid resources at Caltech, Livingston, and Hanford observatories are used in conjunction 
with LONI resources. 

Daniela Mainardi, NSF/CAREER CTS - 0449046, “Modified-Methanol Dehydrogenase 
Enzymatic Catalysts For Fuel Cell Devices”– PI:, Aug 1st 2005 – Jul 31st 2010.  Methanol 
Dehydrogenase (MDH) enzyme is investigated as a promising anode catalyst for methanol 
oxidation. Graduate students are studying the role of metal ions in the MDH active site, since the 
replacement of the original Ca2+ ion by other metal ions modify the activation energy of the 
enzyme upon methanol oxidation. Density Functional Theory simulations and Transition state 
calculations are conducted on small portions (models) of the modified-MDH active sites to 
provide insight on the stability and reactivity of these enzymes upon methanol oxidation. 

Andrei Paun, Parallelization of the Nondeterministic Waiting Time algorithm – a biochemical 
simulation technique.  We wish to enhance the nondeterministic component of our algorithm by 
dividing the biochemical system across many nodes.  Dividing the system in this way will allow 
for a greater degree of reaction competition. Also, we need computational resources to run many 
biochemical simulations in tandem.  Model fitting requires a large number of simulations to be 
generated.  Running these simulations in parallel allows us to move quicker towards developing 
accurate and reliable models. 

Neven Simicevic, Acoustic/elastic FDTD simulations for Underground Imaging Technologies, 
and electromagnetic simulation. 

SUBR: 

CS Department has 3 external and 5 internal ongoing  (LONI) projects: 

External:  

1. Secondary structure prediction of gK and UL20 (LBRN pilot project), May 2008- April 2009; 
2. NASA-EPSCoR-Dart2 Project: A Study on New Highly Reflective Thermal Barrier Coating, 
LSU Account # 127-85-4112 (BOR) Proposal # 33204, May 2008-Oct. 2009; 
3. NASA-REA: Ab Initio and Experimental Study of A Novel Nano Ceramic Thermal Barrier 
Material, May 2009-June 2010. 

Internal: 

1. A reduced simulation method (RSM); 
2. The secondary and ternary structure of protein structure prediction; 
3. Thermal barrier coating simulation; 
4. CFD Simulation of Nucleate Boiling Heat Transfer Enhanced by Micro-Pin Fins; 
5. Minority student training 

 

 



SUBR projects supported following graduate students: 

Kiante Roberson: graduate student (1st semester), Computer Science Department, minority 
(black); 
Sadque Ali Mohammed: graduate student (2nd year), Computer Science Department, 
International (India); 
Charles Alphonce Shropshire: graduate student (1st semester), Computer Science Department, 
minority (black); 
Kimberlee Lyles:  graduate student (1st semester), Computer Science Department, minority 
(black); 
Murali K. Ganginela: graduate student (1st year), Computer Science Department, International 
(India); 
Frank DeTiege: graduate student (2nd year), Mechanical Engineering Department, minority 
(black). 

Tulane:  

Computational and Experimental studies of the transmission of West Nile virus began in 2008 as 
a collaborative project between the CCS and the department of Epidemiology at Tulane 
University. This seed project was started thanks to internal funding at Tulane that includes funds 
for a postdoctoral researcher, laboratory staff, student trainees and laboratory supplies.  Dr. Ivo 
Foppa (Epidemiology department, School of Public Health and Tropical Medicine) and Dr. 
Cortez lead the project and have hired a postdoctoral researcher, Bree Cummins, who will join 
Tulane in the fall of 2009.  In the summer of 2008, Dr. Cortez conducted a summer research 
program for undergraduate students, which included a project in computational epidemiology 
that began exploring appropriate models to use. The student group presented a poster at the 
SACNAS (Society for Advancement of Chicanos and Native Americans in Science) conference 
in October 2008 and at the Tulane Health Science Research Days in February of 2009. 

CCS has led an NSF funded, focused research group for the development of analytical, 
computational and experimental tools to investigate the dynamics of elastic structures coupled to 
a complex fluid.  Mucus transport by cilia in the respiratory tract, sperm penetration of the 
oocyte in fertilization, and peristaltic contractions of the oviduct are examples of such systems.  
Drs. Fauci and Cortez (Mathematics) lead this effort along with postdoctoral researcher (Dr. 
John Chrispell) and a graduate student (Ms. Sarah Lukens).  LI faculty Fellow Damir 
Khismatullin has joined the group which meets weekly on this project.  Additional collaborators 
on this project include faculty from the University of California- Los Angeles, New York 
University, and Washington State University.  

As part of a separate EPSCoR grant that includes several of the same universities of the PKSFI 
project, the PKSFI funds intellectual infrastructure that is being utilized by the EPSCoR project.  
The latter includes the development of an antibody-based biosensor.  This is being approached 
from theoretical, computational and experimental angles in collaboration with investigators from 
Tulane, University of New Orleans, Xavier University and LA Tech.  The computational 
scientist hired at Tulane will help develop the computational tools required for the EPSCoR 
project. This type of synergy is quite important to our success in both projects. 



Dr. Gaver continues a collaborative project with Dr. David Halpern (University of Alabama) on 
the computational investigation of physicochemical and fluid-structure interactions that occur 
during pulmonary airway reopening.  This project involves the investigation of surfactant 
transport during the reopening of collapsed pulmonary airways, an understanding of which is 
critical to the development of advanced treatments of acute respiratory distress syndrome. In this 
project, we computationally model surfactant transport in the occlusion fluid and surfactant 
uptake to the air-liquid interface as a finger of air propagates through a flexible airway. This 
reopening process exposes the epithelial cells at the airway wall to large mechanical stresses, the 
magnitudes of which are predicted by computational simulation. These simulations are 
performed using a combined boundary element method and volume of fluid approach. The 
computational facilities available through the LONI are instrumental to the success of this 
project.  

In the past year, Dr. John Perdew and his research groups have developed two new density 
functionals for the exchange-correlation energy of a many-electron system, which we believe 
may prove useful in computational materials science.  Thus four graduate students and one 
postdoctoral fellow in our research group are learning to use the LONI and CCS computational 
infrastructure and the VASP and BAND codes for electronic structure calculations in solids.  The 
first density functional, computationally efficient and accurate for “ordinary matter”, is a meta-
generalized gradient approximation that yields accurate lattice constants, surface energies, and 
atomization energies.  We will test it extensively for the bulk properties of elemental solids under 
normal and high pressures, for the monovacancy formation energies of metals and insulators, and 
for the adsorption energies of molecules on transition-metal surfaces.  The second functional, 
computationally more demanding and possibly accurate for “strongly correlated” materials, is a 
hyper-generalized gradient approximation, which requires further development before extensive 
tests can begin. 

 

1.II.b) LONI Users: 

Currently, there are 826 Louisiana users with LONI accounts, of whom 168 have logged on to a 
LONI system in the past 6 months. (Source: The allocations database and the user directory.) 

 

1.II.c) External Funding 

Because our LI Projects have just started early this year, we do not expect external funding for LI 
Projects until late Y3, however, our recently hired LI Faculty have already obtained some 
external funding. Here we list their grants, and the grants from other LI SIs. 

From LI Faculty and LI CS, current Projects/Grants: 

Dentcho Genov, DOD RFP - College of Engineering and Science, Louisiana Tech University, 
Title: “Surface Plasma Enhanced Solar Cell (SPESC)”, Funds: $99,616, Date awarded: 
06.04.2009 



Mark Jarrell, Simulations of Strongly Correlated Electronic Materials, DMR-0706379, $375,000 
over the three-year period 09/01/07-08/30/10 by the National Science Foundation, Materials 
Theory Program.  

Mark Jarrell, Graduate Education in Petascale Many Body Methods for Complex Correlated 
Systems, OISE-0730290, $2,500,000 over the five-year period 9/1/07-8/31/12 by the National 
Science Foundation, Office of International Science and Engineering (OD/OISE). Investigators: 
Juana Moreno (PI) UND, M. Jarrell (Co-PI) and K. Tomko (Co-PI) at the Univ. of Cincinnati.  

Mark Jarrell, Predictive Capability for Strongly Correlated Systems, DOE DE-FG02-
04ER46129, as part of a Computational Materials Science Network, $121,200 over the three-
year period 04/15/07-04/14/10 (to be approved year by year) by the Department of Energy, Basic 
Energy Sciences, CMSN (Warren Pickett, UC Davis, PI).  

Mark Jarrell, Next Generation Multi-Scale Quantum Simulation Software for Strongly 
Correlated Materials DE-FC02-06ER25792 $3,000,000 over the five-year period 7/06-6/11, by 
the Department of Energy, SciDAC. Investigators: M. Jarrell (PI) and K. Tomko at the Univ. of 
Cincinnati, Th. Maier (co-PI) and E. DÁzevedo at ORNL, Z. Bai (co-PI) R.T. Scalettar and S. 
Savrasov at UC Davis. 

Mark Jarrell, BoR, “The LONI Institute: Advancing Biology, Materials, and Computational 
Sciences for Research, Education, and Economic Development”, Modification, Change of 
Principal Investigator. Date Approved: 05/19/2009. 

Damir Khismatullin, Department of Defense. Title: Laser nucleation and collapse stability for 
advanced cavitation power technology (subcontract, completed). Role: Co-I (PI: R. Glynn Holt). 
Subcontract amount: $395,000 for March-December, 2008. 

PI: Erik Flemington, coPI: Christopher Taylor, coPI: Dongxiao Zhu, coPI: Kun Zhang.  Title: 
Administrative Supplements Providing Summer Research Experiences for Students and Science 
Educators.  Source: National Institutes of Health.  Supplement to Analysis of Epstein Barr virus 
type III latency on cellular miRNA gene expression. Amount: $216,386.  Date approved:  May 
15, 2009.  Funding Period:  June 01, 2009 to August 31, 2010. 

PI: Christopher M. Taylor.  Title: Taylor Summer Salary Professional Service Agreement.  
Source: Research Institute for Children.  Amount: $36,080.  Date approved:  March 3, 2009.  
Funding Period:  May 17, 2009 to August 15, 2009. 

Hideki Fujioka, support via NIH RO1 – HL81266, NSF EPS-0701491 

Zhiyu Zhao, TeraGrid Pathways Fellowship Program, entitled “A Parallel Protein Structure 
Alignment Tool and a Shared Feature Database for Structures in the Protein Data Bank” was 
submitted in Feb 09 and approved in Mar 09. Awarded $6,075 to support a student at UNO in the 
fall 09 semester to develop a parallel protein structure alignment program and a protein feature 
database under the supervision of the PI (Dr. Zhao), and $2,000 if the PI is going to attend the 
TeraGrid ’09 conference in June (Note: the PI will not be able to attend the conference due to her 
anticipated baby delivery in June). 



Shizhong Yang, Secondary structure prediction of gK and UL20 (LBRN pilot project), May 
2008- April 2009 

Shizhong Yang, NASA-EPSCoR-Dart2 Project: A Study on New Highly Reflective Thermal 
Barrier Coating, LSU Account # 127-85-4112 (BOR) Proposal # 33204, May 2008-Oct. 2009. 

Shizhong Yang, NASA-REA: Ab Initio and Experimental Study of A Novel Nano Ceramic 
Thermal Barrier Material, May 2009-June 2010. 

 

From LI Faculty and LI CS, pending Projects/Grants: 

Dentcho Genov, Louisiana Board of Regents Support Fund – RCS, Title: “Metamaterials for 
Applications in STEALTH Technology (MAST)”, Funds requested: $ 138,652   Date Submitted: 
10.21.2008 

Dentcho Genov, DoD-SBIR, Title: “Tunable Electromagnetic Metamaterials Films for STEALT 
enhancement”, Funds requested: $ 70,000   Date Submitted: 03.15.2009 

Dentcho Genov, EPSCoR Research Infrastructure Improvement - Track 1 RFP, Title: 
“Electromagnetic Metamaterials and Active Composites (EMAC)”, Funds requested: $ 
1,340,444   Date Submitted: 04.20.2009 

Mark Jarrell, Ohio Supercomputer Center (OSC), “Improving Developer Productivity for HPC 
through Cyberinfrastructure: Applications, Languages, Tools and Services”, Funds requested: 
$294,936.00, Date Submitted: 05/26/2009. 

Mark Jarrell, Board of Regents, “Louisiana Graduate Research and Education Program in 
Computational Materials Science”, Funds requested: $20,000,000.00, Preproposal/NOI, Date 
Submitted: 04/29/2009. 

Mark Jarrell (coPI), Randall W Hall (PI), BoR, “Planning for LONI Institute s Proposal to the 
2009 Louisiana EPSCoR RII Competition”, Funds requested: $10,000.00, Date Submitted: 
04/20/2009. 

Mark Jarrell, DOE, “Predictive Capability for Strongly Correlated Systems: Mott Transition in 
MnO, Multielectron Magnetic Moments, and Dynamic Effects in Correlated Materials”, Funds 
requested: $67,657.00, Date Submitted: 04/17/2009. 

Mark Jarrell, DOE, “TMS: Integrated theoretical approaches to correlated systems”, Funds 
requested: $1,721,689.94, Date Submitted: 03/10/2009. 

Mark Jarrell, DOE, “Next Generation Multi-Scale Quantum Simulation Software for Strongly 
Correlated Materials”, Funds requested: $887,664.00, Date Submitted: 03/27/2009. 



Mark Jarrell, Ohio Supercomputer Center (OSC), “An Experimental Accelerator-Based HPC 
System driven by High Productivity Programming Models”, Funds requested: $500,000.00, Date 
Submitted: 11/26/2008. 

Damir Khismatullin, National Institutes of Health, National Heart, Lung, and Blood Institute 
(NIH-NHLBI). Type: RC1 (Challenge Grant). Title: Quantitative analysis of monocyte-
endothelium interactions in atherosclerosis (pending). Role: Principal Investigator. 
Collaborators: Klaus Ley (LIAI), Donald P. Gaver, III (Tulane U.), George A. Truskey (Duke 
U.).  

Damir Khismatullin, National Institutes of Health, National Heart, Lung, and Blood Institute 
(NIH-NHLBI). Type: R21. Title: Computational studies of leukocyte dynamics using micro-PIV 
in collagen microchannels (in revision, to be submitted in July 2009). Role: Principal 
Investigator. Co-I: Sergey Shevkoplyas and Donald P. Gaver, III (Tulane U.).  

Damir Khismatullin, National Science Foundation, Nano and Bio Mechanics program. Title: 
Thrombus rheology via noncontact measurement (in revision). Role: Principal Investigator. Co-
PI: R. Glynn Holt (Boston U.). 

Raju Gottumukkala, Department of Natural Resources, “Intelligent Flood Protection Monitoring, 
Warning and Response System”, Under Review,  2,891,000 (347K subcontract as Partner 
Institute) 

Shizhong Yang, NASA pending  “Novel Nano-Structured Thermal Barrier Coatings” Co-PI;  

Shizhong Yang, NSF pending “Nano Ceramic Thermal Barrier Material: Design and 
Fabrication” Co-PI; 

Shizhong Yang, NSF pending  “Predictive Quantum Computation and Design of the Catalysts 
for Green Energy Applications” Co-PI; 

Shizhong Yang, NSF pending “Minority Serving Institutions Solar Energy Research 
Consortium” Co-PI; 

Shizhong Yang, NSF pending “Sensor Arrays and the Interpretation of Multi-scale Data Sets” 
Co-PI. 

Zhiyu Zhao, Innovations in Biomedical Computational Science and Technology (R01), NIH 
PAR-07-344, “Predicting Proteins in SCOP Classification via Alignment and Threading” was 
submitted in Feb 09. $431,720.00 total direct and indirect costs were proposed for the entire 
project period of three years ($245,720 on Dr. Fu’s part and $186,000 on Dr. Zhao’s part to 
support the proposed research and the study of three graduate students (two at UTPA and one at 
UNO)). 

 

 



From LI SIs, Intersite Current Projects/Grants: 

DOE/BOR: Ubiquitous Computing and Monitoring System (UCoMS) for Discovery and 
Management of Energy Resources, $3.3M (total). Allen, Co-PI at LSU. [With ULL, SUBR] 

NSF OCI: The LONI Grid - Leveraging HPC Resources of the Louisiana Optical Network 
Initiative for Science and Engineering Research and Education, $2.2M (Total, LSU). Allen, 
Senior Investigator. [With LONI] 

NSF OCI: Leadership-Class Scientific and Engineering Computing: Breaking Through the 
Limits (Blue Waters), $208M (Total), $160K (LSU). Allen, PI at LSU. [With NCSA, UIUC and 
RENCI] 

NSF ESPCOR/BOR: Louisiana’s Research Infrastructure Improvement Strategy (Includes 
Cyber-Tools), $12M (Total), October 2007 to September 2010, Allen, PI at LSU (subcontracts to 
ULL, LA TECH, Southern), Lead of CyberTools Component. [With LA TECH, ULL, SUBR] 

NSF MPS: XiRel: A Next Generation Infrastructure for Numerical Relativity, $250K (Total, 
LSU), September 2007 to July 2010, Allen, Principal Investigator. [With RIT, Georgia Tech, 
AEI] 

BOR PKSFI: Center of Excellence in Integrated Smart Sensor Surveillance System 
(CyberSpace), $3,638,000 (Total), June 207 to June 2012, Allen, co-PI. [With LA TECH] 

SURA/NOAA: SURA Coastal Ocean Observing and Prediction Program, $150K (LSU), 
December 2006 to August 2008, Allen, PI at LSU. [With SURA, TAMU, RENCI, UAB, VIMS, 
GOMOOS, UNC] 

NSF CNS: MRI: Development of PetaShare: A Distributed Data Archival, Analysis and 
Visualization System for Data Intensive Collaborative Research, $958K, August 2006 to July 
2010, Kosar, PI, Allen, co-PI. [Many partners across state] 

NSF LRAC Numerical Relativity and Black Hole Mergers, Computer allocation at National 
Centers. Over 5,000,000 CPU hours (SUs) across various NSF sites, 2008 to 2009. Allen, co-PI. 
[With AEI] 

NSF EPSCoR/Louisiana Board of Regents, Computational Materials, 2010-2014, $20,000,000 
(Perdew, one of many Louisiana Co-PI’s). 

Donation of current source codes for the solid-state density-functional programs VASP and 
BAND, from their developers in Vienna and Amsterdam, 2008, Perdew. 

National Science Foundation, Density Functional Theory of Electronic Structure (DMR-
0501588), June 2005 -June 2009, $372,000, Perdew. 

 

 



From LI SI, Intersite Pending Proposals: 

NSF EAGER, Strategies for Remote Visualization on a Dynamically Configurable Testbed, 
$300,000. Partners LSU, NCSA, ORNL, Internet2, LONI, August 2009 to July 2011, Allen, 
Principal Investigator. 

NSF STCI Strategies for Remote Visualization on a Dynamically Configurable Testbed, 
$875,555. Partners LSU, NCSA, ORNL, Internet2, LONI. Allen, Principal Investigator. 

NSF PIF Collaborative Research: Community Infrastructure for General Relativity MHD 
(CIGR), $600,000. Allen, Principal Investigator. [With RIT and Georgia Tech, AEI] 

NSF, Center for Ubiquitous Parallel Computing Applications, $375,000, with UIUC, Allen, co-
PI. [With UIUC] 

LA Tech II-New: DECIDE: Decision Engine for CyberInfrastructure of Distributed agEnts, no 
funds associated, partnering with LA TECH. Allen, co-PI. [With LA Tech] 

DHS, NIMSAT DHS Center of Excellence for Command, Control and Interoperability, 
$3,608,568. Allen, co-PI. [With ULL] 

Recommended for funding by Condensed Matter Theory (Division of Materials Research) 
program officers: National Science Foundation, Density Functional Theory of Electronic 
Structure, June 1, 2009- May 31, 2012, $460,000, SI Perdew. 

 

1.II.d) Publications  

For publications from personnel directly supported by the LONI Institute, we refer you to 
Section 2, Publications and Products. The following are peer-reviewed conference or journal 
publications by LI SIs, which can be cross-institution, and at the interface between biology, 
materials, and computational science. 

Jian Tao, Gabrielle Allen, Peter Diener, Frank Loeffler, Roland Haas, Ian Hinder, Erik Schnetter 
and Yosef Zlochower, Towards a Highly Efficient and Scalable Infrastructure for Numerical 
Relativity Codes, to appear, Proceedings of TeraGrid 2009. 

Jason G. Fleming, Crystal W. Fulcher, Richard A. Luettich, Brett D. Estrade, Gabrielle D. Allen, 
and Harley S. Winer, A Real Time Storm Surge Forecasting System using ADCIRC, Estuarine 
and Coastal Modeling X, M. Spaulding [ed], American Society of Civil Engineers, (2008). 

G. Allen, J. Nabrzyski, E. Seidel, G.D. van Albada, J.J. Dongarra and P.M.A. Sloot: in 
Computational Science - ICCS 2009: 9th International Conference, Baton Rouge, USA, 
Proceedings, Part I, in series Lecture Notes in Computer Science. 

Gabrielle Allen, Philip Bogden, Gerald Creager, Chirag Dekate, Carola Jesch, Hartmut Kaiser, 
Jon MacLaren, Will Perrie, Gregory Stone, Xiongping Zhang, GIS and integrated coastal ocean 



forecasting, Concurrency and Computation: Practice and Experience, Volume 20 Issue 14, Pages 
1637 - 1651, (2008). 

L.A. Constantin, J,P, Perdew, and J,M. Pitarke, Collapse of the Electron Gas to Two Dimensions 
in Density Functional Theory, Physical Review Letters 101, 016406 (2008); ibid. 101, 269902 
(2008) (E). 

E. Sagvolden, J.P. Perdew, and M. Levy, Comment on “Functional Derivative of the Universal 
Density Functional in Fock Space”, Physical Review A 79, 026501 (2009).    

Ruzsinszky, J.P. Perdew, and G.I. Csonka, Simple Charge-Transfer Model to Explain the 
Electrical Response of Hydrogen Chains, Physical Review A 78, 022513 (2008). 

D. Lee, L.A. Constantin, J.P. Perdew, and K. Burke,  Condition on the Kohn-Sham Kinetic 
Energy, and Modern Parametrization of the Thomas-Fermi Density, Journal of Chemical Physics 
130, 034107 (2009). 

J.P. Perdew, V.N. Staroverov, J. Tao, and G.E. Scuseria, Density Functional with Full Exact 
Exchange, Balanced Nonlocality of Correlation, and Constraint Satisfaction,  Physical Review A 
78, 052513 (2008). 

A.V. Krukau, G.E. Scuseria, J.P. Perdew, and A. Savin, Hybrid Functionals with Local Range 
Separation, Journal of Chemical Physics 129, 124103 (2008). 

J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. 
Zhou, and K. Burke,   Reply to the Comment on “Restoring the Density Gradient Expansion for 
Exchange in Solids and Surfaces”, Physical Review Letters 101, 239702 (2008). 

L.A. Constantin, J.P. Perdew, and J.M. Pitarke, Exchange-Correlation Hole of a Generalized 
Gradient Approximation for Solids and Surfaces,  Physical Review B 79, 075126 (2009). 

C.A. Jimenez-Hoyos, B.G. Janesko, G.E. Scuseria, V.N. Staroverov, and J.P. Perdew, 
Assessment of a Density Functional with Full Exact Exchange and Balanced Nonlocality of 
Correlation, Molecular Physics (special issue in honor of Fritz Schaefer) (to appear). 

G.I. Csonka, J.P. Perdew, A. Ruzsinszky, P.H.T. Philipsen, S. Lebegue, J. Paier, O.A. Vydrov, 
and J.G.Angyan, Assessing the Performance of Recent Density Functionals for Solids, Physical  
Review B 79, 155107 (2009). 

J.P. Perdew, A. Ruzsinszky, L.A. Constantin, J. Sun, and G.I. Csonka, Some Fundamental Issues 
in Ground-State Density Functional Theory: A Guide for the Perplexed, Journal of Chemical 
Theory and Computation 5, 902 (2009).  (Invited article for the John P. Perdew special issue). 

L.A. Constantin, A. Ruzsinszky, and J.P. Perdew, Exchange-Correlation Functional Based on the 
Airy- Gas Reference System, submitted to Physical Review B. 

J.P. Perdew and E. Sagvolden, Exact Exchange-Correlation Potentials in Spin-Density 
Functional Theory, and their Discontinuities at Unit Electron Number,  Canadian Journal of 
Chemistry.  (Invited article for the  Tom Ziegler special issue, to appear.) 



J.P. Perdew, L.A. Constantin, and A. Ruzsinszky. Energy Densities of Exchange and Correlation 
in the Slowly-Varying Region of the Airy Gas, Progress of Theoretical Chemistry and Physics, 
to appear. 

J.P. Perdew, A. Ruzsinszky, G.I. Csonka, L.A. Constantin, and J. Sun, Workhorse Semilocal 
Density Functional for Condensed Matter Physics and Quantum Chemistry,  Physical Review 
Letters, to appear. 

L. Cisneros, J. Kessler, R. Ortiz, R. Cortez and M. Bees. Unexpected bipolar flagellar 
Arrangements and Long-range Flows Driven by Bacteria Near Solid Boundaries. Phys. Rev. 
Lett. Vol. 101(16), 2008, pp. 168102.  

S. Tlupova and R. Cortez. Boundary Integral Solutions of Coupled Stokes and Darcy Flows. J. 
Comput. Phys., Vol. 228, 2009, pp. 158-179. 

 

1.II.e) Presentations 
For presentations from personnel directly supported by the LONI Institute, we refer you to 
Section 2, Publications and Products. 

Here we list some presentations given by LI SIs. 

J. P. Perdew. Semilocal “Workhorse” Density Functional for Atoms, Molecules, and Solids, 
Catalysis from First Principles, Vienna, May 2009. 

J. P. Perdew. Strong Correlation in Density Functional Theory, and the Hyper-GGA, Correlated 
Electrons in Matter , Gatlinburg, Tennessee, April 2009. 

J. P. Perdew. Physics of Density Functional Theory, a two-hour tutorial for the workshop 
Mathematical and Algorithmic Challenges in Electronic Structure Theory (organized by Anna 
Krylov, John Perdew, Eric Cances, and Juan Meza), Institute for Mathematics and Its 
Applications, Minneapolis, September 2008. 

J. P. Perdew. Promising Fifth-Rung Density Functional: Dobson’s ISTLS with Tests for Uniform 
Gases, Planar Surfaces, and Quantum Wells, International Society for Theoretical Chemical 
Physics VI, Vancouver, July 2008. 

J. P. Perdew. Restoring the Gradient Expansion for Exchange in a Generalized Gradient 
Approximation for Solids, Surfaces, and Large Organic Molecules, Quantum Systems in 
Chemistry and Physics XIII, East Lansing, Michigan, July 2008. 

R. Cortez. Regularized Stokeslets and other elements with applications to biological flows, Joint 
Mathematics Meetings, Washington, D.C. (January 5, 2009).  

R. Cortez. Regularization Methods for Simulations of Biological Flows, Plenary Talk, Louis 
Stokes Alliance for Minority Participation Fourth Transdisciplinary Research Conference, 
Uniersity of Puerto Rico, Mayaguez, PR, (December 5, 2008).  



R. Cortez. Interaction of Rotating Helical Bacterial Flagella With Nearby Solid, APS Division of 
Fluid Dynamics Annual meeting, American Physical Society, San Antonio, TX, (November 25, 
2008).  

R. Cortez. Regularized Stokeslets and other elements with applications to biological flows, 
Mathematical Biology Seminar, University of Utah, Salt Lake City, (October 8, 2008). 

 

1.II.f) LI Research Impact 

There are two new non-LI faculty working with the LI: 

Dr. Juana Moreno, LSU, who has a joint appointment in the Physics Department, and at the 
Center for Computation and Technology. In her research, she has focused on the experimentally 
relevant transport and magnetic properties of correlated electron systems, including diluted 
magnetic semiconductors, heavy fermion compounds and low-dimensional systems. These 
materials share in common unexpected properties which cannot been explained with 
conventional approaches. Computer simulations are an increasingly efficient means to study 
correlated systems. In her research, she has used a variety of computational tools, such as the 
dynamical mean-field theory and the dynamical cluster approximation in the study of diluted 
magnetic semiconductors and the density matrix renormalization group method in the area of 
low-dimensional materials. In the near future, she plans to extend these investigations to 
nanoscale quantum dots and heterostructures of magnetic semiconductors, where the confined 
geometry plays a crucial role, to incorporate orbital degrees of freedom in the modeling of 
heavy-fermions and cuprates, to calculate transport properties in nano systems and to simulate 
complex materials quantitatively using parameters extracted from first principles calculations. 

Dr. Amitava Jana, SUBR, Department of Mechanical Engineering. Dr. Jana has been involved in 
research and educational activities in the area of Mechatronics and robotics. He has developed a 
Mechatronics/ robotic laboratory to offer a multi-disciplinary course for electrical and 
mechanical engineering students. 

Xavier University is currently in the process of preparing two proposals to fund Xavier's 
connection to LONI. Xavier University has been working with Les Guice and Lonnie Leger on 
the project to lay fiber between Xavier and LSUHSC.  Once funding is secured and Xavier 
University is being connected to LONI, they will be very interested in becoming a part of the 
LONI Institute team. 

 

1.II.g) Awards 
A team of 13 LSU researchers and students, led by SI Gabrielle Allen at the LSU Center for 
Computation & Technology (CCT), conducted a presentation and demonstration that won first 
prize at the SCALE 2009 challenge at CCGrid09, a premier conference for cluster and Grid 
computing. (http://www.hpcwire.com/offthewire/LSU-led-Black-Hole-Simulation-Wins-First-
Prize-at-International-Competition-46469337.html) 



 

1.III. Economic Development Objectives, Metrics and Success Criteria  

Objective Metric Success Criteria Status 

Student internships 
with companies 

 

Number of placements 2 students placed each 
year; 20 total (not all 
will be LI-funded) 

From students 
under the 
supervision of 
faculty associated 
with the LI (Sec. 
1.III.a). 

Pilot program with 
Council on 
Competitiveness 

 

Program established 15 students at 
community college 
trained in CS each year, 
30 total placed in 
companies, 10 enter 
universities for 
continued study in CS 

None 

Industrial partnerships 

 

Partnerships in projects 
with industrial partner 
(any company who has 
joint project with 
LONI) 

25% of total projects; 
20 partners in 5 years 

In progress (Sec. 
1.III.b). 

Industry grants Sponsored research 
from companies 

25 by Y5 across all sites 

 

In progress (Sec. 
1.III.c). 

Centers of Excellence 

(UIRCs) 

 

Number formed with 
multi-year duration 

 

1 by EOY3, 3 by 
EOY4, 5 by EOY5, all 
industry-funded with at 
least 1 industry staff 
member on-site (across 
all LI sites) 

Two proposals 
submitted (Sec. 
1.III.d). 

New companies 
formed 

Number of new 
companies 

 

1 by EOY3, 3 by 
EOY4, 6 by EOY5 

See Sec. 1.III.e. 

 



1.III.a) Students doing Internships 

Some institutions have students doing internships with companies. Even though they are/were 
not supported by the LI, the SIs are tightly connected with the LI.  

SUBR has placed six students, Kimberlee Lyles, Tayler Washington, Marlon Gichie, Tiffany 
Wilkerson, Jayme Chustz, and Daniel Henderson. 

UNO has numerous internship programs, which have placed students at local companies.  Most 
internships are run through the Career Office and can be located at recruit.uno.edu.  The College 
of Business offers a large internship program through its Link the Internship through Future 
Employment (LIFE) program.  The Naval Architecture and Marine Engineering Department 
(NAME) offers a variety of internships with interns currently placed at Tidewater and Bollinger 
Shipyards and several placed through the Naval Research Enterprise Internship Program 
(NREIP).  The Computer Science Department has three interns working with the local SSC-
Atlantic New Orleans offices and several students from both Computer Science and Business are 
interns via the Student Career Experience Program (SCEP). 

At LA Tech, a number of their engineering undergraduate students and some graduate students 
take advantage of co-op opportunities.  It is hard to get a list of names but the head-count is in 
the range of 20-25. 

In June-July 2008, Tulane’s Center for Computational Science hosted 8 undergraduate students 
from Tulane (6), Xavier (1) and Dillard (1) Universities for a research program in computational 
fluid dynamics. Four of the student participants are from minority groups. The program 
discussed graduate school and prepared them to write technical reports and give presentations. 
The two minority students who graduated in May 2009 are going to graduate programs in UNC 
and Duke.  Several of the students also attended the annual conference of SACNAS (Society for 
Advancement of Chicanos and Native Americans in Science).  These students presented a poster 
with their results and participated in networking, scientific symposia and workshops. Two 
student participants also worked with Prof. Cortez during the 2008-09 academic year in senior 
projects related to computational science. 

Tulane postdoctoral researcher John Chrispell and graduate student Sarah Lukens spent four 
weeks in May 2009 at NYU's Applied Mathematics Lab learning experimental techniques to 
complement their computational modeling training. 

 

1.III.b) Partnership with Companies with a Joint Project with the LI 

SUBR has a partnership with IBM. 

At ULL, the partnership with Louisiana GOHSEP (Governors’ Office of Homeland Security and 
Emergency Preparedness) would leverage LONI resources for disaster response. 

LA Tech’s Neven Simicevic and Erez Allouche have been working with a large company that 
dominates the construction equipment market (we cannot reveal the name of the company 



because of a non-disclosure agreement).  Neven has developed very detailed electromagnetic 
simulations using finite-difference-time-domain (FDTD) approach for this project.  Also, one of 
the first TIP grants awarded last year by NIST now supports work between Louisiana Tech’s 
Trenchless Technology Center (Allouche, Simicevic) and a company in Florida.  
Electromagnetic simulations using LONI hardware are a key component of this work. 

Tulane has a partnership with IBM that provides 12 $4,000 fellowships to graduate students in 
computational science and engineering. 

 

1.III.c) Sponsored Research with Companies 

UNO has several sponsored research programs with companies.  Several are through our 
SPAWAR contract in which UNO is the prime and we work with mostly local companies as 
subcontractors. 

 

1.III.d) Formation of a Center of Excellence (UIRC) 

ULL submitted a proposal to establish the NIMSAT Institute as a DHS Center of Excellence. 
This proposal, while ultimately not funded, was shortlisted nationally as one of the 3 finalists. 

The Center for Secure Cyberspace, at LA Tech, was initiated through the BoR/PKSFI program. 
(http://csc.latech.edu/) 

 

1.III.e) Progress in Forming New Companies Related to Faculty, Staff or Students 
A non-LONI faculty member in the Computer Science Department at UNO is forming a new 
company based upon his research in bioinformatics.  They have just received their DUNS 
number. 



 

1.IV. Collaboration Objectives, Metrics and Success Criteria  

Objective Metric Success Criteria Status 

Between 
computational 
scientists and 
biologists, materials 

 

Joint papers and 
proposals 

2 interdisciplinary papers 
(including preprints from 
a LI preprint series) per 
group per year; 1 at 
interface between bio, 
materials, computation per 
group per year; 50% of 
proposals have 2 of 3 
disciplines 

Numerous from 
faculty and staff 
associated with the 
LI (Sec. 1.II.c and 
1.II.d). 

Inter-university Number of joint 
papers and proposals 

 

2 papers, 1 proposal 
(including preprints from 
a LI preprint series) per 
group per year 

Numerous from 
faculty and staff 
associated with the 
LI (Sec. 1.II.c and 
1.II.d). 

Inter-university New joint projects 30 new multi-university 
projects proposed to SC 
per year 

Numerous from 
faculty and staff 
associated with the 
LI (Sec. 1.II.a, 
appendices B, C) 

National Visits to national labs 3 students, 2 staff, and 6 
faculty with visits to 
national labs per year, 2-3 
each summer across all 
sites 

From students 
under the 
supervision of 
faculty associated 
with the LI (Sec. 
1.IV.a). 

 

1.IV.a) Visits to National Labs  

Dr. Ramesh Kolluru, Executive Director of the NIMSAT Institute and Mr. Dean Mallory, 
Assistant Director of the NIMSAT Institute, both visited the US Department of Homeland 
Security’s National Infrastructure Simulation and Analysis Center (NISAC), located in 
Albuquerque, jointly hosted by Sandia National Laboratory as well as the Los Alamos National 
Laboratories. A Memorandum of Understanding is under development between the NIMSAT 
Institute and NISAC to advance joint R&D activities in critical infrastructure modeling and 
analysis. 



Dr. Chris Taylor, UNO, will visit the DOE Joint Genome Institute in Walnut Creek, CA for a 
workshop from June 1-5, 2009.  He is travelling with a colleague (microbiologist) who he is 
forming a collaboration with. 

Twelve SUBR faculty members visited Oak Ridge National Lab in January 2009. 

From LA Tech, there is a number of faculty and students who visited a national lab: 

Faculty: 

Z. Dick Greenwood to CERN, Brookhaven and LIGO 
H. Lee Sawyer to FermiLab and CERN 
Marcus Wobisch at FermiLab and DESY, Germany 
M. Arov (postdoc) to FermiLab and CERN (extended visits – 3 to 6 months)  

Students: 

Ram Dhullipuddi (PhD/ENGR) to CERN (extended visit – 6 months) 
Emile Frey (PhD/ENGR) at CERN (Summer) 
Tracie Reed (PhD/CAM) to LIGO-Livingston (first as a trainee and then as “expert monitor”) 
Scott Atkins (PhD/CAM) – Summer at FermiLab  
Kiran Chakravarthula (PhD/ENGR) – Summer at FermiLab 
Mark Wade (BS/EE & Phys) – Summer at Fermilab 
John Jack (LONI Institute Fellow 2008-09): EPA (Washington, DC) – Summer internship. He 
will initially try to adapt the NWT algorithm for the modeling of a virtual human liver. 

In May, SI, Dr. Gabrielle Allen, LSU, visited Fermilab for an Open Science Grid meeting. 

1.IV.b) Collaborations  
J. P. Perdew coauthors who are Physical Chemists, not Physicists:  M. Levy, A. Ruzsinszky, G.I. 
Csonka, K. Burke, D. Lee, V.N.  Staroverov, G.E. Scuseria, A.V. Krukau, A. Savin, O.A. 
Vydrov, C. Jimenez-Hoyos, B.G. Janesko, S. Lebegue, J.G. Angyan 

J. P. Perdew coauthors outside Louisiana: J.M. Pitarke, P.H.T. Philipsen, J. Paier, M. Levy, G.I. 
Csonka, K. Burke, D. Lee, V.N. Staroverov, G.E. Scuseria, A.V. Krukau, A. Savin. O.A. 
Vydrov,  C. Jimenenez-Hoyos, B.G. Janesko, S.  Lebegue, J.G. Angyan. 

R. Cortez coauthors outside Mathematics: L. Cisneros, J. Kessler, M. Bees, I. Foppa, D. Gaver, 
D. Khismatullin. 

R. Cortez coauthors outside Louisiana: L. Cisneros, J. Kessler, M. Bees, S. Tlupova, K. 
Leiderman, M. Shelley, J. Zhang, J. Teran, R. Dillon, D. Varela. 

D. P. Gaver coauthors outside Biomedical Engineering: D. Halpern, R. Cortez. 

D. P. Gaver coauthors outside Louisiana: D. Halpern 



 

1.V. Education and Training Objectives, Metrics and Success Criteria  

Objective Metric Success Criteria Status 

Statewide education HD video courses 
offered 

4 courses per year with 
students from 4 
universities, and 20 total 
students per course 
receiving credit. 

1 course used LONI 
(Sec. 1.V.a). 

Statewide training Number of training 
workshops, people 
trained 

Initially 2 HPC & CSs 
workshops offered per 
year, increasing to 4 by 
Y5; at least 50 people 
trained each year, 400 
total 

26 tutorials (319 
attendees) and 4 
workshops (104+ 
attendees) offered 
(Sec. 1.V.b). 

High school 
education 

 

Summer camps 1 per year for LI 
members 

 

2 Summer Camps 
(Sec. 1.V.c). 

High school courses Teachers offer LI-
related material in 
courses 

10 new teachers offer 
classes with LI material 
each, year starting in Y2 

 

None yet. 

 

1.V.a) HD Video Courses 
In Spring 2009, LI faculty, Mark Jarrell, as part of an NSF PIRE project, taught a course entitled, 
"Advanced Solid State Physics".  In addition to the traditional subjects, this course also covered 
a number of modern computational methods, such as dynamical mean field theory, quantum 
Monte Carlo, etc.  In addition to a number of students at LSU (both registered and audits 
numbered around 10) the course was taught via asynchronous video to students in Germany and 
Switzerland (an additional 10 students). 

 

1.V.b) Workshops and Tutorials on HPC and Computational Sciences 
The LI staff computational scientists have worked with LONI staff and its member campuses to 
develop and hold training workshops on the use of LONI and its advanced cyber-services, as 



well as annual conferences and workshops. Themes are based on overlaps between various 
partnerships, such as application-based workshops and tools-based workshops. 

Here, we provide a list of the workshops and tutorials LONI and HPC LSU organized, as well as 
the number of participants. Even though we only list the events after Summer 2008, these 
workshops and tutorials have been offered previously as well. Many faculty, research associates, 
graduate and undergraduate students from across the State attended and have received training 
on LONI.  

 

Semester Training No. Enrolled 

 Tutorials  

Summer 2008   

2-July Introduction to the HPC Environment 10 

14-July Introduction to OpenMP 12 

30-July Introduction to MPI 8 

   

Summer 2009 Total 30 

Summary 30 people were trained in Summer 2008 in 3 tutorials  

   

Semester Training No. Enrolled 

 Tutorials  

Fall 2008   

16-Sep Introduction to Linux and Vi 17 

18-Sep Welcome to HPC: accounts, allocations, Linux and Linux 
cluster environment 

18 

24-Sep Introduction to MPI 10 



29-Sep MPI Part 2 5 

1-Oct Introduction to OpenMP 7 

8-Oct OpenMP Part 2 4 

15-Oct Introduction to Debugging and Profiling 15 

27-Oct Cluster Compilers and Optimization 9 

27-Oct Introduction to Debugging with Totalview 10 

5-Nov Practical MPI 5 

   

Fall 2008 Total 100 

 Workshops  

October 22 & 
23 

LONI HPC Workshop, at LA Tech 30 

Nov. 25 LONI HPC Workshop at ULL 25 

   

Fall 2008 Total 55 

Summary 100 people were trained in Fall 2008 in 10 tutorials and 55 
people attended 2 workshops. 

 

 

Semester Training No. Enrolled 

 Tutorials  

Spring 2009   

28-Jan Introduction to Linux and Vi 5 



29-Jan Welcome to HPC: accounts, allocations and the cluster 
environments 

15 

4-Feb Introduction to MPI 5 

11-Feb Practical MPI 7 

18-Feb Introduction to OpenMP 11 

26-Feb OpenMP Part 2 5 

2-Mar Introduction to MATLAB 17 

12-Mar An introduction to the computational chemistry package, 
Gaussian 03 

18 

16-Mar Introduction to LAPACK 22 

18-Mar Introduction to Hybrid MPI and OpenMP 7 

19-Mar Introduction to Linux and Vi 17 

25-Mar Introduction to Open Source Visualization Software 13 

15-Apr PetaShare Environment and Client Tools 47 

Spring 2009 Total 189 

 Workshops  

March 3 & 4  LONI HPC Workshop at SUBR >30 

April 13 & 14 LONI HPC Workshop at Tulane 19 

   

Spring 2009 Total >49 

Summary 189 people were trained in Spring 2008 in 13 tutorials, and 
more than 49 people attended 2 workshops 

 

 



LONI High Performance Computing Workshops covered an overview of HPC environment of 
IBM Power5 and Linux machines at LONI, basic AIX/Linux operating system commands and 
editors, introduction to Parallel Computing, introduction to MPI and advanced MPI, introduction 
to programming with OpenMP, and the LONI Portal. 

 

1.V.c) Summer Camps involving High School Education 
The Advanced Materials Research Institute (AMRI) conducts a summer research camp each 
summer, which includes REU students in addition to high school students and teachers. Last 
summer the program had 9 undergraduate/high school students and three high school teachers.  
The Outreach Summer Research Program for High School Students and Teachers receives 
support from the Louisiana Board of Regents (LBoR), the US Army Research Office (USARO), 
and the National Science Foundation (NSF), through LBoR Award # LEQSF(2007-12)-ENH-
PKSFI-PRS-04, USARO Award # W911NF-04-1-0226, Academy of Applied Science Subgrant 
07-25 and Subgrant 07-26, and NSF Award # CHE-0611902. 

LA Tech is in the middle of the second year “CyberCamp” for high school students and teachers.  
The workshop was attended by 46 students and 18 teachers. The students are exposed to many 
hands-on activities such as programming a computer, programming a robot, a treasure hunt with 
cyber-related clues, and they also listen to experts talking about cybersecurity, history, 
psychology, and politics of cyberattacks, and learn about methods used to defend against such 
attacks. 

 



2. PUBLICATIONS AND PRODUCTS 

Here we list the publications, presentation and other tangible products by the personnel directly 
funded by the PKSFI, LONI Institute grant. We also include a copy of the publications already 
published in appendix E. These publications can be cross-institution, and some of them are at the 
interface between biology, materials, and computational science. 

Publications: 

Supada Laosooksathit, Chokchai Leangsuksum, Abdelkader Baggag, Clayton Chandler, “Stream 
Experiments: Toward Latency Hiding in GPGPU”, submitted to HiPC09. 

D. A. Genov, S. Zhang, and X. Zhang, "Mimicking celestial mechanics in metamaterials", 
accepted for publication to Nature Physics (May 2009). 

D. A. Genov, A. K. Sarychev, and V. M. Shalaev, "Adiabatic Spatially Selective 
Photomodification of Inhomogeneous Metal-Dielectric Composites", submitted to Physical 
Review Letters (April 2009). 

N.S.Vidhyadhiraja, A.Macridin, C.Sen, M.Jarrell, Michael Ma Quantum Critical Point at Finite 
Doping in the 2D Hubbard Model: A Dynamical Cluster Quantum Monte Carlo Study , 
arXiv:0809.1477. Physical Review Letters, in press. 

E. Khatami, A. Macridin, M. Jarrell The validity of the spin-susceptibility "glue" approximation 
for pairing in a two-dimensional Hubbard model , arXiv:0901.4802.  

Karlis Mikelsons, Alexandru Macridin, Mark Jarrell The relationship between Hirsch-Fye and 
weak coupling diagrammatic Quantum Monte Carlo methods , arXiv:0903.0559.  

C. N. Varney, C.-R. Lee, Z. J. Bai, S. Chiesa, M. Jarrell, R. T. Scalettar High Precision Quantum 
Monte Carlo Study of the 2D Fermion Hubbard Model , arXiv:0903.2519.  

E. Khatami, C. R. Lee, Z. J. Bai, R. T. Scalettar, M. Jarrell Dynamical Mean Field Theory 
Cluster Solver with Linear Scaling in Inverse Temperature , arXiv:0904.1239.  

D.B. Khismatullin and G.A. Truskey, “Leukocyte Rolling on P-selectin: A 3D Numerical Study 
of the Effects of Cell Viscosity and PSGL-1 Clustering,” Ann. Biomed. Eng. (in revision) 

D. B. Khismatullin, “The cytoskeleton and deformability of white blood cells” in Klaus Ley 
(Ed.), “Current Topics in Membrane. Vol. 64. Leukocyte adhesion” (Elsevier, scheduled to be 
published in 2009).  

David L. Mobley* and Ken A. Dill, “The binding of small-molecule ligands to proteins: ‘What 
you see’ is not always ‘what you get’, Structure 17(4), 489-498 (2009), 10 pages. * - 
corresponding author.  



D. L. Mobley+, C. I. Bayly, M. D. Cooper, and K. A. Dill. “Predictions of hydration free energies 
from all-atom molecular dynamics simulations”, invited article, Journal of Physical Chemistry B 
113: 4533-4537 (2009), special issue on “Calculation of Aqueous Solvation Energies of Drug-
Like Molecules: A Blind Challenge. 

D. L. Mobley+, C. I. Bayly, M. D. Cooper, M. R. Shirts, and K. A. Dill. "Small molecule 
hydration free energies in explicit solvent: An extensive test of fixed-charge force fields", J. 
Chem. Theory Comput. 5: 350-358, 2009 (DOI 10.1021/ct800409d), 9 pages. One of the top 10 
most downloaded articles in JCTC between March, 2008 and March, 2009. 

Encode Project Consortium. Identification and Analysis of Functional Elements in 1% of the 
Human Genome by the Encode Pilot Project. Nature. 2007 Jun 14; 447(7146): 799-816. 

Neerja Karnani, Christopher Taylor, Ankit Malhotra and Anindya Dutta. Pan-S Replication 
Patterns and Chromosomal Domains Defined by Genome-Tiling Arrays of Encode Genomic 
Areas. Genome Research. 2007 Jun; 17(6): 865-76. 

Encode Project Consortium. The Encode (ENCyclopedia Of DNA Elements) Project, Science. 
2004 Oct 22; 306(5696): 636-40.  

Anindya Dutta, Neerja Karnani, Ankit Malhotra, Gabriel Robins and Christopher M. Taylor.  
Extraction of Human DNA Replication Patterns from Discrete Microarray Data. Third IAPR 
International Conference on Pattern Recognition in Bioinformatics (PRIB 2008), Novotel St 
Kilda, Melbourne Australia, October 2008. 

D. S. Katz, G. Allen, R. Cortez, C. Cruz-Neira, R. Gottumukkala, Z. D. Greenwood, L. Guice, S. 
Jha, R. Kolluru, T. Kosar, L. Leger, H. Liu, C. McMahon, J. Nabrzyski, B. Rodriguez-Milla, E. 
Seidel, G. Speyrer, M. Stubblefield, B. Voss, and S. Whittenburg, "Louisiana: A Model for 
Advancing Regional e-Research through Cyberinfrastructure," Philosophical Transactions of the 
Royal Society A, v. 367, pp. 2459-2469, 2009. 

Gottumukkala, N. R., R. Nassar, C.B. Leangsuksun, M. Paun. “Reliability of a system of k nodes 
for high performance computing applications”. To appear in the December 2009 issue of the The 
IEEE Transactions on Reliability. 

Shizhong Yang, S.M.  Guo, Guang-Lin Zhao, and Ebrahim Khosravi, “ High infrared reflective 
nickel doped ZrO2 from first principles simulation”, ICCS May 2009. (International conference 
paper) 

Shizhong Yang, et al. (peer-reviewed and was accepted to be published): “Doped C60 study from 
first principles simulation”, New3SC- 7, (Seventh International Conference on New Theories, 
Discoveries and Applications of Superconductors and Related Materials), Beijing, May 2009. 
Also an invited talk. 

Wendong Wang, Zhenjun Wang, Jinke Tang, Shizhong Yang, Hua Jin, Guang-Lin Zhao, and 
Qiang Li, “ Seebeck coefficient and thermal conductivity in doped C60”, Journal of       
Renewable and Sustainable Energy, vol. 1, issue 2, 23104, page1~8 (2009) 



G.L. Zhao, S. Yang, D. Bagayoko, J. Tang and Z.J. Wang, “ Electronic structure of C60 
semiconductors under controlled doping with B, N, and Co atoms”, Diamond & Related 
Materials, vol. 17, page749~752 (2008). 

Zaixin Lu, Zhiyu Zhao, Sergio Garcia, Krishnakumar Krishnaswamy, and Bin Fu, “Search 
Similar Protein Structures with Classification, Sequence and 3-D Alignments”, to appear in the 
Journal of Bioinformatics and Computational Biology. 

Huimin Chen and Zhiyu Zhao, “An Information Theoretic Viewpoint on Haplotype 
Reconstruction from SNP Fragments”, to appear in the 3rd International Conference on 
Bioinformatics and Biomedical Engineering (iCBBE 2009, China). 

Zaixin Lu, Zhiyu Zhao, Sergio Garcia, and Bin Fu, “New algorithm and web server for finding 
proteins with similar 3d structures”, in the Proceedings of the 2008 International Conference on 
Bioinformatics & Computational Biology (BIOCOMP'08, USA), pp. 674 - 680. 

Eren AM, Amin I, Alba A, Morales E, Stoyanov A, and Winters-Hilt S. Pattern Recognition 
Informed Feedback for Nanopore Detector Cheminformatics. Submitted to BMC Biotechnology. 

Eren AM & Stephen Winters-Hilt. A Visualization Tool for Nanopore Experiments. Submitted 
to MCBIOS Proceedings for BMC Bioinformatics. 

Winters-Hilt S, Eren AM, and Armond Jr. K. Distributed SVM Learning and Support Vector 
Reduction. Re-submission planned to BMC Bioinformatics. 

Winters-Hilt S, Eren AM, and Merat S. Unsupervised clustering using supervised support vector 
machines. Re-submission planned BMC Bioinformatics. 

Winters-Hilt S and Eren AM. SVM-based clustering with kernel-clustering for kernel-tuning and 
seed cluster-region identifications. 

Winters-Hilt S and Jiang Z. An Efficient Self-Tuning Explicit and Adaptive HMM with Duration 
Algorithm. Accepted by IEEE Transactions on Signal Processing, June 2009. 
(http://www.cs.uno.edu/~winters/ESTEAHMMD_preprint.pdf) 

J. Jack and A. Paun, ``Discrete Modeling of Biochemical Signaling with Memory Enhancement,'' 
LNBI Transactions on Computational Systems Biology 2009, 14 pp. [accepted]. 

J. Jack, A. Paun, Simulation of Signaling Pathways through discrete methods, JALC, accepted 
2009. 

J. Jack, A. Paun, F A. Rodriguez-Paton, Discrete nondeterministic modeling of the FAS 
pathway,  Int. Journal of Foundations of Computer Science, vol. 19 (October 2008), no. 5, pp. 
1147-1162.  

J. Jack, A. Paun, A. Rodriguez-Paton, Effects of HIV-1 Proteins on the Fas-Mediated Apoptotic 
Signaling Cascade: A Computational Study of Latent CD4+ T Cell Activation, accepted at Ninth 
Workshop on Molecular Computation, WMC9, Edinburgh (UK) July 28-31, 2008, 20pp. 



J. Lao and D. Moldovan, “Surface stress induced structural transformations and pseudoelastic 
effects in palladium nanowires” Appl. Phys. Lett. 93, 093108, 2008 

J. Lao and D. Moldovan, “Interfacial strain induced self-rolling of Aluminum nanotubes” In 
preparation, plan to submit for publication to Physical Review Letters.  

Juliette W. Ioup, George E. Ioup, Lisa A. Pflag, Arslan M. Tashmukhambetov, Christopher O. 
Tiemann, Alan Berstein, Natalia Sidorovskaia, Philip Schnenayder et al., “Localization to verify 
the identification of individual sperm whales using click properties,” The Journal of the 
Acoustical Society of America, 125(4, pt.2 of 2), April 2009, p. 2616 (published abstract) 

Natalia Sidorovskaia, Philip Schexnayder, et al., “Rhythmic analysis of sperm whale broadband 
acoustic signals,” The Journal of the Acoustical Society of America, 125(4, pt.2 of 2), April 
2009, p. 2738 (published abstract) 

S. Chu, J. Chen, Z. Wu, V. Raghavan, H. Chu. “A Treemap-based Result Interface for Search 
Engine Users”, 12th International Conference on Human-Computer, Interaction (HCI 2007), 
Volume 8, July 2007. 

 

Presentations: 

Abdelkader Baggag, LONI Institute All-Hands Meeting: “High Performance Computing and 
Computational Science and Engineering” with an overview of the particulate flow application. 

Abdelkader Baggag, IBM Watson Research Center: “A scalable nested iterative scheme for 
linear systems in particulate flows” 

Abdelkader Baggag, Laval University: Participation in HPC committee for NSERC evaluation of 
Industrial Research Chair 

Dentcho Genov, “Electromagnetic metamaterials: from imaging with super resolution to 
mimicking celestial phenomenon in the lab”, The LONI Institute (LI) All-Hands Meeting, Baton 
Rouge, LA, October 31, 2008. 

Dentcho Genov, Electromagnetic properties of complex metamaterials: from near field imaging 
with super resolution to mimicking celestial phenomenon in laboratory conditions”, Colloquium 
Series at the Center for Computational &Technology (CCT), Louisiana State University, Baton 
Rouge, LA, March 27, 2009.  

Mark Jarrell, The Phase Diagram of the Two-Dimensional Hubbard Model: A Quantum Critical 
Point at Finite Doping, Invited Talk, Oct. 8, 2008, 3rd International Workshop on "Ordering 
Phenomena in Transition Metal Oxides" Augsburg, Germany, October 5-8, 2008  

Mark Jarrell, Bond Excitations in the Pseudogap Region of the Hubbard Model, Invited Talk, 
Oct. 28, 2008, 21st International Symposium on Superconductivity, International Congress 
Center, Tsukuba Japan, October 27-29, 2008.  



Mark Jarrell, Massively Parallel and Multi-Scale Simulations of Strongly Correlated Electronic 
Systems. , Invited Talk, March 4, 2009, Michael Dewar Memorial Symposium: Advancing 
Computational Chemistry Through High Performance Computing, from the Workstation to the 
Petascale and Beyond. March Meeting of the American Chemical Society. Salt Lake City, Utah.  

Mark Jarrell, Massively Parallel and Multi-Scale Simulations of Strongly Correlated Electronic 
Systems, Keynote Lecture, The International Conference on Computational Science 2009 May 
25 - 27, 2009, in Baton Rouge, Louisiana 

D.B. Khismatullin, “Viscoelastic Volume-of-Fluid algorithm for multiphase flow problems”, 
LONI HPC Workshop, Tulane University, April 13-14, 2009 — New Orleans, Louisiana. 

D.B. Khismatullin, “Application of the Volume-of-Fluid algorithm to biological systems”, 2009 
Spring Southeastern Meeting of the American Mathematical Society, April 4-5, 2009 — Raleigh, 
North Carolina.  

D.B. Khismatullin, “Modeling of cell adhesion using a multiphase flow approach”, LONI 
Institute First All-Hands Meeting, Louisiana State University, October 31, 2008 — Baton Rouge, 
Louisiana.  

D.B. Khismatullin, Tulane University School of Medicine, Department of Physiology (May 18, 
2009). Quantitative analysis of leukocyte-endothelial cell interactions in inflammation and 
atherosclerosis. Host: Dewan Majid. Invited Talk. 

D.B. Khismatullin, Tulane University, Department of Chemical and Biomolecular Engineering 
(April 24, 2009). Computational modeling of receptor-mediated leukocyte adhesion to surfaces. 
Host: Noshir Pesika. Invited Talk. 

D.B. Khismatullin, Tulane University, Applied and Computational Mathematics Seminar 
(January 23, 2009). Biological systems modeling using a multiphase flow approach. Host: 
Ricardo Cortez. Invited Talk. 

D.B. Khismatullin, Southern Methodist University, Department of Mathematics (October 15, 
2008). A multiphase flow approach to modeling biological systems. Host: Vladimir Ajaev. 
Invited Talk. 

David Mobley, “Lessons learned from predicting binding free energies in model binding sites” 
and “Quantitative predictions of protein-ligand binding affinities”, American Chemical Society 
Meeting, Salt Lake City, UT, March 2009, contributed presentation.  

David Mobley, “Predictive calculations of absolute binding free energies”, American Chemical 
Society Meeting, August 20, 2008, Philadelphia, PA, invited presentation.  

Anindya Dutta, Neerja Karnani, Ankit Malhotra, Gabriel Robins and Christopher M. Taylor.  
Extraction of Human DNA Replication Patterns from Discrete Microarray Data. Third IAPR 
International Conference on Pattern Recognition in Bioinformatics (PRIB 2008), Novotel St 
Kilda, Melbourne Austrailia, October 2008. 



Christopher M. Taylor.  Extraction of Human DNA Replication Timing Patterns from Discrete 
Microarray Data.  LONI All-Hands Meeting.  Baton Rouge, LA, October 2008. Invited Talk. 

N. Raju Gottumukkala, Box Leangsuksun, Raja Nassar, Mihaela Paun, Dileep Sule, “Reliability 
Aware Optimal-K Node allocation of parallel applications in large scale HPC systems”, High 
Availability and Performance Computing Workshop (HAPCW 2008), Denver, Colorado. 

Raju Gottumukkala, Ramesh Kolluru, “Improving Disaster Response: NIMSAT”, The 2009 gulf 
Coast Marine Conference. 

Raju Gottumukkala, Rusti Liner, “GIS Projects at NIMSAT Institute” The 25th Annual Remote 
Sensing and GIS Workshop, April 14-16 2009, Louisiana. 

Presentation at 2009 LAS 83rd annual conference: “First principles molecular dynamics 
simulation of nano gold adsorption on (0001) surface of Ruthenium”, Shizhong Yang, Shuju Bai, 
Ebrahim Khosravi, and Guang-Lin Zhao. 

Invited talk: “Doped C60 study from first principles simulation”, New3SC- 7, (Seventh 
International Conference on New Theories, Discoveries and Applications of Superconductors 
and Related Materials), Beijing, 2009. 

Zhiyu Zhao (author & presenter), “Intermediate 
MATLABhttp://www.hpc.lsu.edu/training/tutorials/presentations/Intro-MATLAB-0309.pdf”, 
Stanley Thomas Hall, Tulane University; An invited tutorial session of the LONI HPC 
Workshop, Spring 09, hosted by the Tulane University and open to all the LI research 
community, see http://www.hpc.lsu.edu//training/20090413/index.php.  (04/14/09) 

Zhiyu Zhao (author & presenter), “Introduction to LAPACK”, Liberal Arts Building, UNO; A 
tutorial session of the LONI HPC Training, Spring 09, open to all the LI research community via 
UNO’s Access Grid facilities, see 
http://www.hpc.lsu.edu/training/tutorials/index.php#spring09lapack. (03/16/09) 

Zhiyu Zhao (author & presenter), “Introduction to MATLAB”, Liberal Arts Building, UNO; A 
tutorial session of the LONI HPC Training, Spring 09, open to all the LI research community via 
UNO’s Access Grid facilities, see 
http://www.hpc.lsu.edu/training/tutorials/index.php#spring09matlab. (03/02/09) 

Zhiyu Zhao (author & presenter), “Introduction to the Supercomputing Resources at LONI & 
TeraGrid”, Math Building, UNO; A presentation open to all the UNO research community as 
required by the chair of the Department of Computer Science, see 
http://www.cs.uno.edu/special/seminars.xml#Introduction%20to%20Supercomputing%20Resour
ces%20at%20LONI%20and%20TeraGrid and 
http://www.cs.uno.edu/~sylvia/LONI&TeraGrid.pdf. (02/06/09) 

Zhiyu Zhao (author & presenter), “Protein 3D Structure Alignment and Searching for Similar 
Structures in the Protein Data Bank”, Engineering Building, UNO; A seminar talk invited by the 
Department of Electrical Engineering, UNO and open to all the EE faculty/staff and students, see 
http://www.cs.uno.edu/~sylvia/ProteinStructure.pdf. (01/29/09) 



Zhiyu Zhao (author & presenter), “Feedback Algorithm and Web-Server for Protein Structure 
Alignment”, CERM Building, UNO; A seminar talk invited by the Department of Computer 
Science and open to all the CS faculty/staff and students, see 
http://www.cs.uno.edu/special/seminars.xml#Feedback%20Algorithm%20and%20Web-
Server%20for%20Protein%20Structure%20Alignment and 
http://www.cs.uno.edu/~sylvia/SLIPSA.pdf. (11/21/08) 

Scott Whittenburg (author) and Zhiyu Zhao (author & presenter), “Computational Research at 
UNO”, LSU Union, LSU; A presentation required by Dr. Whittenburg (vice chancellor of 
research at UNO) and open to all attendees of the LI All Hands Meeting ’08, see 
http://institute.loni.org/FirstAllHandsMeeting.php. (10/31/2008) 

Zhiyu Zhao (author & presenter), “Research on Protein 3-D Structure and Genome Sequence 
Related Problems”, Liberal Arts Building, UNO; A talk invited by the Director of the University 
Honors Program and open to all the UNO honors students of fall 08, see 
http://www.cs.uno.edu/~sylvia/Protein&Genome.pdf. (10/28/08) 

Zhiyu Zhao (author & presenter), “Linear Time Probabilistic Algorithms for the Singular 
Haplotype Reconstruction Problem from SNP Fragments”, Engineering Building, UNO; A 
seminar talk invited by the Department of Electrical Engineering, UNO and open to all the EE 
faculty/staff and students, see http://www.cs.uno.edu/~sylvia/HapRec.pdf. (10/02/08) 

A. Murat Eren & Stephen Winters-Hilt. Pattern recognition-informed sampling for nanopore 
biosensing. MidSouth Computational Biology and Bioinformatics Society (MCBIOS), 
Starkville, MS, Feb. 20-21, 2009. 

A.Murat Eren & Stephen Winters-Hilt. A Visualization Tool for Nanopore Experiments. 
MidSouth Computational Biology and Bioinformatics Society (MCBIOS), Starkville, MS, Feb. 
20-21, 2009. 

Joshua Morrison, A. Murat Eren, and Stephen Winters-Hilt. Machine Learning Web Interfaces 
for Bioinformatics & Cheminformatics. MidSouth Computational Biology and Bioinformatics 
Society (MCBIOS), Starkville, MS, Feb. 20-21, 2009. 

Amanda Alba, Eric Morales, A. Murat Eren, Joshua Morrison and Stephen Winters-Hilt. 
Nanopore-transduction based study of individual molecular binding events. MidSouth 
Computational Biology and Bioinformatics Society (MCBIOS), Starkville, MS, Feb. 20-21, 
2009 

John Jack gave a presentation at the EPA's National Center for Computational Toxicology 
(NCCT) on the research involving the Nondeterministic Waiting Time (NWT) algorithm.  The 
talk was given in May 2009 and was one hour in length. 

Dr. Andrei Paun (John Jack’s dissertation advisor) is presenting various aspects of their research 
at "Descriptional Complexity of Formal Systems" in Magdeburg, Germany.  He is an invited 
speaker at the conference which takes place July 6th - 9th. 



J. Lao and D. Moldovan, “Molecular dynamics simulation study of pseudoelastic effects in 
palladium nanowires”  The Fourth International Conference on Multiscale Materials Modeling, 
Tallahassee, Florida, October 27-31, 2008. 

Philip Schnenayder, Physics Department seminar, April 2009. 

Philip Schnenayder, Oral presentation at the 157th meeting of the Acoustical Society of 
America, Portland, Oregon, May 22 2009: “Rhythmic analysis of sperm whale broadband 
acoustic signals”. 

 

Invited Book Chapters: 

Neerja Karnani, Christopher M. Taylor and Anindya Dutta.  Microarray Analysis of DNA 
Replication Timing.  Microarray Analysis of the Physical Genome.  Methods in Molecular 
Biology. Vol 556, ISBN: 978-1-60327-191-2, Humana Press. June 16, 2009. 

 

Book: 

Abdelkader Baggag, “Parallel Numerical Algorithms and Applications”, Book in progress. 

 

Posters: 

Christopher Taylor, Neerja Karnani, and Anindya Dutta.  Analyzing DNA Replication Timing in 
the Human Genome.  Experimental Biology.  Ernest N. Morial Convention Center, New Orleans, 
LA, April 2009. 

 

Patent or licensing agreements: 

Shixian Chu, Jinfeng Chen, Zonghuan Wu, Chee-Hung Henry Chu, Vijay Raghavan, “Method 
and Apparatus for Information Visualized Expression and Visualized Human Computer 
Interactive Expression Thereof”, PCT/CN2008/000168 

 



 

3. CONTRIBUTIONS 
The LI is still in the formative stages as we hire personnel.  We do not expect its faculty to be 
fully in place (and therefore its contributions to the state research and education capacity will not 
be fully felt) until Y3 and beyond.  However, at this stage the LI already has made important 
contributions: 

 

3.I.  Contributions to the state research and education capacity. 
 Through a collaborative search procedure we have hired nine faculty, seven of which 
started in Y2, and two which will start on Y3 (with 3 more to be hired in Y3).  These faculty are 
outstanding, and have been attracted to the state through activities on LONI and through LI 
member cooperation.  All are highly computationally oriented, and some are international 
leaders in their fields.  During the recruitment phase, members of the LI sites discussed 
candidates, coordinated recruitment across the universities, and even participated in interviews. 
 The result is that these new faculty are already in discussions with various LI members about 
collaborative, multi-institutional research projects that utilize LONI, setting the stage for larger 
collaborative funding projects in the future.  These faculty will now be effective in recruiting the 
second round of faculty in Y3. 

 Through recruitment of the four computational scientists (with two more still to be 
recruited), the existing faculty have come to know each other and the interests of each site. 
 These scientists are already involved in the advanced projects across the state (LI Projects). 
 This contributes directly to the research and educational capacity of the state, by making the 
projects our faculty carry out more advanced, and grant proposals we write more competitive. 
 These staff have also helped train the university base on cyberinfrastructure (CI) we develop, 
making them more competitive as well.  Finally, these staff will be critical to advances in 
corporate partnerships as they are developed, as they will be able to support research projects by 
companies that are carried out, using LONI and other CI we develop and deploy, in collaboration 
with our LI university partners. 

 The LI faculty have initiated and led a new EPSCOR grant proposal on computational 
material science. This proposal, led by Mark Jarrell, involves all the LI sites, and Xavier 
University.  The proposal was recently submitted to the LA Board of Regents, and is expected to 
also build upon the current NSF EPSCOR “CyberTools” project. 

 Finally, in supporting our six graduate students each year, for work on LONI, we are 
clearly supporting the state research and education capacity. Starting Y3, there will be 12 
graduate students funded, that is, 2 students per LI site. 

 

3.II.  Securing external federal and private sector funding. 
 As reported above, the pre-existing (PIs and SIs) and newly hired LI faculty and staff 
have received external funding for numerous projects during the second year. Collaborations 



developed will be strengthen and enhanced in the future years of the LI gains.  The $12M 
CyberTools project is expected to provide advanced CI for the entire state, and the $2.2M NSF 
HPCOPS project brings the LONI infrastructure to the TeraGrid.  The latter award funds 12 staff 
positions to better develop and support the LONI environment, while integrating this national 
environment with the state. 

 

3.III.  Infrastructure. 
 Two projects are providing advanced Cyber-Infrastructure to the state upon which other 
projects can build.  The most important of these projects from the point of view of infrastructure 
for the state is the CyberTools project, which we expect will provide advanced CI for the entire 
state, not only the LI members.  The NSF HPCOPS project connects the LONI infrastructure to 
the TeraGrid, which is the NSF's national backbone for advanced CI.  This award also funds staff 
positions which support the LONI environment as it integrates this national environment with the 
state.  This makes it much easier for all state researchers to take advantage of the national CI.  
Both HPCOPS and CyberTools awards are providing advanced CI for the state to build on. 

 

3.IV.  Economic Development. 
 As described above, corporate partnerships are being explored.  For example, deep 
discussions have been held with Schlumberger for a series of pilot projects with staff and faculty 
at LSU, which if funded would make use of the projects funded by CyberTools and CCT. 
 Tulane and SUBR have partnerships with IBM, and ULL has a partnership with Louisiana 
GOHSEP. These are examples of the kinds of economic development partnerships that we 
expect to develop in the future once the LI is fully developed. 

 

 



 

4.  PROJECT REVISIONS. 
 We do not at this time expect any revisions to the project deliverables.  As additional 
faculty and staff are recruited, we expect to continue on track to deliver what was originally 
promised.  However, the Project has undergone important changes in leadership. The original PI 
(Seidel) accepted the position of Director of the Office of Cyberinfrastructure at NSF; Seidel was 
succeeded by Jarek Nabrzyski, who in turn has moved to Notre Dame as the Director of the 
Center for Research Computing. Prof. Mark Jarrell has now taken on PI's responsibility. 
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White Paper for Abdelkader Baggag, Associate Professor of 
Computer Science, LA Tech University 

 
LI FACULTY (September 2008 – present) 

 
Abdelkader Baggag, PhD 

 
Associate Professor of Computer Science 

Louisiana Tech University, Department of Computer Science 
600 West Arizona, Nethken 149, Ruston LA 71272 

Phone: (318) 257-2147, Fax: (318) 257-4922 
Email: abaggag@latech.edu 

 
 

EXPERTISE 

Parallel numerical algorithms for large scale engineering applications and their efficient 
implementation on massively parallel computers. 

RESEARCH INTERESTS 

With academic background in computer science, applied mathematics, and engineering, and 
exposure to industrial and US national laboratory applications, such as NASA Langley 
Research Center (LaRC), I work at the interface between the numerical solution of partial 
differential equations, science and engineering applications, and parallel computing. I have 
experience, gained in particular by interacting with NASA scientists, in the numerical 
simulation of many disciplines such as (parallel) computational aero-acoustics (CAA), and 
(parallel) computational fluid dynamics (CFD): modeling the physical processes, designing 
and analyzing iterative algorithms, and implementing them on advanced massively parallel 
computers, using the message passing paradigm. 

I have developed a comprehensive curriculum in HPC, and my goal is to use my prior 
expertise in curriculum development to set up a similar set of HPC courses within the LONI 
Institute.  
 
RESEARCH GROUP MEMBERS 

1. Chokchai (Box) Leangsuksun, Associate Professor, Computer Science 
2. James Elliott, PhD Student, Computer Science 
3. Supada Laosooksathit, PhD Student, Computer Science 
4. Timothy Lindsay, Master’s Student, Computer Science 
5. Moayad Almohaishi, Master’s Student, Computer Science 

 
ASSOCIATE GROUP MEMBER 

1. Dick Greenwood, Associate Professor, Physics 



RESEARCH PROJECTS 
1. Parallel Algebraic Multigrid Methods on Distributed Memory Computers 
2. GPGPUs: Toward Latency Hiding 
3. Porting the particulate flows code, and changing it to handle new physics, namely the 
simulation of the blood 
4. General Purpose Graphics Processor Units and High Energy Physics (with 
Greenwood and Leangsuksun) 
 

RESEARCH PROJECT 1:  
 

PARALLEL ALGEBRAIC MULTIGRID METHODS ON DISTRIBUTED MEMORY 
COMPUTERS FOR LARGE-SCALE INDUSTRIAL APPLICATIONS 
Massively parallel computer systems, incorporating thousands of processors, are becoming a 
reality in Louisiana, through the LONI institute. Thus, one can hope that we are now able to 
test more detailed mathematical models with millions of degrees of freedom. Massively 
parallel computing is a major way to analyze many challenging problems in engineering, and 
offers a more flexible and scalable approach than experimentation. This, however, places a 
heavy burden on the design of suitable algorithms, their efficient implementation on parallel 
architectures and the development and maintenance of very large software. 
The fast and efficient solution of linear systems of equations is a key task in the process of 
many industrial problems, as it represents more than 90% of the computational time. It is 
therefore necessary to develop algorithms of optimal complexity where both memory and 
compute time should depend only linearly on the problem size. Moreover, the increasing 
demands of computationally challenging applications on complex geometries, which run on 
high-performance computers with tens or hundreds of thousands of processors, have 
necessitated the development of scalable solvers and preconditioners. 

One of the most effective ways to achieve scalability is the use of multilevel techniques. 
Algebraic multigrid (AMG) methods have proved to be efficient algorithms for solving large 
linear systems on unstructured grids. By the term “algebraic multigrid,” we mean the class of 
solvers based on multigrid principles, but which do not depend on the availability of the 
underlying mesh about the problem. AMG methods use only the information available in the 
linear system of equations, and therefore are of special interest especially for unstructured 
grids where no hierarchy of meshes is provided, e.g. in finite element discretizations. 
The first aim of the proposed project is to efficiently implement the (sequential) Ruge-
Stüben classical AMG algorithm, and extensively test it on real life engineering applications. 
The second aim is to investigate new parallel approaches suitable for distributed memory 
computers, and implement a general parallel algebraic multigrid algorithm for finite element 
discretizations based on domain decomposition ideas. In particular, different parallel 
strategies for the coarsening phase and the smoothing operator will be examined. As for the 
robustness of the algorithm, an adaptive process will be utilized.  

While the AMG algorithm works well for a wide range of problems, there are situations in 
which it requires special care, e.g., on stretched grids where obtaining a robust and efficient 
solution still remains problematic. One reason for this is that, sometimes, the interpolation 



operator does not interpolate adequately the smooth modes of the error. Hence, a 
characterization of the smooth error will be provided, analyzed and implemented along the 
lines of element-based algebraic multigrids (AMGe), and element-free AMGe. Lastly, a 
careful analysis and (implementation) of the compatible relaxation algorithm, will be 
undertaken, as it holds much promise for parallel computation. 
The project will provide significant training of highly qualified personnel at the Masters and 
PhD levels. The outcome of the current project will be the development of efficient and 
robust parallel algebraic multigrid algorithms which scale both with machine and problem 
size, and an object-oriented software that is portable, modular and MPI-based. 
 

RESEARCH PROJECT 2: 
GPGPUS: TOWARD LATENCY HIDING 
Abstract: In multithreaded programming on GPUs, data transfer between CPU and GPUs is 
a major impendence that prevents GPU to achieve its potential. Hence, stream management 
framework – a latency hiding strategy introduced by CUDA, becomes our attention. 
Streaming allows overlapping between kernel execution time and transfer time of 
independent data between CPU and GPUs. For this reason, the total execution time can 
potentially be reduced. In this project, we introduce performance models in order to study 
the utilization of streams. Moreover, we study two methods that are used for timing 
operations in CUDA, namely CUDA calls and CUDA events. CUDA call functions are 
functions implemented in C++, while CUDA events method is an API. Our finding shows 
that CUDA events method is more accurate for timing operations than CUDA call functions 

Description: Due to the rapid increase in computational performance required to handle 
massive data sets, Graphic Processing Units (GPUs), which were first designed for specific 
graphics computation, have been used for non-graphics applications. This process is known 
as GPGPU, or General Purpose Computation using GPUs. GPUs are specialized for compute 
intensive, highly parallel computation via several multithreaded processors. As such, GPUs 
are commonly classified as a collection of many-core Central Processing Units (CPUs). 
Today, GPUs have been exploited in many application areas including oil exploration, 
scientific data processing, and stock options pricing determination. The operations driving 
these applications require efficient data management and the processing of massive data sets, 
such that these operations can be simultaneously performed in an extremely fast fashion. 
However, data transfer from host to GPU devices and back slows down the application 
executions. To fulfill these requirements, a latency hiding strategy is needed. Due to its 
coprocessor status, the kernel grid aboard the GPU is invoked by a program running on 
CPU, which in turn distributes thread blocks of the grid to the multiprocessors. Each thread 
of a thread block concurrently executes its instructions on one multiprocessor. New blocks 
are launched on the multiprocessors again as previous thread blocks terminate. Even though 
the cost of each memory copy between the CPU (host) and GPU (device) is relatively very 
low, the millions of bytes of data and thousands of transfers of each chunk of this data 
required by applications can multiply those costs and lead to exceptionally high values. To 
reduce these costs, the GPU allows for the applications to be managed concurrency through 
streams. Unlike stream processing – a technique to operate on streams or sequences of data, 
streaming is a latency hiding strategy which allows for sequences of operations to execute 



successively. Different streams execute particular operations in parallel. With streams, the 
kernel launches the current operation and copies the memory chunk of the next operation 
asynchronously. In this paper we focus on memory transfer between main memory which 
works with the CPU and the global memory of the GPU. The internal memory transfer of the 
GPU (between global memory and shared memory which works directly with threads) will 
be the scope of another project. Besides the streaming technique, we also study two methods 
for timing operations in CUDA, namely CUDA call functions and CUDA events. CUDA 
call functions are implemented in C++ and provided in CUDA SDK. CUDA events method 
is an API and has to be implemented with stream. 
 

BOOK IN PROGRESS: “Parallel Numerical Algorithms and Applications” 
 

COURSE DEVELOPMENT: 
1. “High Performance Computing and large Scale Numerical Modeling” 

In this course, I will be teaching the essence of what is needed for researchers to take 
advantage of the machines' power, and I will spend an extra effort to hold the researchers' 
hand in parallelizing, debugging and optimizing some of their respective codes. The scaling 
of parallel algorithms has not yet matched peak speed, and the programming burden for 
parallel machines remains heavy. 
Hence the applications must be programmed to exploit parallelism in the most efficient way 
possible. Today, the responsibility for achieving the vision of scalable parallelism remains in 
the hands of the application developers. This course illustrates the state-of-the-art of parallel 
computing, and links theory to applications, through demonstrations and training. 
This course should be of interest to engineers, programmers and code developers. As a first 
step, I will include it as part of the CAM program, and as a follow up step, I will deliver it to 
LONI scientists. 

 
2. “Multi-institution, interdisciplinary courses for Computational Material 
Science” 

By Juana Moreno, Karen Tomko, Mark Jarrell, and Abdelkader Baggag 

This effort has not been funded and should be re-submitted. 
 

PRESENTATIONS 
1. LONI Institute All-Hands Meeting: “High Performance Computing and 
Computational Science and Engineering” with an overview of the particulate flow 
application     
2. IBM Watson Research Center: “A scalable nested iterative scheme for linear systems 
in particulate flows” 
3. Laval University: Participation in HPC committee for NSERC evaluation of 
Industrial Research Chair 



PEER REVIEWED PUBLICATION 
“Stream Experiments: Toward Latency Hiding in GPGPU” by Supada Laosooksathit, 
Chokchai (Box) Leangsuksun, Abdelkader Baggag, Clayton Chandler 
 

DIRECTED STUDENT LEARNING 
1. Master's Thesis Committee Member, "Wireless Sensor Network Protocols," CSC. 
(February 26, 2009). Advised: Mohamed Faisal Baig 
2. PhD Dissertation External Committee Member, "Modélisation du changement de 
phase de la cryolite dans une cuve Hall- Héroult," CSC. (October 10, 2008). Advised: 
Edith Laliberte 

 
TEACHING AT LOUISIANA TECH UNIVERSITY (LECTURER AND 
INSTRUCTOR) 
ENGR 501 “Research Methods 
CSC 581 “Parallel Algorithms” 



Electromagnetic Metamaterials and Nanophotonics 
 
 

LI FACULTY (09.2008 - present) 
 

Dentcho A. Genov, PhD 
 

Assistant Professor of Physics & Electrical Engineering 
Louisiana Tech University, Engineering Annex, Room 220 

599 W Arizona Ave, Ruston LA 71272 
Phone: (318) 257-4190, Fax: (318) 257-2777 

Webpage: http://www.phys.latech.edu/~dgenov/ 
 
 
 

RESERCH INTERESTS 
 
• Electromagnetic properties of nano-structured complex media including: metal 
composite materials, rough surfaces, fractal aggregates, and ordered media 
• Solid state and condensed matter physics: geometrical phase transitions, scaling theory, 
classical and quantum wave localization phenomena  
• Nanophotonics and quantum optics, nonlinear optics and spectroscopy, quantum dots, 
nanoscopic lasers and optical elements, light scattering from metal particles  
• Artificial materials: metamaterials and negative index media, electric and magnetic 
plasmon waveguides, plasmonic and ordinary band gap materials 
• Numerical code development and algorithm optimization, large-scale computer 
simulations in electrodynamics, plasma physics, and material science 

 
 
 

GROUP MEMBERS 
 

Venkatesh Kumaran, PhD student (theory/computation) 
Pattabhiraju Mundru, PhD student (theory/computation) 

Shravan Rakesh, PhD student (theory/computation) 
Rajivalochan Subramanian, PhD student (theory and experiment) 

 
 
 
 
 
 

 
 
 



Projects Description: The main focus of our research is a rapidly developing field of artificial optical 
materials, referred to as electromagnetic metamaterials (EMMs). The phenomenal progress in 
nanofabrication now provides the enabling technology to develop EMMs with unlimited range of 
optical properties opening the possibility to manipulate light at will. This is accomplished by precise 
engineering of the microscopic magnetic and electric response of the media and is equivalent to 
virtually creating new types of quasi-atoms and quasi-molecules. As a result EMMs have been 
proposed to create a negative refraction index media, invisibility devices and lenses with super 
resolution. The LI faculty (Genov) has substantially contributed to this field publishing more than 30 
papers in top peer reviewed scientific journals, including; Nature, Nature Photonics, Nature Physics, 
Physical Review Letters, IEEE, Nano Letters, est.. Currently our group is pursuing the following five 
related research projects:  
a. Computational engineering of EMMs for optical invisibility (a PhD student involved) 
b. Surface Plasma Enhanced Solar Cells (SPESC) (a PhD students involved). 
c. Surface Plasmon based 100THz transistor (a PhD students involved). 
d. Reversal of Casimir force in Metamaterials: (a PhD student involved). 
e. The optical-mechanical analogy and it broad impact. 
 
a. Computational engineering of EMMs for optical invisibility: Cloaking is an 
advanced stealth technology that utilizes EMMs to render objects invisible 
from arbitrary electromagnetic fields. The most popular methods for achieving 
invisibility or cloaking  are based on encapsulating the object in EMM 
cloaking shells  which guides the impinging waves away from the object 
rendering it invisible.1,2 Although the proposed methods promise to provide 
substantial invisibility, they all suffer from substantial energy dissipation 
which makes true invisibility virtually impossible. The goal of our current 
efforts is to study prospective designs for low loss metamaterials to achieve 
high levels of electromagnetic invisibility both at the macroscopic and 
microscopic scales. To achieve this we rely on a mathematical technique called 
transformational optics (see Fig. 1) that allows the determination of the EMMs 
that provide a set of desired light paths. Specifically, we study a class of 
conformal maps that lead to new EMMs that may realize clocking of an object 
without involvement of magnetism, and concurrently under lower dissipation. 
These studies will also aid in developing new mathematical and numerical 
tools for treating electromagnetic interaction with metamaterials both in 
isotropic and anisotropic regime. The investigation of the local material 
response of strongly interactive optical elements requires utilization of parallel computational 
techniques such as finite difference frequency domain (FDFD) and consequently a high performance 
computing (HPC), which is provided by LONI. The developed numerical tools are also expected to 
contribute to ongoing projects such as Cyber Tools. 
b. Surface Plasma Enhanced Solar Cells (SPESC): Solar radiation provides a source of free energy, 
which if efficiently taped could solve the most urgent problem facing the industrialized world, namely 
its reliance on fossil fuels for generation of electricity. The principal objective of this project is to 
develop a new approach toward inexpensive and highly efficient solar cells based on nano-engineered 
media.  Specifically, a new photo photovoltaic cell is proposed that merges current technology with an 
Active Plasmonics Composite (APC) (Fig. 2a) to achieve enhanced performance. In recent works, we 
showed that in the optical and near-infrared frequency ranges the radiation reservoir associated with 

Figure 0 In contrast to normal free 
space (a), in EMMs the light rays 
curve around the object making (b), 
it invisible.  



Figure 3 a) Light scattering in curved 
space-time (around a black hole) and 
b) closed photon trajectories in CIPT 
metamaterials4 

 

the APC presents drastic departures from any conventional media, resulting in new phenomenon such 
as enhancement of the spontaneous emission, strong localization of light, and dramatic enhancement 
of nonlinear optical processes (Fig. 2b). In this project the enhancement of the SP density of states are 
utilized to engineer the photovoltaic properties of the SPESC. Substantial improvement of the current 

yield and conversion efficiencies (by a 
factor of two) are expected with the 
enhanced performance sustained over 
a broad frequency range. The SPESC 
design and optimization involves 
calculation of random systems of up to 
1 million strongly interacting particles 
and required 1-10Tbits of shared 
memory. Thus the utilization of the 
HPC provided by LONI is crucial. 
Furthermore, to experimentally test the 
theoretical predictions collaboration 
has been initiated with Dr. S. Selmic 
(LA Tech) that will result in the 

creation of a SPESC prototype.  
c. Surface Plasmon based 100THz transistor: In this project we use surface electromagnetic modes 
propagating between the interfaces of metal/semiconductors and air to develop an all-optical 
transistor. Specifically, we rely on a highly doped hetero-junction in connection with optical 
waveguides to excite and propagate confined SP modes. Two distinct mechanisms, one based on 
temperature switching and another on charge depletion, will be tested to simulate an effective 
transistor “I-V” response. Prospective designs will be identified and a prototype will be tested in the 
Institute for Micromanufacturing (LA Tech). 
d. Reversal of Casimir force in Metamaterials: The Casimir force is a 
manifestation of a unique phenomenon due to existence of an “infinite 
ocean” of quantum electromagnetic vacuum fluctuations. For ordinary 
materials this force is always positive. However, with the invention of 
the EMMs it may be possible to reverse it sign from attraction to 
repulsion. In this project we will study numerically and analytically the 
conditions on the EMMs for such reversal to take place. Apart from the 
fundamental ramification of this project possible applications are 
envisioned for development of new thin film coatings to address 
contamination issues in clean rooms, thus lowering the coast of 
operations and increasing microprocessor chip production efficiency.   
e. The optical-mechanical analogy and it broad impact: The optical-
mechanical analogy recently demonstrated by Genov et al. provides a 
useful link between the study of light propagation in inhomogeneous 
media and the motion of massive bodies or light in gravitational 
potentials4. Specifically, we have shown that it possible to directly map 
in metamaterials the light interaction around gravitational black hole 
(Fig. 3a) or development novel Photon Traps (CIPTs) (Fig. 3b) as a 
direct manifestation of a planetary motion, but for light. Our immediate 
research efforts are focused at improving the existing EMMs designs 

Figure 2. Metal-dielectric composite thin films (a) support 
morphology dependent surface plasmon (SP) resonances 
characterized by (b) highly enhanced local field densities over wide 
frequency range3.  



and establishing collaborations that will allow the experimental validation of the discovered 
phenomenon.  
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Grant Proposals Pending: 
 
1. Louisiana Board of Regents Support Fund – RCS 
Title: “Metamaterials for Applications in STEALTH Technology (MAST)“ 
Funds requested: $ 138,652   Date Submitted: 10.21.2008 
 
2. DoD-SBIR  
Title: “Tunable Electromagnetic Metamaterials Films for STEALT enhancement “ 
Funds requested: $ 70,000   Date Submitted: 03.15.2009 
 
3. EPSCoR Research Infrastructure Improvement - Track 1 RFP  
Title: “Electromagnetic Metamaterials and Active Composites (EMAC) “ 
Funds requested: $ 1,340,444   Date Submitted: 04.20.2009 
 
Grant Proposals Approved: 
 
1. DOD RFP - College of Engineering and Science, Louisiana Tech University 
Title: “Surface Plasma Enhanced Solar Cell (SPESC) “, Funds: $99,616 
Date awarded: 06.04.2009 
 
Peer previewed publications acknowledging the LONI Institute: 
 
1. D. A. Genov, S. Zhang, and X. Zhang, "Mimicking celestial mechanics in metamaterials", 
accepted for publication to Nature Physics (May 2009). 
2. D. A. Genov, A. K. Sarychev, and V. M. Shalaev, "Adiabatic Spatially Selective 
Photomodification of Inhomogeneous Metal-Dielectric Composites", submitted to Physical Review 
Letters (April 2009). 
 
Presentations: 
 
1. “Electromagnetic metamaterials: from imaging with super resolution to mimicking celestial 
phenomenon in the lab”, The LONI Institute (LI) All-Hands Meeting, Baton Rouge, LA, October 
31, 2008. 



2. Electromagnetic properties of complex metamaterials: from near field imaging with super 
resolution to mimicking celestial phenomenon in laboratory conditions”, Colloquium Series at the 
Center for Computational &Technology (CCT), Louisiana State University, Baton Rouge, LA, 
March 27, 2009.  
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Current Research:  Strongly correlated materials display complex emergent phenomena, or 
behavior that emerges when many units are assembled that would not be predicted from a 
complete understanding of the units.  This includes transition metal oxides, heavy fermion 
materials, organic magnets, and spintronic materials.  The study of these systems is 
complicated by the competition of different ground states, including spin, charge and orbital 
ordering and by the lack of a small parameter.  As a result, little progress has been made 
with conventional theory, and large-scale simulations are needed to form a more complete 
understanding of models of these systems. 
 We employ a variety of computational methods to study these systems. The 
Dynamical Mean Field Approximation (DMFA) 16,17 and its cluster extensions, including the 
Dynamical Cluster Approximation (DCA)18-21  are at the heart of this approach.  These 
approaches map the lattice onto a cluster embedded in a self-consistently calculated effective 
medium.  Correlations within the cluster are treated explicitly while those at longer length 
scales are treated in a mean field approximation.  The embedded cluster problem is solved 
using a quantum Monte Carlo (QMC)22-24 simulation while disorder can be included by 
averaging over configurations. 18-20  Either a perfectly parallel (MPI) or a hybrid parallel 
(MPI+OpenMP) calculation is used.  Nevertheless, the calculation is limited by the amount 
of memory available on each shared-memory node.  A far more significant limitation of this 
technique is the minus sign problem, which is non-polynomial hard.25  This means that all 
simulations of correlated electrons will grow exponentially with the inverse temperature and 
cluster size making very difficult to treat correlations on the important length scales.   

 To treat more complex problems a third length scale must be introduced as in the 
multi-scale many body (MSMB) approach.26,27  This is accomplished by a multiple 
embedding scheme in which correlations over each length scale are treated with an 
appropriate approximation. Strong correlations at short length scales are treated with an 
explicit (numerically exact) QMC simulation on a small cluster.  This cluster is embedded in 
the larger cluster where the weaker correlations at intermediate length scales are treated 
using the parquet approximation28-32 which requires both contractions and rotations of rank 
three tensors (vertices) and a massively parallel computer with at least tens of thousands of 
processors.  This cluster is embedded in an effective medium, which is used to treat 
correlations on the longest length scales.   

 Density functional theory is also an essential component of this project.  Both the 
DMFA/DCA and the MSMB approach are parameterized by down folding LDA 
calculations.27,33  
 These materials and systems are of great technological importance.  Correlated 
electron materials and especially transition-metal oxides show great promise for novel 
applications in the semiconductor industry to go beyond CMOS devices for future 
information processing technologies, which could be based on “state variables” such as spin. 
The chapters “Emerging Research Devices” and “Emerging Research Materials” in the 2007 
International Technology Roadmap for Semiconductors (ITRS 2007)11 stress that highly 
correlated electron systems exhibit coupling between orbital, charge, and spin ordering may 
enable new devices by greatly enhancing their sensitivity to different applied fields.  
 Our work will lead to a better understanding of these materials, which may lead to 



better devices based upon them.  We also develop and distribute a number of codes, which 
employ architectures at the forefront of computer science, including hyperparallel and 
multicore machines.   
 Our work relies upon the large-scale supercomputers available through LONI, the 
NSF Teragrid, and the DOE NLCS facilities at ORNL. 
 We enhance the impact of our work by distributing codes, and related courseware.  
Two complete courses, Solid State Physics and Classical Electrodynamics are distributed on 
the group web page, http://www.phys.lsu.edu/~jarrell .  In collaboration with my student 
Cyrill Slezak, who visits LSU each summer for an extended period, we also participate in 
Inquiry based RET programs, and we are working with our colleagues to incorporate Inquiry 
and Active Classroom Teaching techniques into elementary courses in Physics and 
Astronomy. 

 As part of our NSF PIRE program, we teach a complete set of courses in 
Computational materials Science which are broadcast via interactive synchronous video to a 
number of schools in Germany and Switzerland.  Our group is also the lead of a DOE 
SciDAC project involving researchers at LSU, OSC, UC Davis, and ORNL.  The goal of this 
SciDAC is to develop the MSMB formalism mentioned above. 
  

Recent Publications: 
• N.S.Vidhyadhiraja, A.Macridin, C.Sen, M.Jarrell, Michael Ma Quantum Critical 

Point at Finite Doping in the 2D Hubbard Model: A Dynamical Cluster Quantum 
Monte Carlo Study , arXiv:0809.1477. Physical Review Letters, in press. 

• E. Khatami, A. Macridin, M. Jarrell The validity of the spin-susceptibility "glue" 
approximation for pairing in a two-dimensional Hubbard model , arXiv:0901.4802.  

• Karlis Mikelsons, Alexandru Macridin, Mark Jarrell The relationship between 
Hirsch-Fye and weak coupling diagrammatic Quantum Monte Carlo methods , 
arXiv:0903.0559.  

• C. N. Varney, C.-R. Lee, Z. J. Bai, S. Chiesa, M. Jarrell, R. T. Scalettar High 
Precision Quantum Monte Carlo Study of the 2D Fermion Hubbard Model , 
arXiv:0903.2519.  

• E. Khatami, C. R. Lee, Z. J. Bai, R. T. Scalettar, M. Jarrell Dynamical Mean Field 
Theory Cluster Solver with Linear Scaling in Inverse Temperature , 
arXiv:0904.1239.  

 

Presentations and Talks: 
• The Phase Diagram of the Two-Dimensional Hubbard Model: A Quantum Critical 

Point at Finite Doping, Invited Talk, Oct. 8, 2008, 3rd International Workshop on 
"Ordering Phenomena in Transition Metal Oxides" Augsburg, Germany, October 5-
8, 2008  

• Bond Excitations in the Pseudogap Region of the Hubbard Model, Invited Talk, Oct. 



28, 2008, 21st International Symposium on Superconductivity, International 
Congress Center, Tsukuba Japan, October 27-29, 2008.  

• Massively Parallel and Multi-Scale Simulations of Strongly Correlated Electronic 
Systems. , Invited Talk, March 4, 2009, Michael Dewar Memorial Symposium: 
Advancing Computational Chemistry Through High Performance Computing, from 
the Workstation to the Petascale and Beyond. March Meeting of the American 
Chemical Society. Salt Lake City, Utah.  

• Massively Parallel and Multi-Scale Simulations of Strongly Correlated Electronic 
Systems. , Keynote Lecture, The International Conference on Computational Science 
2009 May 25 - 27, 2009, in Baton Rouge, Louisiana  

 
External Funding:  

• Simulations of Strongly Correlated Electronic Materials, DMR-0706379, $375,000 
over the three-year period 09/01/07-08/30/10 by the National Science Foundation, 
Materials Theory Program.  

• Graduate Education in Petascale Many Body Methods for Complex Correlated 
Systems, OISE-0730290, $2,500,000 over the five-year period 9/1/07-8/31/12 by the 
National Science Foundation, Office of International Science and Engineering 
(OD/OISE). Investigators: Juana Moreno (PI) UND, M. Jarrell (Co-PI) and K. 
Tomko (Co-PI) at the Univ. of Cincinnati.  

• Predictive Capability for Strongly Correlated Systems, DOE DE-FG02-04ER46129, 
as part of a Computational Materials Science Network, $121,200 over the three-year 
period 04/15/07-04/14/10 (to be approved year by year) by the Department of 
Energy, Basic Energy Sciences, CMSN (Warren Pickett, UC Davis, PI).  

Next Generation Multi-Scale Quantum Simulation Software for Strongly Correlated 
Materials DE-FC02-06ER25792 $3,000,000 over the five-year period 7/06-6/11, by the 
Department of Energy, SciDAC. Investigators: M. Jarrell (PI) and K. Tomko at the Univ. 
of Cincinnati, Th. Maier (co-PI) and E. DÁzevedo at ORNL, Z. Bai (co-PI) R.T. Scalettar 
and S. Savrasov at UC Davis. 
 

Recent Applications for External Funding: 
 

Proposal  PI Name  Deadline Amount Requested  Status 

Jarrell, Mark  05/28/2009 $294,936.00 Submitted  

Sponsor: Ohio Supercomputer Center (OSC)  Type: New  
 Date Approved: 05/26/2009 

34971 - 1  

Project Title: Improving Developer Productivity for HPC through Cyberinfrastructure: 
Applications, Languages, Tools and Services  



Proposal Specialist:  
Young, Shirley Langford  

Award Specialist:  
 

 

 

Jarrell, Mark  04/30/2009 $20,000,000.00 Submitted  

Sponsor: Board of Regents - BOR  Type: Preproposal/NOI  
 Date Approved: 04/29/2009 

Project Title: Louisiana Graduate Research and Education Program in Computational 
Materials Science  
Proposal Specialist:  
Williams, Rhonda Meyers  

Award Specialist:  
 

34891 - 1  

 

Hall, Randall W  04/20/2009 $10,000.00 Submitted  

Sponsor: Board of Regents - BOR  Type: New  
 Date Approved: 04/20/2009 

Project Title: Planning for LONI Institute s Proposal to the 2009 Louisiana EPSCoR RII 
Competition  

Proposal Specialist:  
Hakes, Jonathan  

Award Specialist:  
 

34809 - 1  

 

Jarrell, Mark  04/17/2009 $67,657.00 Submitted  

Sponsor: Dept of Energy - DOE  Type: New  
 Date Approved: 04/17/2009 

Project Title: Predictive Capability for Strongly Correlated Systems: Mott Transition in 
MnO, Multielectron Magnetic Moments, and Dynamic Effects in Correlated Materials  
Proposal Specialist:  
Impson, Dana Tuminello  

Award Specialist:  
 

34778 - 1  

 

Sheehy, Daniel E  02/27/2009 $1,721,689.94 Submitted  

Sponsor: Dept of Energy - DOE  Type: New  
 Date Approved: 03/10/2009 

Project Title: TMS: Integrated theoretical approaches to correlated systems  
Proposal Specialist:  
Williams, Rhonda Meyers  

Award Specialist:  
 

34627 - 1  

 



Jarrell, Mark  03/26/2009 $887,664.00 Submitted  

Sponsor: Dept of Energy - DOE  Type: New  
 Date Approved: 03/27/2009 

Project Title: Next Generation Multi-Scale Quantum Simulation Software for Strongly 
Correlated Materials  
Proposal Specialist:  
Impson, Dana Tuminello  

Award Specialist:  
 

34579 - 1  

 

Jarrell, Mark  11/26/2008 $500,000.00 Submitted  

Sponsor: Ohio Supercomputer Center (OSC)  Type: New  
 Date Approved: 11/26/2008 

Project Title: An Experimental Accelerator-Based HPC System driven by High 
Productivity Programming Models  

Proposal Specialist:  
Li, Ping  

Award Specialist:  
 

34304 - 1  

 

Jarrell, Mark   $0.00 Submitted  

Sponsor: Board of Regents - BOR  Type: Modification  

Mod Type: Change of Principal/Co-
Investigator, Date Approved: 05/19/2009 

Project Title: The LONI Institute: Advancing Biology, Materials, and Computational 
Sciences for Research, Education, and Economic Development  

Proposal Specialist:  
Courville, Darya Delaune  

Award Specialist:  
 

31914 - 6  

 

 



 

 

 
 

 

 

 

2009 ANNUAL REPORT FOR THE LONI INSTITUTE GRANT 

 

Damir B. Khismatullin 

Department of Biomedical Engineering 
Tulane University, New Orleans, LA 70118 

 
Graduate students (2009-current): 

Hongzhi Lan, Chong Chen 

Undergraduate students (2008-2009):  

Daniel Haber, Joseph Berenblit 
 

Specialization: 

Computational modeling and experiments 

 

Research fields: 

1) Bio-transport and cellular biomechanics;  
2) Cell-cell interactions in inflammation, atherosclerosis, and thrombosis; 
3) Medical ultrasound and biomedical applications of gas microbubbles; 
4) Multiphase flows and non-Newtonian fluid mechanics 



I started my appointment as Associate Professor of Biomedical Engineering at Tulane 
University, with 50% support from the LONI Institute Grant, in August 2008.  My research 
interests focus upon 1) modeling the mechanical behavior of biological systems at cellular and 
tissue levels and 2) the numerical solution of the multiphase fluid flow problems where the 
deviation from the Newtonian law is significant. Specific points of current interest include the 
biomechanics of leukocytes, platelets and endothelial cells; leukocyte-endothelial cell 
interactions in inflammation and atherosclerosis; thrombus formation and rheology; 
microvascular and arterial blood flow; contrast-enhanced ultrasound imaging, and shock-wave 
lithotripsy. In my research laboratory, we also conduct in vitro experiments on adhesive 
interactions of living cells. The main objective of my research is to integrate computational 
modeling, in vitro and in vivo experiments to improve understanding of the behavior of 
biological systems under both physiological and pathophysiological conditions. Achieving this 
objective will have a major impact in development of therapy against inflammation, 
atherosclerosis, and thrombosis (pathologies responsible for the majority of death and 
hospitalization in Louisiana and other states) and thus will be of benefit to the majority of 
Louisiana population. It also helps to establish the strength of the LONI, and Louisiana as 
a whole, in biomedical computational science.  

During the second year of the grant period (August 2008 - June 2009), my activities included: 1) 
development of a research laboratory equipped with both experimental and computational 
facilities; 2) writing grant proposals for NIH, NSF, and BoR; 3) running numerical simulations 
and conducting experimental studies for the projects listed below; 4) establishing new external 
and internal collaborations; 5) teaching the cell mechanics course in Fall 2008 and the bio-
transport course in Spring 2009; 6) giving invited presentations and conference talks; and 7) 
serving as a reviewer for NIH, California HIV/AIDS Research Program, and various scientific 
journals. My current research projects are  

Project 1: Quantitative analysis of monocyte-endothelium interactions in atherosclerosis. 
NIH Challenge Grant Application (PI: Khismatullin; pending: submitted in April 2009) 

External Collaborators:  Klaus Ley (La Jolla Institute for  
Allergy & Immunology, CA) 
George A. Truskey (Duke University, Durham, NC) 
Internal Collaborator: Donald P. Gaver, III  
 
The goal of this proposal is a) to examine the combined effect 
of hypercholestermia (oxLDL) and disturbed flow on 
monocyte adhesion to endothelium at atherosclerosis-prone 
sites and b) to develop robust quantitative models of 
monocyte-endothelium interactions that can be used as a tool 
to explore therapies for atherosclerosis.  

 
Figure 1. Schematic drawing of 
the flow domain used to study 
numerically the effect of 
recirclating flow on monocyte-
endothelial cell adhesion. 

 



Preliminary results: We have developed the algorithm for a fully three-dimensional, direct 
numerical simulation of receptor-mediated adhesion of human monocyte in a rectangular micro-
channel. In addition, we implemented stagnation-point flow conditions, schematically shown in 
Figure 1, in the algorithm to study the effect of recirculating flow on monocyte rolling and 
adhesion. Figure 2 shows the disturbed velocity field and monocyte shape in the midsagittal 
plane, according to our simulations.  

Our computational model is a custom 
incompressible computational fluid dynamics 
(CFD) code, written in Fortran with OpenMP 
directives, in which the Volume-of-Fluid 
(VOF) method is used on a Marker-and-Cell 
(MAC) grid for tracking the position and 
shape changes of the cell over time. The code 
finds the solution of the continuity and 
Navier-Stokes equations in three dimensions 
and takes into account viscoelasticity of the 
cell through the Giesekus model. The kinetic 
model of receptor-ligand binding is used to 
calculate the adhesive force on the cell 
surface. Adhesive interactions are initiated if 
the separation distance between the substrate 
and the free end of a ligand molecule is less 
than or equal to the unstressed length of 
receptor. 

Currently, we run the code on the eight-processor node I purchased for the Tulane CCS. One of 
my students (Hongzhi Lan) works on the implementation of MPI into the algorithm to run it on a 
LONI cluster (his research is supported by 2009-2010 LONI Institute Graduate Fellowship). 

As about the experimental part of the project, 
my research team (graduate student Chong 
Chen and undergraduate students Daniel Haber 
and Joseph Berenblit) has developed a parallel-
plate flow chamber assay for analysis of 
monocyte-endothelial cell interactions under 
flow (Figure 3). The cell systems we currently 
study are THP-1 (monocytic cell line) and 
HUVEC (human umbilical vein endothelial 
cell).  

My research laboratory is now fully equipped 
to conduct cell-cell interaction studies in vitro. 

 

Figure 2. Cell shape and velocity field at the mid-
plane of the cell when the reattachment point Pfr is at 
7.5 µm from the left boundary of the flow domain and 
t = 0.036 s. The cytoplasmic viscosity is 200 poise. 
The nucleus-to-cytoplasm viscosity ratio is 2.5. The 
microvillus length and radius are 0.3 µm and 0.1 µm. 
The number of microvilli is 1016. The on and off rates 
are 1.0 µm2/s and 0.5 s-1. The surface densities of 
adhesion molecules are 1000 µm-2. 

 

Figure 3. Complete dual pump flow chamber 
system installed in the laboratory.  

 



We are also in process of purchasing the Bioflux 200 flow system (Fluxion Biosciences, San 
Francisco, CA) which utilizes Fluxion's Well Plate Microfluidics™ (straight micro-channels in 
24- or 48-well plates). This system will be used in the project to study monocyte-substrate and 
monocyte-endothelium interactions in straight channels under steady flow conditions. 

Project 2: Computational studies of leukocyte dynamics using microPIV in collagen 
microchannels. NIH R21 Grant Application (PI: Khismatullin; in revision: to be submitted in 
July 2009) 

Internal Collaborators:  Sergey Shevkoplyas, Donald P. Gaver, III 

The goal of this proposal is to develop a) a 
well-controlled in vitro system that could 
mimic leukocyte behavior in vivo and b) a 
computational algorithm that realistically 
describes leukocyte rolling in this system. 
The studies proposed in this R21 application 
form the basis for an independent R01 
proposal to investigate leukocyte-
endothelium interaction properties in ex 
vivo collagen-tube assay and in vivo.  

Preliminary results: As discussed in Project 
1, we have developed a 3-D computational 
model of receptor-mediated leukocyte 
adhesion to the endothelium or a ligand-
coated surface in a parallel plate flow 
chamber. We are currently working on 
extension of this model to the case of 
cylindrical geometry. Two codes are now in 
the testing stage: the computational model 
for leukocyte dynamics in a micropipette 
system (axisymmetric flow problem), which 
is illustrated in Figure 4B and the 2-D 
tissue-blood model in which the adhesive 
surface is the interface between the tissue and blood phases. These two algorithms will then be 
combined to develop the computational model for leukocyte adhesion to the surface of a collagen 
microchannel with a circular cross section.  

Our experimental efforts in this proposal will be lining the microchannels with endothelial cells 
and conducting flow assays. The microchannels will be fabricated by Dr. Shebkoplyas.  

 

                                                              

     
Figure 4. (A) A videomicrograph frame showing adhesion of 
THP-1 cell to an endothelial cell in the micropipette system. The 
leukocyte motion toward the endothelial cell and subsequent 
leukocyte-EC interaction were initiated by negative suction (J. P. 
Irick and G. A. Truskey, unpublished). (B) Numerical image 
showing the velocity field during negative suction and the 
leukocyte interacting with the substrate (bead/EC surface) in the 
micropipette system.  

 

 

 

 



Other projects that are initiated or submitted in 2008-2009 are “Thrombus rheology via 
noncontact measurement” (external collaborator is Dr. R. Glynn Holt from Boston University; 
the first submission was highly recommended; the second submission was sent to NSF in 
October 2008), where my role is to perform computational study of blood clot shape oscillation 
in an acoustic levitator to determine the blood clot material constants; “Computational and 
experimental studies of thrombus growth and deformation” (external collaborator is Dr. 
Steven Jones from Louisiana Tech; the proposal was submitted for consideration in the LONI 
proposal on Computational Materials), where my role is to develop the computational model for 
thrombus growth and deformation; “Fluid mechanics of capillary sprouting” (internal 
collaborator: Dr. W. Lee Murfee), where my role is to develop the computational model of blood 
flow in capillaries which takes into account vessel sprouting (I have already developed a 2-D 
model for this project as mentioned in Project 2). My research in 2008 was funded by the 
Department of Defense (the project on “Laser nucleation and collapse stability for advanced 
cavitation power technology") where I performed mathematical modeling of bubble cluster 
dynamics in a spherical flask.   

During the second year of the grant period, I have also established internal collaboration with 
Drs. Ricardo Cortez and Lisa Fauci (our interests are to combine the immersed boundary and 
viscoelastic VOF algorithms to study numerically the effect of viscoelasticity on the motion of 
microorganisms) and Dr. Noshir Pesika (in vitro experiments and computational analysis of the 
effect of channel height on cell adhesion to surfaces using the micro-channels fabricated by Dr. 
Pesika) as well as external collaboration with Dr. Wendy Thomas (University of Washington) to 
study bacterial adhesion to surfaces.  

 

Publications:  

D.B. Khismatullin and G.A. Truskey, “Leukocyte Rolling on P-selectin: A 3D Numerical Study 
of the Effects of Cell Viscosity and PSGL-1 Clustering,” Ann. Biomed. Eng. (in revision) 

D. B. Khismatullin, “The cytoskeleton and deformability of white blood cells” in Klaus Ley 
(Ed.), “Current Topics in Membrane. Vol. 64. Leukocyte adhesion” (Elsevier, scheduled to be 
published in 2009).  

 

Presentations:  

D.B. Khismatullin, “Viscoelastic Volume-of-Fluid algorithm for multiphase flow problems”, 
LONI HPC Workshop, Tulane University, April 13-14, 2009 — New Orleans, Louisiana. 

D.B. Khismatullin, “Application of the Volume-of-Fluid algorithm to biological systems”, 2009 
Spring Southeastern Meeting of the American Mathematical Society, April 4-5, 2009 — Raleigh, 
North Carolina.  



D.B. Khismatullin, “Modeling of cell adhesion using a multiphase flow approach”, LONI 
Institute First All-Hands Meeting, Louisiana State University, October 31, 2008 — Baton Rouge, 
Louisiana.  
 

Invited Talks:  
1. Tulane University School of Medicine, Department of Physiology (May 18, 2009). 

Quantitative analysis of leukocyte-endothelial cell interactions in inflammation and 
atherosclerosis. Host: Dewan Majid.  

2. Tulane University, Department of Chemical and Biomolecular Engineering (April 24, 2009). 
Computational modeling of receptor-mediated leukocyte adhesion to surfaces. Host: Noshir 
Pesika.  

3. Tulane University, Applied and Computational Mathematics Seminar (January 23, 2009). 
Biological systems modeling using a multiphase flow approach. Host: Ricardo Cortez.  

4. Southern Methodist University, Department of Mathematics (October 15, 2008). A multiphase 
flow approach to modeling biological systems. Host: Vladimir Ajaev.  

 

External Funding:  
1. National Institutes of Health, National Heart, Lung, and Blood Institute (NIH-NHLBI). Type: 

RC1 (Challenge Grant). Title: Quantitative analysis of monocyte-endothelium interactions in 
atherosclerosis (pending). Role: Principal Investigator. Collaborators: Klaus Ley (LIAI), 
Donald P. Gaver, III (Tulane U.), George A. Truskey (Duke U.).  

2. National Institutes of Health, National Heart, Lung, and Blood Institute (NIH-NHLBI). Type: 
R21. Title: Computational studies of leukocyte dynamics using micro-PIV in collagen 
microchannels (in revision, to be submitted in July 2009). Role: Principal Investigator. Co-I: 
Sergey Shevkoplyas and Donald P. Gaver, III (Tulane U.).  

3. National Science Foundation, Nano and Bio Mechanics program. Title: Thrombus rheology 
via noncontact measurement (in revision). Role: Principal Investigator. Co-PI: R. Glynn Holt 
(Boston U.). 

4. Department of Defense. Title: Laser nucleation and collapse stability for advanced cavitation 
power technology (subcontract, completed). Role: Co-I (PI: R. Glynn Holt). Subcontract 
amount: $395,000 for March-December, 2008. 



Computational free energy studies from molecular simulations 

 

PI: David L. Mobley 

 

Research group: Pavel Klimovich (graduate student), Matthew Hellmers (undergraduate 
student), Christopher Savoie (undergraduate student) 

 

Affiliations: Department of Chemistry, University of New Orleans; LONI  



Free energies govern a huge number of interesting chemical and biological processes. Free 
energies drive biomolecular association and dissociation,  solubility, permeation, and transfer 
between different environments. My research group is particularly interested in understanding, 
predicting, and manipulating these free energies. We develop and apply computational methods 
to predict binding free energies, transfer free energies, and solubilities based on computer 
simulations of the molecules involved. 

Our work on binding free energies between proteins and small-molecule ligands was 
essentially the first work to compute rigorous binding free energies between proteins and small 
molecule ligands, without requiring the bound structure of the protein and ligand as input. Using 
molecular dynamics simulations, we computed binding free energies beginning from the 
unbound protein structure, and predicted ligand binding modes. We successfully tested the 
approach we developed for making blind predictions in a model binding site, and are currently 
applying the approach to other protein binding sites. Ultimately, the methods we are developing 
for studying protein-ligand binding free energies will have application to computational drug 
discovery, biomolecular association generally, and to guide design of new enzymes.  

We also have invested significant effort in predicting small molecule solvation (gas-to-
water transfer) free energies. These are now straightforward to calculate; we recently computed 
them for a set of 504 different small molecules. We also predicted these in several blind tests. 
These solvation free energies are seen as a proxy for the ability of current molecular dynamics 
force fields to accurately describe binding interactions, as removal of a small molecule from 
solvent is an important part of the binding process. We have largely been fairly successful in 
predicting solvation free energies, though failures have also guided us to deficiencies in the force 
field and point the way towards further force field developments. Consequently, this work has 
the potential for large payoffs in diverse areas, from protein-ligand binding, to protein folding 
and protein structure prediction, to understanding surface interactions and properties of 
materials.  

A new focus in the group is predicting solubilities of small molecules – the concentration 
above which a molecule will fail to dissolve in water. This is important in a huge number of 
contexts, from oil extraction (where pipelines can be blocked by solid deposits) to drug 
discovery (where most drugs must dissolve after being taken in pill form). Solubility is simple in 
theory – it is determined by the balance of favorable interactions within a solid form, with 
favorable interactions between the molecule and water. But this is easier said than predicted, and 
computational methods are only just reaching the point where this is becoming a tractable 
problem. Given our expertise in solvation, we have a handle on half of the solubility problem, 
and are now beginning work to handle the solid state. Improved methods for predicting 
solubilities will help guide efforts to control solubility, for example in a drug discovery or 
chemical reaction context.  

Overall, the research has the potential to transform a variety of fields that are currently 
governed by experimental trial and error. Computational methods have so far been unreliable 
enough for these problems that it is typically preferred to simply do the experiment. This 
research will help bring computation to the point where computational results can reliably 
predict experiments, paving the way for computers to guide scientific discovery rather than trial 
and error. Experiment could be used to confirm computational predictions, rather than the 
current approach of merely using computation to help rationalize experimental results.  



This work is heavily dependent on existing Louisiana cyberinfrastructure, in particular the 
Louisiana Optical Network Initiative (LONI). It is tremendously demanding computationally, 
and so high performance computing is key to pushing these models forwards. 

Much of my work is collaborative. I am beginning to develop collaborations with 
experimental groups at Louisiana State University and pharmaceutical companies. I already have 
existing collaborations with an experimental group at the University of California, San Francisco 
(UCSF), and other computational groups at UCSF, Merck, the University of Notre Dame, and 
others.  

I currently supervise a graduate student and two undergraduate students, and will be 
developing and teaching a graduate level course in computational chemistry/molecular modeling 
in Fall 2009.  

 

Publications since joining the University of New Orleans: 

David L. Mobley* and Ken A. Dill, “The binding of small-molecule ligands to proteins: ‘What 
you see’ is not always ‘what you get’, Structure 17(4), 489-498 (2009), 10 pages. * - 
corresponding author.  

D. L. Mobley+, C. I. Bayly, M. D. Cooper, and K. A. Dill. “Predictions of hydration free energies 
from all-atom molecular dynamics simulations”, invited article, Journal of Physical Chemistry B 
113: 4533-4537 (2009), special issue on “Calculation of Aqueous Solvation Energies of Drug-
Like Molecules: A Blind Challenge. 

D. L. Mobley+, C. I. Bayly, M. D. Cooper, M. R. Shirts, and K. A. Dill. "Small molecule 
hydration free energies in explicit solvent: An extensive test of fixed-charge force fields", J. 
Chem. Theory Comput. 5: 350-358, 2009 (DOI 10.1021/ct800409d), 9 pages. One of the top 10 
most downloaded articles in JCTC between March, 2008 and March, 2009. 

Presentations/talks: 

“Lessons learned from predicting binding free energies in model binding sites” and “Quantitative 
predictions of protein-ligand binding affinities”, American Chemical Society Meeting, Salt Lake 
City, UT, March 2009, contributed presentation.  

 “Predictive calculations of absolute binding free energies”, American Chemical Society 
Meeting, August 20, 2008, Philadelphia, PA, invited presentation.  

External funding:  

None received yet. 
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Principal Investigator: 
Christopher M. Taylor 

Assistant Professor 
Department of Computer Science 

University of New Orleans 
 

 
Group Members: 

Jack Torres 
Tulane University Undergraduate 

Mathematics Major, Rising Senior 
Specialization: Analysis of Microbial Diversity 

 
Nathan Simpson 

University of New Orleans Undergraduate 
Computer Science Major, Rising Senior 

Specialization: Analysis of MicroRNA Sequencing Data 



Project Description 
 

Dr. Christopher Taylor is a new assistant professor in the Department of Computer 
Science at the University of New Orleans.  He is a member of the bioinformatics group and has a 
joint appointment at the Research Institute for Children (RIC), part of the Children’s Hospital of 
New Orleans.  RIC provides Dr. Taylor with research support and collaborative opportunities 
with a staff of LSU-HSC faculty performing research at the institute.  Dr. Taylor’s research is 
highly collaborative in nature and he works with a variety of biologist to design algorithms for 
analysis of experimental data.  In particular his group focuses on: 

• Developing Algorithms for Analysis of Genomic Data 

o High-throughput Sequencing Data 
o Genome Tiling Microarray Data 

• Analysis of Human Microbiome Data 
o Classify Diverse Constituents Present in Samples 

o Phylogentic Analysis of Metagenomes 
• Application of GPU Hardware to Sequence Mapping 

o Acceleration of Existing Mapping Algorithms 
o Technology and Application Specific Mapping Algorithms 

High-throughput sequencing and DNA Microarray technologies have transformed the 
landscape of research in biology from the single experiment-single result model to an 
interrogation of the entire genome from a single experiment.  These technologies provide 
researchers with an abundance of data, but also necessitate the development of specialized 
analysis algorithms to process the results.  Many of the emerging technologies are rapidly 
changing and present new computational challenges with each new generation of equipment.  
Our research group collaborates closely with the biologists who perform these experiments to 
develop new algorithms and analysis techniques to tackle these constantly evolving problems. 

One of our ongoing collaborations involves Human DNA replication.  Genome tiling 
microarrays were used to assay DNA replication timing.  The data from these experiments 
provides a very noisy and discrete view of the replication timing.  We developed algorithms to 
reconstruct a continuous profile of the DNA replication timing.  We used this profile to identify 
possible sites of replication origin, investigate correlation with other genomic markers, and to 
design additional biological experiments.  We are currently designing algorithms to analyze 
other aspects of replication activity such as nascent strand DNA, ORC binding sites, and nuclear 
matrix attachment regions.  This collaboration involves researches at the University of Virginia 
and is supported through funding from NIH. 

Another collaboration that is beginning this Summer involves researchers at Tulane 
University and Xavier University.  Supplemental funding from NIH is in place to support the 
work for this collaboration to study the effects of a pair of MicroRNAs transfected into cells.  
High-throughput sequencing technology is being used to interrogate on a genomic scale and we 



are helping to design algorithms to analyze this data.  We wish to investigate the synergy effect 
of MicroRNA targets, and the effect on biological pathways in the cell. 

Our research group is also beginning collaborative work with a microbiologist at RIC 
who is affiliated with LSU-HSC.  We are studying the Human microbiome to assess the affects 
of the diverse colonization of bacteria that lives on and inside of the human body.  This work 
requires development of algorithms to interpret sequencing data and downstream analysis of the 
results.  We are currently in the process of applying for a grant to fund this research. 

Finally, our group is interested in exploring the application of GPU hardware to improve 
the accuracy and speed of mapping new high-throughput sequencing reads to a reference 
genome.  We are in the process of procuring a laptop with GPU hardware to perform initial 
experiments and collect preliminary results for future funding opportunities. 

 

Publications: 
Invited Book Chapters: 

• Neerja Karnani, Christopher M. Taylor and Anindya Dutta.  Microarray Analysis of 
DNA Replication Timing.  Microarray Analysis of the Physical Genome.  Methods in 
Molecular Biology. Vol 556, ISBN: 978-1-60327-191-2, Humana Press. June 16, 2009. 
 

Refereed Journal Articles: 
• Encode Project Consortium. Identification and Analysis of Functional Elements in 1% of 

the Human Genome by the Encode Pilot Project. Nature. 2007 Jun 14;447(7146):799-
816. 
 

• Neerja Karnani, Christopher Taylor, Ankit Malhotra and Anindya Dutta. Pan-S 
Replication Patterns and Chromosomal Domains Defined by Genome-Tiling Arrays of 
Encode Genomic Areas. Genome Research. 2007 Jun;17(6):865-76. 

• Encode Project Consortium. The Encode (ENCyclopedia Of DNA Elements) Project. 
Science. 2004 Oct 22;306(5696):636-40.  

 
Refereed Conference Papers: 

• Anindya Dutta, Neerja Karnani, Ankit Malhotra, Gabriel Robins and Christopher M. 
Taylor.  Extraction of Human DNA Replication Patterns from Discrete Microarray Data. 
Third IAPR International Conference on Pattern Recognition in Bioinformatics (PRIB 
2008), Novotel St Kilda, Melbourne Austrailia, October 2008. 

 
Presentations: 
Conference Talks: 

• Anindya Dutta, Neerja Karnani, Ankit Malhotra, Gabriel Robins and Christopher M. 
Taylor.  Extraction of Human DNA Replication Patterns from Discrete Microarray Data. 



Third IAPR International Conference on Pattern Recognition in Bioinformatics (PRIB 
2008), Novotel St Kilda, Melbourne Austrailia, October 2008. 

 
Posters: 

• Christopher Taylor, Neerja Karnani, and Anindya Dutta.  Analyzing DNA Replication 
Timing in the Human Genome.  Experimental Biology.  Ernest N. Morial Convention 
Center, New Orleans, LA, April 2009. 

 

Invited Talks: 
• Christopher M. Taylor.  Extraction of Human DNA Replication Timing Patterns from 

Discrete Microarray Data.  LONI All-Hands Meeting.  Baton Rouge, LA, October 2008. 
 

Funding: 
• PI: Erik Flemington, coPI: Christopher Taylor, coPI: Dongxiao Zhu, coPI: Kun Zhang.  

Title: Administrative Supplements Providing Summer Research Experiences for Students 
and Science Educators.  Source: National Institutes of Health.  Supplement to Analysis of 
Epstein Barr virus type III latency on cellular miRNA gene expression. Amount: 
$216,386.  Date approved:  May 15, 2009.  Funding Period:  June 01, 2009 to August 31, 
2010. 

• PI: Christopher M. Taylor.  Title: Taylor Summer Salary Professional Service 
Agreement.  Source: Research Institute for Children.  Amount: $36,080.  Date approved:  
March 3, 2009.  Funding Period:  May 17, 2009 to August 15, 2009. 



Developing a High Performance Computational Biology and Material Science Lab at Southern 

University (HPC-BMSL) 

 

Ebrahim Khosravi, Ph.D. Chairman and Professor of Computer Science 

Shuju Bai, Ph.D. Associate Professor of Computer Science 

Rachel Vincent-Finley, Ph.D. LONI Faculty, Assistant Professor of Computer Science 

Shizhong Yang, Ph.D. LONI Institute Computational Scientist 

Kimberlee Lyles LONI Institute Graduate Fellow 

 

 

Research Subproject:   

A novel reduced coordinate space method for molecular dynamic simulations 

Investigator:   

Rachel E. Vincent-Finley, Ph.D., LONI Institute Faculty 

Assistant Professor of Computer Science 

Southern University and A & M College  

Baton Rouge Louisiana 



Today’s challenges in molecular dynamics (MD) include the simulation of protein 
molecules consisting of tens of thousands to millions of atoms over microsecond time intervals. 
Achieving this goal will require state-of-the-art innovative technologies in protein modeling, 
computational methods, high performance computing hardware and software methodology, data 
structures, and computer visualization. 

My research involves the development of methods for performing molecular simulations 
with respect to a reduced coordinate space. Consider a molecule containing n atoms and a 3n 
dimensional (3nD) space defined by a concatenation of the 3D Cartesian coordinates of the 
atoms. Given a standard MD trajectory, a collection of molecular conformations over time, I use 
principal component analysis (PCA) to identify k dominant characteristics of a trajectory and 
then construct a kD representation of the atomic coordinates with respect to these k 
characteristics. Given this new representation of a molecule, I define equations of motion and 
perform simulations. This simulation method allows for the efficient simulation of test molecules 
by reducing the storage and computational requirements of each simulation. 

The essential components of my reduced simulation method include isolating k dominant 
features of an MD trajectory using ARPACK and defining a kD coordinate space; constructing 
an approximation of a potential energy surface based on the defined coordinate space; updating 
coordinates and velocities in the kD space based on the approximate energy surface; and 
analyzing the resulting information with respect to the original 3nD coordinate space. 

One will generally have access to a modest portion of a molecular trajectory, thus a kD 
energy surface approximation should capture essential details of the underlying empirical energy 
surface. My research includes the implementation and analysis of approximation techniques with 
respect to the defined kD space.  I compare my simulations to experimental data, such as data 
obtained from infrared (IR) spectroscopy. The IR spectrum of a molecule shows which 
frequencies of IR radiation are absorbed by the molecule and can be used to identify the 
functional groups in a molecule. This is also information that this reduced simulation method 
seeks to reveal.  With respect to molecular mechanics, the power spectrum reveals the underlying 
frequencies of the molecular processes. Thus the power spectrum provides information about the 
dynamic behavior of atomic interactions and can be compared to experimental data, such as the 
IR spectrum of a molecule. 

The study of protein structure and function is a driving force in research that attempts to 
identify a relationship between the primary structure, or sequence, of a protein and its three 
dimensional structure. Ideally this would allow for inferences about the three-dimensional 
structure of a new sequence given its similarity to a known primary structure. However, care 
must be taken in the evaluation of this information for some proteins are structurally similar, yet 
have a low percentage of matching amino acids. This is attributed to the evolution of (biological) 
sequences which present themselves in the form of insertions, deletions, and substitutions to a 
protein sequence. 

Comparisons of proteins at the primary structure level begin with sequence analysis.  A 
basic problem is to find an optimal alignment between a pair of sequences allowing for gaps.  
Here optimal is measured by minimizing a specified cost function. There are various dynamic 
programming algorithms available to find an optimal alignment. However, when the number of 
sequences to be aligned is greater than 2, straightforward generalization of dynamic 



programming algorithms becomes cumbersome. Specifically, time and memory complexities are 
O(lk) and O(2klk), respectively, where l is the average length of the k aligned sequences. 

This overall project provides opportunities for undergraduate and graduate student 
research across multiple disciplines.   Computer science students in particular will provide a vital 
resource for compiling and analyzing available molecular dynamics simulation and sequence 
alignment data.  Students will then use insight gained from utilizing developed subroutines to 
suggest further research questions and to support the needs of biological scientists.  

Initial work on this subproject in the LONI Institute context began in May 2009 when I 
joined the Computer Science faculty at Southern University of Baton Rouge.  The goal is to 
involve current graduate students in the process of molecular analysis and code development.  
Independent study modules will provide advanced undergraduate students opportunities to 
become involved in various aspects of the project.   
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Computational Modeling of Lung Parenchyma Tethering Small Airways 

 
Hideki Fujioka 
Center for Computational Science 
Tulane University 
 
Donald P. Gaver 
Biomedical Engineering Department 
Tulane University 

 

Project Description 
The delicate structure of the lung epithelium makes it susceptible to surface tension 

induced injury.  In cases of sepsis leading to multi-organ failure, large regions of the lung can fill 
with fluid (become atelectic), eliminating gas-exchange to a significant fraction of the lung.  
Prematurely born neonates are likely to have an immature surfactant system, resulting in elevated 
interfacial surface tension.  As a result, large regions of the lung may remain atelectic or close 
due to interfacial instabilities.   

Patients suffering from acute lung injury (ALI) cannot breathe on their own due to the 
collapse and fluid occlusion of small pulmonary airways.  These patients must be placed on a 
mechanical ventilator in order to survive.  However, the microbubble flows generated during 
ventilation can exacerbate the existing lung injury and the mortality rate for ALI is very high 
(30-40%).  Even for those patients who survive ALI, the tissues of the lung may be damaged due 
to the mechanical environment, which exposes the sensitive epithelium to abnormal physical 
forces that can initiate or exacerbate lung injury.  This may occur with mechanical ventilation, 
leading to ventilator-induced lung injury (VILI). 
 The process of opening collapsed atelectic region involves complex fluid-structure 
interactions that depend on airway geometry, fluid properties and surfactant biophysical 
processes.  Previous computational studies indicate that microbubble or liquid plug flow imparts 
a complex combination of normal and shear stress to the epithelial cells on airway walls.  
Experiments in in vitro systems clearly demonstrate that these flows can impart injurious 
mechanical stresses on airway and alveolar epithelial cells.  Hydrodynamic stresses may also be 
transduced into injurious biological responses including the up-regulation of inflammatory 
pathways and altered surfactant secretion.  

While most models to date have relied on single or small networks of airways, in reality 
pulmonary airways are surrounded by parenchyma that consists of numerous alveoli, all of which 
are connected to distal airways.  Therefore, the dynamics of each airway and alveolus is 
interdependent.  As such, the behavior of one component may affect all others through 
parenchymal tethering.  For this reason, the collapse and reopening process of an airway may 
affect other reopening processes.   

Alveoli occupy the space in the lung with maximal air space.  The truncated-octahedron 
is a space-filling geometry, and relevant for an ideal model alveoli (Fung,YC, J.Appl.Physiol., 
64(5):2132,1988).  We have constructed 3-dimensional computational model of a truncated-
octahedron alveoli referring to the model developed by (Dale, PJ, et al. J.Biomech. 13:865, 



1980).  We will analyze the deformation and stress/strain fields of the alveoli surrounding a tube 
when an external force is applied. 

 
Presentation/talks 
N/A 
External Funding 
N/A 

 

 

 
 
A computational investigation of surfactant transport during pulsatile airway reopening 
 
Jerina E. Pillert 
Biomedical Engineering Department 
Tulane University 
 
Hideki Fujioka 
Center for Computational Science 
Tulane University 
 
David Halpern 
Department of Mathematics 
University of Alabama 
 
Donald P. Gaver 
Biomedical Engineering Department 
Tulane University 
 
Project Description 

The mechanics of pulmonary airway reopening directly depend upon the efficacy of 
surfactant transport and adsorption to the continuously expanding and collapsing air-liquid 
interface.  In disease states such respiratory distress syndrome (RDS) and acute respiratory 
distress syndrome (ARDS), occluded airways undergoing mechanical ventilation are exposed to 
a damaging normal-stress gradient that sweeps across the epithelial cell layer as the finger of air 
progress into the fluid occlusion.  While it is known that this injury can be mediated by the 
continuous transport and adsorption of surfactants to the air-liquid interface, the dynamics 
between the fluid mechanics and surfactant sorption have yet to be fully understood.  Since our 
prior experiments (Biophysical Journal 2008 Vol. 96) have shown that pulsatile flow enhances 
surfactant transport, our aim with this current study is to identify ventilation waveform 
parameters that optimize transport.  To complete this investigation, we will computationally 

Figure 1: A Truncated-
Octahedron Alveoli Model 

Figure 2: Alveolus 
Surrounding a Tube. 



simulate the transport and adsorption of surfactant surrounding a semi-infinite bubble that 
propagates through an occluded airway.  Our computational domain consists of the fluid region 
ahead of and surrounding a semi-infinite finger of air.  We will utilize the boundary element and 
finite volume methods to assess the transport of surfactant and the effect of the adsorbed 
surfactant on interfacial shape and its influence on the mechanical stress field; particularly the 
normal-stress gradient that can damage epithelial cells in ventilator-induced lung injury (VILI). 

 Jerina Pillet, a graduate student at Biomedical Engineering Department at Tulane 
University is working on this project.  Hideki Fujioka helps her to develop the finite volume 
numerical code to solve the surfactant transport equations coupled with the boundary element 
CFD code.  Currently, she is working on programming with the Fortran code that solves the 
convective diffusion equations on the air-liquid interface and the bulk liquid. 
 

Presentation/talks 
N/A 

External Funding 
NIH RO1 – HL81266 
 
 
Computational Modeling of Fluid Dynamics and Transport in Microfluidic Mixing Devices 
 
Katharine L. Hamlington 
Biomedical Engineering Department 
Tulane University 
 
Hideki Fujioka 
Center for Computational Science 
Tulane University 
 
Yuen-Yick Kwan 
Center for Computational Science 
Tulane University 
 
Ricardo Cortez 
Center for Computational Science 
Tulane University 
 
Donald P. Gaver 
Biomedical Engineering Department 
Tulane University 
 
 
Project Description 

Our goal is to determine the optimal geometric configuration of a passive microfluidic-
mixing chamber to enhance the reactions of an analyte-antibody biosensing system.  Convective 



mixing is difficult at low Reynolds numbers that are characteristic of the microscale, typically 
requiring long length- and time-scales to allow molecular diffusion between laminar streams.  
Improving transport and mixing will facilitate the creation of portable inexpensive sensing 
devices that rapidly detect harmful biological or chemical agents.  Passive mixing reliant only on 
pressure-driven flow through fixed geometries will reduce the complexity of the immunosensor 
device. 

The Stokes equations are solved using the boundary element method to obtain the 
velocity field within the complex domains.  Transport of analyte and antibody is computed with 
a grid-free particle strength exchange method.  Our methods allow optimization of the chamber 
design through mathematical quantification of mixing, thus reducing the number of devices that 
must be fabricated for time-consuming experimental trials. 
 Katharine Hamlington, a graduate student at Biomedical Engineering Department at 
Tulane University is working on this project.  Hideki Fujioka helps to parallelize her boundary 
element code.  The code is written in Fortran90. MPI (Message Passing Interface) libraries are 
used for the parallelization.  ScaLAPACK is used to solve a linear system.  The code is able to 
run on the LONI linux clusters with multiple nodes.   

Hideki Fujioka also developed the BEM Surface Builder, a GUI tool to design surface 
geometries for the boundary element CFD code.  Users can design geometries, set the boundary 
conditions, and export a set of files to run the CFD code.  It can import SVG drawing data 
created by other software such as Adobe Illustrator.  Objective-C and Cocoa (Open Step) 
libraries were used to make an object-oriented code that allows to add functions easily and to 
provide the GUI interface on the Apple computers. 

 
Presentation/talks 
N/A 
 

External Funding 
NSF EPS-0701491. 
 
 
Infrastructure for Accurate and Efficient Binding Affinity Calculations 
 
David Mobley  
Chemistry Department 
University of New Orleans 
 
Steve Rick  
Chemistry Department 
University of New Orleans 
 
Shantenu Jha  
Department of Computer Science 



Louisiana State University 
 
Hideki Fujioka  
Center for Computational Science 
Tulane University 
 
Project Description 

Accurate, reliable simulation-based tools for affinity predictions would transform the 
process of pharmaceutical drug discovery and enable new kinds of science.  Recently, a tool 
called alchemical free energy calculations has shown considerable promise for predicting 
binding free energies from simulations.  Several studies suggest these calculations could now be 
useful in practice in drug discovery and other applications, but for the difficulty of setting them 
up. 

This project is to develop a pipeline to set up molecular dynamics simulations and 
associated alchemical free energy calculations, which will make it possible for these calculations 
to be more routine, and done with less expert intervention.  This project involves three 
institutions in Louisiana State.  The principal and co- investigators are David Mobley and Steve 
Rick at the University of New Orleans, and Shantenu Jha at Louisiana State University, and the 
LI Computational Scientist Hideki Fujioka at Tulane University, who helps to program computer 
codes. 

The pipeline is developing by pursuing the following steps; Modify ‘mmtools’ package to 
expand existing protein tools to allow user interventions such as specifying protonation states for 
selected residues (while assigning the rest automatically by ‘mcce’, http://134.74.90.158/); 
Interface ligand building/protonation tools with protein/nucleic acid setup tools, to allow easy 
setup of structures and parameter files for structures, together with ligands, including assigning 
all hydrogens and building in missing loops; Expand the protein/molecular setup tools to be able 
to handle nucleic acids as easily as possible; Once the basic functionality is in place, extend these 
tools to set up MD simulations/free energy calculations which will utilize SAGA ("A Simple 
API for Grid Applications") on LONI computational resources; Test and Deploy on LONI 
machines, for greater throughput and resource utilization. This stage will involve test/model 
calculations of thermodynamic properties such as binding free energies or hydration free 
energies; Finish research leading to and writing of one or more papers describing the technology 
development and/or science conducted during the course of this project.  

This project has started April 2009.  As of June 12th 2009, we are working on developing 
“interface ligand building/protonation tools”. 
 

Presentation/talks 
N/A 

 
External Funding 
N/A 
 



Automated Data Archiving with PetaShare 
 
Tevfik Kosar  
Department of Computer Science 
Louisiana State University  
 
Gabrielle Allen  
Department of Computer Science 
(Louisiana State University  
 
Sumeet Dua  
Department of Computer Science 
Louisiana Tech University 
 
Frank Loeffler  
Center for Computation & Technology 
Louisiana State University  
 
Erik Schnetter 
Center for Computation & Technology 
Louisiana State University  
 
Hideki Fujioka  
Center for Computational Science 
Tulane University 
 
 
Project Description 
The NSF MRI PetaShare project has provided distributed storage across LONI, and is 
developing data management tools in collaboration with a wide range of application groups in 
the state.  The basic hardware infrastructure has been deployed, and Kosar's research group has 
developed a first release of tools.   

Data is the biggest current challenge in cyberinfrastructure and computational science.  With the 
PetaShare project, and it close ties to state applications, Louisiana has a chance to make a big 
impact.  This project would have the important consequence of providing automated mechanisms 
for any application using LONI to archive simulation data both individually or a collaborative 
group.  The strategic implication of this is that we will be able to start building up data archives 
in the state which will serve as application drivers for a range of further projects e.g. in data 
mining, information science, visualization, etc. 
Hideki Fujioka helps PetaShare users at Tulane University site.  Currently, Tom Bishop at 
Tulane University uses ‘pcommand’ installed his local linux machine, the linux cluster at the 
center for computational science at Tulane University and LONI linux clusters.  He uses a batch 
script to copy a set of initial configuration data from PetaShare files system to a working disk 
space at the computing server, and copy back the results to the PetaShare after simulations finish.  



The scripts are submitted to PBS queuing system so that all the procedures are done 
automatically. 

 
Presentation/talks 
N/A 
 

External Funding 
N/A 



Raju Gottumukkala, Ph.D. 
 NIMSAT Institute, University of Louisiana at Lafayette 

 
I. Research Description 
 

Dr. Raju Gottumukkala is a LONI Computational Scientist at the National Incident Management 
Systems and Advanced Technologies (NIMSAT) Institute at the University of Louisiana at 
Lafayette. Raju’s primary research interest is in the application of cyberinfrastructure, advanced 
information technologies and applied mathematics to improve disaster response. NIMSAT 
Institute is a recently established homeland security and emergency management research 
facility established at the University of Louisiana at Lafayette.  

The NIMSAT institute works closely with several state and national agencies including the 
Governor’s Office of Homeland Security and Emergency Preparedness (GOHSEP) for the state 
of Louisiana, Department of Natural Resources (DNR), Department of Homeland Security 
(DHS), FEMA and local emergency management officials in improving the disaster response 
with advanced information technologies. The primary areas of focus of NIMSAT include 
cyberinfrastructure enabled tools for disaster management, Critical Infrastructure and Key 
Resources (CIKR), and Geospatial decision support and resource and information management. 
Raju currently leads various research and development efforts at the NIMSAT Institute 
specifically on developing a cyberinfrastructure platform for disaster management and geospatial 
decision support systems. During hurricanes Gustav and Ike, Raju has helped with providing 
research and information technology solutions for various response activities of GOHSEP and is 
involved in preparedness for this year’s hurricane season. Raju is also collaborating with various 
other faculties and guides students at University of Louisiana at Lafayette in various High 
Performance Computing (HPC) research projects. 

 
II. Projects 

 
1. Parallel-GIS: A High Performance Geospatial Analysis 

 
People Involved 
Dr. Raju Gottumukkala, LONI Computational Scientist, UL Lafayette 
Dr. Ramesh Kolluru, Executive Director, NIMSAT Institute, UL, Lafayette 

Dr. Geoffrey Stewart, Assistant Professor, Moody school of Business, UL, Lafayette 
Dr. Baker Kearfott, Associate Professor, Applied Mathematics Department, UL Lafayette 

Mr. Christopher Mire, Research Associate, NIMSAT Institute, UL Lafayette 
Mr. Haochun Zhang, PhD Student, Applied Mathematics Department, UL Lafayette 

 
Project Description 



Geographical Information Systems (GIS) is a major decision support tool that is used in every 
phase of emergency management. While current GIS products like ESRI’s ArcMap and Google 
Earth provide intuitive interfaces for emergency managers to visualize and tools to analyze 
spatial data, the increasing growth in size and complexity of spatiotemporal data with the 
availability of high resolution satellite imagery, real-time situational monitoring tools, and the 
demand for effective response for a given situation requires a scalable and reliable computational 
platform to run the spatiotemporal analysis and simulations. 
 

 
 

This project would design and develop a scalable and reliable cyberinfrastructure framework for 
computationally intensive spatiotemporal analysis and decision support applications by 
leveraging the high-speed networks, distributed supercomputers and distributed supercomputing 
platform and tools on LONI and LITE. As a part of this project, we configured and installed 
Geographic Resource Analysis Support System (GRASS), open source geospatial analysis 
software to run on LONI Dell systems and parallelized various modules of GRASS for various 
applications. (1) POD (Points of Distributions) are temporary locations for distributing donations 
of food, water, ice, tarps and other supplies to people in need during emergencies. Setting up a 
POD is a multifaceted problem involving multiple priorities or objectives in terms of serving the 
people in demand, allocating POD’s in close proximity to people while not affecting the local 
business recovery. The POD tool provides a GIS based interface and the computationally 
intensive spatial location analysis algorithm is an MPI algorithm that runs on LONI. This 
location analysis algorithm takes less than a minute versus several hours on a typical desktop 
system. (2) Another application that uses the GRASS GIS on LONI is the Critical Infrastructure 
Analysis and a Key Resources (CIKR) analysis algorithm that uses a network flow based 



interdependency analysis on the nation’s natural gas pipeline network and natural gas processing 
facilities to identify the critical interdependencies between various facilities.  

 
2. Reliability Analysis and Resource Management in Parallel Computing Systems 

People Involved 
Dr. Raju Gottumukkala, LONI Computational Scientist, UL Lafayette 
Dr. Box Leangsuksun, Associate Professor, Louisiana Tech University 

Reliability and fault-tolerance of large-scale parallel applications is increasingly becoming 
important because of the growing number of hardware and software components in cluster and 
grid frameworks. Accurate reliability estimation improves the resource management in large-
scale HPC systems and enables users and resource managers to select the appropriate level of 
fault tolerance for a parallel application and improves the Quality Of Service (QOS) for HPC 
users. 

Dr. Raju Gottumukkala and Dr. Box Leangsuksun have been working on improving the 
reliability prediction models for applications running on High Performance Computing systems 
and developing reliability aware resource management algorithms to minimize the performance 
loss due to failures. This research is a part of the Modular Linux and Adaptive Runtime Support 
for High-end Computing Operating and runtime Systems (MOLAR), a multi-institution 
collaborative effort to provide an adaptive, reliable and efficient operating and runtime system 
solutions for ultra-scale high-end scientific computing on next generation supercomputing 
systems. This research has improved the reliability predictions models and reliability aware 
resource management algorithms for HPC systems.  

 
3.  Spatial Modeling of the Invasive Nutria Population 
People Involved 
Dr. Azmy S Ackleh, Professor, Applied Mathematics, UL Lafayette 
Dr. Raju Gottumukkala, LONI Computational Scientist, UL Lafayette 

Mr. Jay Monte, Masters student, Applied Mathematics, UL Lafayette 
Mr. Jessie Castille, PhD student, Applied Mathematics, UL Lafayette 

  
Project Description 
This project uses LONI systems to improve the performance of a Nutria population dynamics 
and movement pattern simulator in order to study the Nutria’s effect on the loss of Marsh lands 
in the Gulf of Mexico. This project was in collaboration with researchers from the USGS 
Wetlands Research Center. Raju has been working with Dr. Ackleh’s research group for 
developing parallel algorithms and visualization techniques on LONI for the simulator. 
 

The Nutria population dynamics and movement pattern is modeled using differential equations 
and would take several hours to days to run the simulation for a small patch of land. This LI-
project would parallelize the Nutria population simulator using MPI on LONI systems. With the 



LI-Scientists assistance, the initial version of the simulator code performed 3.6 faster than the 
sequential version. The next phase of the project would further improve the simulator 
performance, identify ways to visualize the simulation results and parallelize various other 
modules of the simulator. 

 
Most Recent Publications: 

1. D. S. Katz, G. Allen, R. Cortez, C. Cruz-Neira, R. Gottumukkala, Z. D. Greenwood, L. 
Guice, S. Jha, R. Kolluru, T. Kosar, L. Leger, H. Liu, C. McMahon, J. Nabrzyski, B. 
Rodriguez-Milla, E. Seidel, G. Speyrer, M. Stubblefield, B. Voss, and S. Whittenburg, 
"Louisiana: A Model for Advancing Regional e-Research through Cyberinfrastructure," 
Philosophical Transactions of the Royal Society A, v. 367, pp. 2459-2469, 2009. 

2. Gottumukkala, N. R., R. Nassar, C.B. Leangsuksun, M. Paun. “Reliability of a system of 
k nodes for high performance computing applications”. To appear in the December 2009 
issue of the The IEEE Transactions on Reliability. 
 

Most Recent Workshops/Presentations: 
1. N. Raju Gottumukkala, Box Leangsuksun, Raja Nassar, Mihaela Paun, Dileep Sule, 

“Reliability Aware Optimal-K Node allocation of parallel applications in large scale HPC 
systems”, High Availability and Performance Computing Workshop (HAPCW 2008), 
Denver, Colorado. 

2. Raju Gottumukkala, Ramesh Kolluru, “Improving Disaster Response: NIMSAT”, The 
2009 gulf Coast Marine Conference 

3. Raju Gottumukkala, Rusti Liner, “GIS Projects at NIMSAT Institute” The 25th Annual 
Remote Sensing and GIS Workshop, April 14-16 2009, Louisiana  

 
External Funding: 

1. Department of Natural Resources, “Intelligent Flood Protection Monitoring, Warning and 
Response System”, Under Review,  2,891,000 (347K subcontract as Partner Institute) 

 
Outreach Activities: 

1. Mentoring the following students at UL, Lafayette in various LONI/ HPC Projects: 
a. Haochun Zhang, PhD Student, Department of Applied Mathematics,  University 

of Louisiana at Lafayette 
b. Jessie Castille, PhD student, Department of Applied Mathematics, University of 

Louisiana at Lafayette 
c. Jay Monte, Master’s student, Department of Applied Mathematics, University of 

Louisiana at Lafayette 
2. Organized the LONI Workshop at University of Louisiana at Lafayette for 2008-2009 

and gave an introductory presentation on using the TeraGrid. 
 



2008 — 2009 Annual Report from Dr. Shizhong Yang 

 

 

BioInformatics and Computational Material Research at Southern University 

Faculty:  

Shizhong Yang 

Ebrahim S. Khosravi, Shuju Bai, Rachel Vincent-Finley, and Nigel Gwee 

Graduate Student:  

Kimberlee Lyles, Kiante Roberson, Charles Shropshire, Sadque Mohammed, Houman Kamran, 
Swetha Bodla, Murali K. Gangineni, Christopher Clayton 

Undergraduate: 

 Laura Hurst, Christina Bias 

Computer Science Department, Southern University 

 

 

 

 

 

 

 

 

 

 

 

 



2. Project Description 

(1). gK and UL20 Protein Structure and Protein-Protein Interaction (Senior Researcher) 

Understanding the interaction and structures of gK and UL20 could greatly facilitate predicting 
functional domains of each protein that may be involved in multiple functions through the virus 
lifecycle. In this project, Dr. Shuju Bai, the graduate student Kimberlee Lyles, Dr. E. Khosravi 
and Dr. Yang are collaborating with Dr. G. Kousoulas group at LSU School of Veterinary 
Medicine, using related computational tools to predict the gK and UL20 protein-protein and 
Nano-particle/Membrane Interactions. This is a two year $50,000.00 /yr LBRN project. Dr. Bai 
is the principal investigator and Dr. Khosravi and Dr. Kousoulas are the mentors.  

 

Viruses gK, UL 20 and membrane 

(2). A Study on New Highly Reflective Thermal Barrier Coatings (Co-PI) 

Thermal barrier coatings (TBCs) are used in the hot section of rocket engines and jet engines to 
safeguard the engines under extreme working temperature, ~1600ºC. In this project, Southern 
researcher, Dr. Yang and group members is doing computer simulation on ZrO2/Al2O3 interface, 
while Dr. Guo's research group at LSU is doing plasma spray experiment in collaborate with 
NASA scientists. This project was funded by NASA EPSCoR – BoR for one year with total 
budget $61125.00 /yr (Southern was allotted $22250.00).  

 

Al2O3/ZrO2 interface (TBC materials) 

 

(3). Ab Initio and Experimental Study of A Novel Nano Ceramic Thermal Barrier Material (PI) 



This is a NASA-BoR supported one year $29,905 project that combined theoretical modeling 
with experimental design and aiming to develop an efficient thermal barrier coating material. 
This project was started from May 2009. 

(4). SU related proposal support (new methods, materials and algorithms developing). 

Dr. Yang collaborated with SU CEES and grant office submitted several proposals doing 
research in high performance computing, data processing and visualization to NSF, NASA etc. 
as a Co-PI. (Details will be listed in part 5.) 

(5). SU LONI internal project support. (Co-PI) 

SU Computer Science proposed and was approved 4 projects at the end of 2009. They are 
reported separately.  

 

3. Publications: 

 (1). Shizhong Yang, S.M.  Guo, Guang-Lin Zhao, and Ebrahim Khosravi, “ High infrared 
reflective nickel doped ZrO2 from first principles simulation”, ICCS May 2009. (international 
conference  paper) 
 
(2). (peer-reviewed and was accepted to be published): “Doped C60 study from first principles 
simulation”, New3SC- 7, (Seventh International Conference on New Theories, Discoveries and 
Applications of Superconductors and Related Materials), Beijing, May 2009. 
 
(3). Wendong Wang, Zhenjun Wang, Jinke Tang, Shizhong Yang, Hua Jin, Guang-Lin Zhao, and 
Qiang Li, “ Seebeck coefficient and thermal conductivity in doped C60”, Journal of       
Renewable and Sustainable Energy, vol. 1, issue 2, 23104, page1~8 (2009); 
 
(4). G.L. Zhao, S. Yang, D. Bagayoko, J. Tang and Z.J. Wang, “ Electronic structure of C60 
semiconductors under controlled doping with B, N, and Co atoms”, Diamond & Related 
Materials, vol. 17, page749~752 (2008). 
 

4. Presentations/Talks: 

(1). Presentation at 2009 LAS 83rd annual conference: “First principles molecular dynamics 
simulation of nano gold adsorption on (0001) surface of Ruthenium”, Shizhong Yang, Shuju Bai, 
Ebrahim Khosravi, and Guang-Lin Zhao. 
 
 (2). Invited talk: “Doped C60 study from first principles simulation”, New3SC- 7, (Seventh 
International Conference on New Theories, Discoveries and Applications of Superconductors 
and Related Materials), Beijing, 2009. 
 



5. External funding: 

(1). Funded/approved: 

Part 2. (1) ~ (3) and (5). 

(2). Pending: 

a.  NASA pending  “Novel Nano-Structured Thermal Barrier Coatings” Co-PI;  
b.  NSF pending  “Nano Ceramic Thermal Barrier Material: Design and Fabrication” Co-PI; 
c.  NSF pending  “Predictive Quantum Computation and Design of the Catalysts for Green 
Energy Applications” Co-PI; 
d.  NSF pending  “Minority Serving Institutions Solar Energy Research Consortium” Co-PI; 
e.  NSF pending  “Sensor Arrays and the Interpretation of Multi-scale Data Sets” Co-PI. 
 

6. Summary: 

Dr. Yang is working on three research areas: BioInformatics, Computational Material 
Simulation, and High Performance Computing Methods. 

Besides SU faculty, I collaborated with the following faculty in the past academic year: Dr. Gus 
Kousoulas (LSU Vet School), Dr. Newcomer(LSU Biology), Dr. S. M. Guo(LSU Mechanical 
Engineering), Dr. Kun Lian (LSU CAMD), Dr. John Wefel(LSU Physics), Dr. Jinke Tang (U. of 
Wyoming Physics), Bingqing Wei(U. of Delaware ME). 

I also organized the 2009 first LONI workshop which is sponsored by CS Deportment. More 
than 30 people attended the whole workshop. More than 50 students There 7 faculty and 2 
graduate students running jobs on the LONI supercomputers. I am the default SU TeraGrid SU 
Campus Champion helping SU TeraGrid user to solve the related research issues.  

All of my current research needs to use LONI and TeraGrid machines. 

I visited Oak Ridge National Lab together with other 11 SU faculty. I also joined a TeraGrid 
workshop at UIUC and had close contact with other researchers in my research area. 

My current research will support SU Computer Science, Mechanical Engineering, Physics 
Department, SU CEES center’s funded/proposed projects. I hired and trained three graduate 
students working on my funded projects. They have gained skills to run jobs on LONI machines. 
The students working in my projects are: (1). Kiante Roberson:  graduate student (1st  semester), 
Computer Science Department, minornity(black);  (2). Sadque Ali Mohammed: graduate student 
(2nd year), Computer Science Department International (India); (3). Charles alphonce shropshire: 
graduate student (1st semester), Computer Science Department, minornity (black); (4). Kimberlee 
Lyles:  graduate student (1st semester), Computer Science Department, minornity(black). 



Title: LI Computational Scientist 
 
Name: Zhiyu Zhao 
 
Institutional Affiliation: Department of Computer Science, College of Sciences, 
University of New Orleans 
 
Roles and Specializations: Please see Project Description 
 
Research Fields: bioinformatics algorithms (protein structure comparison, genome 
sequence comparison, haplotype reconstruction, gene expression data analysis, 
etc.); parallel and distributed algorithms 
 



 

Project Description 
 
1. A Parallel Protein Structure Alignment Tool and a Shared Feature 
Database for Structures in the Protein Data Bank 
Role: PI 
Collaborator: Dr. Christopher Summa, Department of Computer Science, University of New 
Orleans 
Graduate Student: TBD 

Description: 
The research of proteomics has many biological applications. Proteomics research topics 

are usually related to protein sequences and structures. While both have close relationship with 
proteins’ biological functions, structures reveal more evolutionary information than sequences 
do, since the structure of a protein changes more slowly in evolution than does its sequence. 
Also, researchers frequently find that proteins with low sequential similarity are structurally 
homogenous. Therefore it is particularly important to discover the structural similarity / 
dissimilarity among different proteins. The research of protein 3D structure similarity provides 
fundamental and very helpful tools for many biological research topics. 

Result from protein structure determination techniques, the number of proteins 
discovered by biologists has increased dramatically over the last 30 years. The rapid growth of 
the Protein Data Bank (PDB) necessitates the development of efficient and accurate protein 
structure comparison and searching algorithms and automatic software tools. 

We have developed a Self-Learning and Improving pairwise Protein Structure Alignment 
(SLIPSA) algorithm. SLIPSA is a feedback algorithm for protein structure alignment that uses a 
series of phases to improve the global alignment between two protein backbones. Based on a 
large set of proteins collected from various publications for diverse testing purposes, we have 
compared our algorithm with three other commonly used methods: CE, DALI and SSM. The 
results show that in most cases our algorithm is more accurate than those well-known methods 
that have been tested. 

The SLIPSA algorithm is implemented with MATLAB and we have developed a web 
portal based on it (see http://fpsa.cs.panam.edu/). Due to the large size of the PDB and high 
complexity of current protein structure alignment algorithms, an alignment can be very time-
consuming and computation capability of machines greatly affects alignment performance in 
terms of both speed and accuracy. Since our current tool is just a proof-of-concept system written 
with MATLAB, there is a lot of space to improve its speed performance by (1) rewriting the 
code with C/C++, (2) taking advantage of parallel and distributed computation power of high 
performance computational resources, and (3) design an efficient protein database to store as 
much as possible offline information to reduce the execution time used by repetitively retrieving 
and calculating information from original protein data files. 



We are migrating our MATLAB code onto the LONI and TeraGrid by completing the 
following tasks: (1) rewrite all the code with serial C++ (to be completed in June 09), (2) use 
OpenMP or p-thread to implement a parallel version of the code, and (3) based on the parallel 
version, use MPI to implement a parallel and distributed version and deploy the code on Queen 
Bee. In the fall 09 we will also start working on the following tasks: (4) develop a protein feature 
database for proteins in the PDB and deploy it on Queen Bee, (5) use LONI's PetaShare data 
storage and management tools to provide a shared directory for protein files that we have 
downloaded from the PDB repository, and (6) develop a protein file and database updating 
program to synchronize our database and protein files with those in the PDB repository. The 
database will hold protein features, both sequential and structural, for proteomics related research 
topics. The database and all the downloaded PDB files will be shared and updated regularly so 
that LONI and TeraGrid users will have free access to it. The protein features in the database will 
be expanded upon future requests from world-wide research groups and scientific application 
developers in need of a comprehensive and efficient protein feature database. 

We have applied for and been awarded grant by the TeraGrid Pathways Fellowship 
Program to support a graduate student of Dr. Summa for the fall semester to work on this project, 
which is likely to become the student's graduate thesis project. Drs. Summa and Zhao will be 
jointly supervising the student. 

 

2. Predicting Proteins in SCOP Classification via Alignment and Threading 
Role: Co-PI 

Collaborator: Dr. Bin Fu, Department of Computer Science, University of Texas-Pan American 
Graduate Students: TBD 

Description: 
A protein's function is closely linked to its 3D structure. As an increasing number of 

protein structures become known, the demand for algorithms to analyze 3D conformational 
structure increases as well. With the exponential growth in the number of newly-discovered 
protein structures, the view of the protein universe is constantly changing. In order to understand 
the functions of proteins and their relationships to each other, the classification of proteins 
should be updated frequently. The Structural Classification of Proteins (SCOP) database is built 
by labor-intensive visual inspection. On the other hand, automated classification schemes have 
the advantage that the view of the protein universe can be updated frequently to include newly-
discovered protein structures in a timely manner. 

Protein classification in the SCOP will be predicted by using 3D comparison for known 
3D structures and protein threading model for known sequences with unknown 3D structures. In 
order to deal with the challenging computational problem in protein 3D prediction, we plan to 
develop a more efficient separator theory which will further improve our recently developed 
width bounded separator theory. It will be suitable for deriving algorithms for the protein 
threading problem, which is NP-hard. 

The planned research work is expected to make fundamental contributions to the existing 
research in the field of 3D structure of proteins, while the implementations will demonstrate the 
practical benefits of the proposed work. Our existing web server will be improved to provide 



more matured protein SCOP prediction service to the Bioinformatics community. Education will 
be an important part of this project. This research will bring both fundamental theoretical 
problem and software system development. They will be suitable for training both undergraduate 
and graduate students at multiple levels. 

Drs. Fu and Zhao are working on this project by developing efficient computational 
models and algorithms to solve the proposed problems, and we have submitted a project proposal 
to the NIH to request support for this research. If the proposal is approved, we will provide 
financial support to and supervise graduate and undergraduate students to develop the proposed 
software system. Dr. Zhao will also be responsible for the parallel and distributed 
implementation of the software by taking advantage of the HPC resources on the LONI.  

 

Publications (07/01/08 - 06/31/09) 
 

1. Zaixin Lu, Zhiyu Zhao, Sergio Garcia, Krishnakumar Krishnaswamy, and Bin Fu, “Search 
Similar Protein Structures with Classification, Sequence and 3-D Alignments”, to appear in the 
Journal of Bioinformatics and Computational Biology. 
 

2. Huimin Chen and Zhiyu Zhao, “An Information Theoretic Viewpoint on Haplotype 
Reconstruction from SNP Fragments”, to appear in the 3rd International Conference on 
Bioinformatics and Biomedical Engineering (iCBBE 2009, China). 
 

3. Zaixin Lu, Zhiyu Zhao, Sergio Garcia, and Bin Fu, “New algorithm and web server for finding 
proteins with similar 3d structures”, in the Proceedings of the 2008 International Conference on 
Bioinformatics & Computational Biology (BIOCOMP'08, USA), pp. 674 - 680. 
 

Presentations / Talks (07/01/08 - 06/30/09) 
 
1. 04/14/09: Zhiyu Zhao (author & presenter), “Intermediate 
MATLABhttp://www.hpc.lsu.edu/training/tutorials/presentations/Intro-MATLAB-0309.pdf”, 
Stanley Thomas Hall, Tulane University; An invited tutorial session of the LONI HPC 
Workshop, Spring 09, hosted by the Tulane University and open to all the LI research 
community, see http://www.hpc.lsu.edu//training/20090413/index.php.   

 
2. 03/16/09: Zhiyu Zhao (author & presenter), “Introduction to LAPACK”, Liberal Arts 
Building, UNO; A tutorial session of the LONI HPC Training, Spring 09, open to all the LI 
research community via UNO’s Access Grid facilities, see 
http://www.hpc.lsu.edu/training/tutorials/index.php#spring09lapack. 
 



3. 03/02/09: Zhiyu Zhao (author & presenter), “Introduction to MATLAB”, Liberal Arts 
Building, UNO; A tutorial session of the LONI HPC Training, Spring 09, open to all the LI 
research community via UNO’s Access Grid facilities, see 
http://www.hpc.lsu.edu/training/tutorials/index.php#spring09matlab. 

 
4. 02/06/09: Zhiyu Zhao (author & presenter), “Introduction to the Supercomputing Resources at 
LONI & TeraGrid”, Math Building, UNO; A presentation open to all the UNO research 
community as required by the chair of the Department of Computer Science, see 
http://www.cs.uno.edu/special/seminars.xml#Introduction%20to%20Supercomputing%20Resour
ces%20at%20LONI%20and%20TeraGrid and 
http://www.cs.uno.edu/~sylvia/LONI&TeraGrid.pdf.  
 

5. 01/29/09: Zhiyu Zhao (author & presenter), “Protein 3D Structure Alignment and Searching 
for Similar Structures in the Protein Data Bank”, Engineering Building, UNO; A seminar talk 
invited by the Department of Electrical Engineering, UNO and open to all the EE faculty/staff 
and students, see http://www.cs.uno.edu/~sylvia/ProteinStructure.pdf.  

 
6. 11/21/08: Zhiyu Zhao (author & presenter), “Feedback Algorithm and Web-Server for Protein 
Structure Alignment”, CERM Building, UNO; A seminar talk invited by the Department of 
Computer Science and open to all the CS faculty/staff and students, see 
http://www.cs.uno.edu/special/seminars.xml#Feedback%20Algorithm%20and%20Web-
Server%20for%20Protein%20Structure%20Alignment and 
http://www.cs.uno.edu/~sylvia/SLIPSA.pdf.  
 

7. 10/31/2008: Scott Whittenburg (author) and Zhiyu Zhao (author & presenter), “Computational 
Research at UNO”, LSU Union, LSU; A presentation required by Dr. Whittenburg (vice 
chancellor of research at UNO) and open to all attendees of the LI All Hands Meeting ’08, see 
http://institute.loni.org/FirstAllHandsMeeting.php.  

 
8. 10/28/08: Zhiyu Zhao (author & presenter), “Research on Protein 3-D Structure and Genome 
Sequence Related Problems”, Liberal Arts Building, UNO; A talk invited by the Director of the 
University Honors Program and open to all the UNO honors students of fall 08, see 
http://www.cs.uno.edu/~sylvia/Protein&Genome.pdf.  
 

9. 10/02/08: Zhiyu Zhao (author & presenter), “Linear Time Probabilistic Algorithms for the 
Singular Haplotype Reconstruction Problem from SNP Fragments”, Engineering Building, 
UNO; A seminar talk invited by the Department of Electrical Engineering, UNO and open to all 
the EE faculty/staff and students, see http://www.cs.uno.edu/~sylvia/HapRec.pdf.  

 

External Funding (07/01/08 - 06/30/09) 



 

1. The TeraGrid Pathways Fellowship Program. 
A project proposal entitled “A Parallel Protein Structure Alignment Tool and a Shared Feature 
Database for Structures in the Protein Data Bank” was submitted in Feb 09 and approved in Mar 
09. Awarded $6,075 to support a student at UNO in the fall 09 semester to develop a parallel 
protein structure alignment program and a protein feature database under the supervision of the 
PI (Dr. Zhao), and $2,000 if the PI is going to attend the TeraGrid ’09 conference in June (Note: 
the PI will not be able to attend the conference due to her anticipated baby delivery in June). 

 

2. Innovations in Biomedical Computational Science and Technology (R01), 
NIH PAR-07-344. 
A project proposal entitled “Predicting Proteins in SCOP Classification via Alignment and 
Threading” was submitted in Feb 09. $431,720.00 total direct and indirect costs were proposed 
for the entire project period of three years ($245,720 on Dr. Fu’s part and $186,000 on Dr. 
Zhao’s part to support the proposed research and the study of three graduate students (two at 
UTPA and one at UNO)). 
 

 

 

 

 

 

 



Appendix C 

LI Projects with Updates 



Project 1. Infrastructure for Accurate and Efficient Binding Affinity 
Calculations 

David Mobley (UNO), Steve Rick (UNO), Shantenu Jha (LSU) 

 Our goal is methods for predicting binding strengths, or binding free energies, between 
biomolecules. Accurate, reliable simulation-based tools for affinity predictions would transform 
the process of pharmaceutical drug discovery and enable new kinds of science. 

 Recently, a tool called alchemical free energy calculations has shown considerable 
promise for predicting binding free energies from simulations. Several studies suggest these 
calculations could now be useful in practice in drug discovery and other applications, but for the 
difficulty of setting them up [1,2 ].  

 We propose to further develop a pipeline to set up molecular dynamics simulations and 
associated alchemical free energy calculations, which will make it possible for these calculations 
to be more routine, and done with less expert intervention. We will implement tools to automate 
steps that now require expert intervention, removing the bottleneck and allowing widespread 
application of these tools using LONI computational resources. The pipeline will take an 
arbitrary protein of interest, begin with a protein data bank structure of the protein, assign 
reasonable protonation states to residues, including titratable residues, then build in missing 
loops and residues – those which may not be resolved in crystal structures. Another component 
will build and protonate ligands, either from the PDB or from names/2D structures. The pipelines 
will merge with docking of the ligands to the protein structures to generate candidate ligand 
bound orientations. The system will then be placed in solvent and prepared for alchemical free 
energy calculations on a molecule of interest in the system. Current simulation packages 
encapsulate aspects of these tools, but have trouble with ligand parameterization, and titratable 
residues are assigned default protonation states; missing residues and loops must be built in 
separately. There are standard procedures for these steps but there is currently no pipeline. 

 Both the Mobley and Rick labs are interested in binding of small molecules to proteins. 
The Mobley lab invests significant resources in studying ligand binding to model and drug 
binding sites [2], and the Rick lab continues studying binding of water to proteins, and its 
influence on ligand binding strengths [3]. The proposed pipeline will benefit these efforts, as 
well as other work in these labs.  

 Recent computational advances provide new insight into conformational flexibility of 
riboswitches induced by small molecules, a topic of specific interest to the Jha’s group (in 
combination with the Aboul-ela lab). The ability to compute the free-energy of binding 
efficiently and accurately for distinct, yet similar small-molecules to riboswitches will be a major 
complement to existing research efforts and capabilities. It is worth mentioning that RNA based 
drug-discovery holds a special promise for the drug industry [5]. This is conceptually similar to 
the binding problem but may require customizations of the pipeline. 

 Because of the interests of all of these groups in binding, and the use of similar 
techniques, there is substantial overlap – both in terms of infrastructure needed, and the science 
being done. We believe the proposed project will also facilitate collaboration between our groups 
and reduce redundant efforts in the different groups. Additionally, all of the groups will benefit 



from the help of a staff scientist to make these calculations take better advantage of the available 
LONI computational and data-management capabilities (such as Peta-share), and even extend the 
workflows to work seamlessly across the multiple LONI computational facilities. 

 This project will benefit LONI by aiding at least two LONI investigators with needs for 
infrastructure in this area; making these tools available also will make these simulations more 
accessible to others. The free energy approach is quite general (as evidenced by its applications 
here to diverse systems [2, 3, 5]. The pipeline proposed here also includes aspects that are 
common to most biomolecular simulations, so components can be adapted to benefit an even 
broader audience. This work also fits well with the goals of the state as a whole -- Louisiana is 
investigating significant resources in growing the biotechnology industry. Long-term, expansion 
in this area may interest the biotech/pharmaceutical industry and tie in with statewide emphasis 
on biotech.  

 We already have invested significant resources [2, 5] in these tools, so turning them into 
a pipeline involves linking components and filling in gaps. We anticipate that the proposed 
project would require 6 months of time from a qualified staff person in order to make it 
sufficiently general that it can be of use to others. 

 

[1] C. Chipot et al., J. Comp. Aided. Mol. Design 19: 765-770 (2005). 

[2] D. Mobley et al., J. Mol. Biol. 371: 1118-1134 (2007).  

[3] L. R. Olano et al., J. Am. Chem. Soc. 126: 7991-8000 (2004). 

[4] Laying the Groundwork for Drug Design Targeted at RNA, 
http://lbrn.lsu.edu/portal/cw_registration/presentations/Fareed_LONI_408.pdf 

[5] http://www.nytimes.com/2008/11/11/science/11rna.html 

 

Milestones: 

Note that the timelines here assume 50% time on this project for 1 year. 

1. (1 month) Familiarize self with mmtools package and expand existing protein tools to allow 
user interventions such as specifying protonation states for selected residues (while assigning the 
rest automatically) 

2. (2 months) Expand the protein/molecular setup tools to be able to handle nucleic acids as 
easily as possible 

3. (3 months) Interface ligand building/protonation tools with protein/nucleic acid setup tools, to 
allow easy setup of structures and parameter files for structures, together with ligands, including 
assigning all hydrogens and building in missing loops. 



4. (1.5 months) Once the basic functionality is in place, extend these tools to set up MD 
simulations/free energy calculations which will utilize SAGA ("A Simple API for Grid 
Applications") on LONI computational resources. 

5. (1.5 months) Test and Deploy on LONI machines, for greater throughput and resource 
utilization. This stage will involve test/model calculations of thermodynamic properties such as 
binding free energies or hydration free energies.  

6. (3 months) Focus on deliverables: Finish research leading to and writing of one or more 
papers describing the technology development and/or science conducted during the course of this 
project. 

Update: 

Hideki recently completed the first milestone, which was familiarizing himself with the mmtools 
package and expanding the existing protonation tools to allow some more user input such as 
specifying protonation states for selected residues while assigning the rest automatically.  

For technical reasons, we decided to change the order of milestones 2 and 3, so now he is 
working on milestone 3 (interface the protein building/ligand parameterization tools to allow 
easier setup of structures).  



Project 2. Spatial Modeling of the Dynamics of Invasive Nutria 

Azmy S. Ackleh  
Department of Mathematics  

University of Louisiana at Lafayette  
Lafayette, LA 70504-1010 

ackleh@louisiana.edu 

Nutria are large beaver-like rodents, whose population is directly contributing to loss of marsh 
lands in the gulf coast. In order to develop new methods to restore damaged wetlands and control 
nutria, it is important to understand the behavior of nutria. Nutria moves from one patch to 
another depending on several factors including food availability. When nutria reaches high 
density in a particular patch it often consumes all the plants in that patch and converts it to water 
patch. 

We have developed a MATLAB code for modeling nutria population dynamics in a 2-
dimensional geographic region (see Figure 1). This code is currently used by scientists at the 
USGS National Wetlands Research Center to understand the impact of nutria population on 
wetlands. The current MATLAB code divides a given region into discrete patches. In each patch 
there are three difference equations that describe how the nutria population in that patch grows. 
The current code is extremely slow and takes on the order of one to two days to simulate a 
reasonable size geographical region. If we have to simulate on the order of 10,000 patches 
(which is a typical simulation) then one is solving 30,000 difference equations at each times step 
in addition to the rules that describe the movement between patches.  

 

 

Figure 1: Current MATLAB model for nutria population dynamics 

 

The purpose of this LONI based project is to parallelize the simulation of nutria behavior into 
MPI from the current MATLAB code and use LONI systems to reduce the time from the order 
of days to a few minutes. Recall that MATLAB is an interpreter thus it is naturally slow. My 
graduate student Jay Monte is working on converting the current MATLAB code to a C++ code. 



However, he is not familiar of how to take a C++ code and convert into a parallel code that runs 
on a multi-processor machine. Thus, we request 20 hours during Fall 2008 of our LONI 
Computational Scientist Dr. Raju Gottumukkala to assist Jay for parallelizing this code. 

Update:  

People Involved: Azmy S Ackleh, Raju Gottumukkala 

This project uses LONI to implement a parallel version of Nutria population dynamics and 
movement pattern simulator in order to study the Nutria’s effect on the loss of Marsh lands in 
the Gulf of Mexico. This project was in collaboration with researchers from the USGS 
Wetlands Research Center. 

The Nutria population dynamics and movement pattern is modeled using difference equations 
and the previous version that was written in Matlab would typically take several hours to days 
to run the simulation for a small patch of land. This LI-project would parallelize the Nutria 
population simulator using MPI on LONI systems, which would drastically increase the 
interpretation of research results to analyze the effect of Nutria on the Marsh Lands in the Gulf 
of Mexico. 

Progress: 

We have developed a parallel version of the Nutria population dynamics and movement pattern 
simulator using MPI. The simulator running on LONI Dell clusters performs 3.6 times faster 
than the sequential version. We are further improving the parallel algorithm to handle very large 
datasets. Also, we are investigating various approaches and tools to visualize the simulation 
results and improve the performance of the simulator to handle large data sets. 

Milestones & Timeline: 

1. 07/30/2009 Improve the current version of the simulator to handle large areas 
 

2. 09/15/2009 Develop an approach to visualize and store simulation results from                            
                        multiple scenarios to observe the Nutria’s population dynamics over time. 
 

3. 12/31/2009  Develop approaches for identifying the patterns of nutria impact on the  
Marsh lands using areal imagery 



Project 3. Coupling LONI Institute Computational Scientists, CyberTools and 
Science Drivers at the Molecular Level 

PI:  Thomas C. Bishop (CCS, Tulane University), co-PI:  Shantenu Jha (CCT, LSU), Senior 
Investigator:  Nayong Kim(CCT, LSU),  

Requested LI Computational Scientists (CSs) Time:  6 months FTE-months 

 Molecular dynamics(MD) simulations can now be considered a mature computational 
methodology. Rather than validating force fields, testing algorithms or optimizing single run 
parallelization the focus has shifted to interpretation and application.  For this reason many 
simulation studies now include not one or a few simulations but whole ensembles.  Replica 
exchange (RE) simulations also called parallel tempering is one such example. In RE-MD many 
copies of the same system are run simultaneously, but at different temperatures, and allowed to 
exchange information. This greatly enhances conformational sampling.   

 Several LONI institute projects utilize simulation ensembles. In case of the 
environmental biosensor project, Bishop's contribution is to computationally optimize the ligand-
antibody interactions[1].  For this purpose we seek not only to predict structures of the 
antibodies, but to utilize in silico mutation analysis to help direct experimental efforts.  For a 
given antibody structure an exhaustive study of all possible point mutations in the loop region 
requires over 1000 simulations. Biologic or experimental constraints reduce the set of mutations 
to be considered to ~100. For each ligand-antibody system a nanosecond of a replica exchange 
simulation with 16 replicas requires ~4days of run time on 32CPUS with Amber 8. We expect 
that with suitable simulation and data management tools that 100 mutations can be simulated and 
analyzed in less than 2months. Without suitable simulation management tools this many 
simulations is a user intensive task that simply cannot be accomplished. 

 In an NIH funded study (R01GM076356 ) Bishop's goal is to investigate sequence 
dependent variations in nucleosome stability. Since nucleosomes are the fundamental structural 
unit of chromatin these variations in stability potentially effect all genomic processes.  
Nucleosomes can be formed from any 146 basepair segment of DNA but to date  all available x-
ray structures of the nucleosome have utilized nearly the same 146bp sequence of DNA.  In 
order to investigate sequence dependencies, we have developed a combination of coarse-grain 
sequence selection techniques and all atom molecular modeling techniques that allow us to 
rapidly assemble 1000s of individual nucleosomes for simulation and analysis. Each nucleosome 
system contains approximately 150,000 atoms and requires 4ns of simulation time to equilibrate 
using traditional simulation techniques [2]. This equates to 2.4 days of run time on 32 CPUs 
using NAMD2.6. With suitable simulation management tools we estimate that we can readily 
conduct 100 such simulations in the LONI environment in the course of 2 months. This is 
sufficient throughput to simulate a collection of 84 sequences of DNA that have been 
demonstrated via experiment to span the range of known nucleosome stabilities. 

 In both of the above cases replica exchange techniques or a more generalized exchange 
technique that allows for sequence exchanges as well as coordinate and velocity exchanges could 
be implemented to speed up the conformational search process. Even without such advances the 
singular obstacle to conducting the above simulations is the amount of user intervention required 



to manage the simulations. To achieve the above scientific objectives requires efficient and 
coordinated utilization of the entire LONI system. 

 There have been interesting and important advances to develop a framework for an 
adaptive scalable framework for replica exchange simulations[3]. We propose to use and to 
enhance this framework in order to achieve the above scientific objectives and it is for this 
purpose that we are explicitly requesting LI CS time for assistance with the set-up, deployment 
and execution of this framework on all LONI sites/machines. Specifically, we are requesting  
time for: i) Assistance with integrating the applications with the framework, and ii) Assistance 
with the set-up, deployment and execution of this framework on all LONI sites/machines. The 
overall goal is optimization of LONI resources in order to achieve a lower time-to-solution for 
well defined scientific objectives by effectively managing distributed resources. 

 This effort will provide an important/critical coupling between the LI and Cybertools 
projects and represents collaborations between different LI partner universities, important 
couplings of expertise, and an excellent test bed and application scenario for important 
algorithmic and infrastructural developments (the framework). Our efforts will enhance currently 
funded efforts, form the basis of an exploratory grant and a future Cyber-enabled Discovery and 
Innovation proposal to be submitted in 2009.  (see http://www.nsf.gov/crssprgm/cdi/ ) 

References: 

1. Identification of important residues in metal-chelate recognition by monoclonal antibodies. B. 
Delehanty, R.M. Jones, T.C. Bishop and D.A. Blake, Biochemistry 2003. 

2. Molecular Dynamics Simulation of Nucleosomes and Free DNA. T.C.Bishop,  J.Biomolec. 
Struct. Dyn. 2005. 

3. Adaptive Distributed Replica-Exchange Simulations,  A. Luckow, S. Jha, J. Kim and A. 
Merzky. Accepted for publication, Philosophical Transactions of the Royal Society 

 

Update: 

With the support of LI CSs Hideaki Fujioka we have adapted our molecular dynamics simulation 
workflow tools originally developed with Tevfik Kosar to utilize Petashare as part of the data 
management component of our computational workflow. 

We were thus able to accumulate a total of 128ns of nucleosome dynamics by concurrently 
simulating 16 nucleosome systems. The total time to completion was approximately 10days and 
utilized as many as 1000 LONI processors scattered across 5 different sites.  Each system 
consists of ~200,000 atoms and requires approximately 15hrs of run time on 64 CPUS to 
generate a 1ns trajectory.  We have generated 8ns for each system. The combined data set is 
640Gb and the  total SU utilization was nearly 125,000SU. 

The 16 simulations provide insight into the structure and dynamics of every possible 
dinucleotide step at each of the 146 possible locations in the nucleosome. The results are being 
prepared for presentation at "Albany 2009: The 16th Conversation June 16-20"  The final day of 



this international conference includes A special workshop on nucleosome positioning. Bishop is 
one of the co-organizers of the workshop. 

The next phase will be to implement adaptive scheduling to achieve an even shorter time to 
completion for our computional tasks. More advanced simulation techniques, namely replica 
exchange MD, will also be incorporated to enhance sampling. 

 



Project 4. Automated Data Archiving with PetaShare 

PIs: Tevfik Kosar (LSU), Gabrielle Allen (LSU), Sumeet Dua (LaTech), Frank Löffler (LSU), 
and Erik Schnetter (LSU); LI CS: Hideki Fujioka (Tulane). 

Project Description: The NSF MRI PetaShare project has provided distributed storage across 
LONI, and is developing data management tools in collaboration with a wide range of 
application groups in the state. The basic hardware infrastructure has been deployed, and Kosar's 
research group has developed a first release of tools.  

In this proposal we request the assistance of a LONI Computational Scientist in (i) working with 
the LONI HPC team to deploy and test the petashare software over all LONI resources; (ii) assist 
in troubleshooting system problems arising as application groups are starting to use petashare; 
(iii) developing scripts that can integrate with the LONI queuing systems to make it easy to 
automatically archive simulation data with basic metadata descriptions into petashare. This 
project would integrate with the CyberTools NSF project, where postdoc Frank Löffler is already 
looking at using petashare for archiving data from large scale numerical relativity simulations.  

Effort Requested and Involvement of Computational Scientist: We estimate that this would 
require 3 to 6 months of an FTE. 

Benefit to LONI Institute: Data is the biggest current challenge in cyberinfrastructure and 
computational science. With the PetaShare project, and it close ties to state applications, 
Louisiana has a chance to make a big impact. This project would have the important 
consequence of providing automated mechanisms for any application using LONI to archive 
simulation data both individually or a collaborative group. The strategic implication of this is 
that we will be able to start building up data archives in the state which will serve as application 
drivers for a range of further projects, e.g. in data mining, information science, visualization, etc. 



Project 5. Developing a High Performance Computational Biology and 
Material Science Lab at Southern University (HPC-BMSL) 

PIs: Ebrahim Khosravi (SUBR), Shuju Bai (SUBR), Rachel Vincent-Finley (SUBR), Shizhong 
Yang (SUBR); LI CS: Shizhong Yang (SUBR). 

Southern University and A&M College proposes to establish a High Performance Computational 
Biology and Material Science Lab (HPC-BMSL) focused on the high performance computing, 
bioinformatics, and nanomaterial simulation. The objectives of the project are, (a) developing 
novel high performance computation algorithms and methods to facilitate atomic level molecular 
dynamic simulations; predict secondary and ternary structure of proteins, protein docking, to 
understand life process and assist drug design; understanding and predicting the electronic, 
optical, magnetic, and structural properties of the selected novel electronic materials; (b) to 
provide an infra-structured platform for systematically mentoring and training of under-graduate, 
graduate students, and post-doctors at Southern University and A & M College; (c) to attract 
talented graduate faculties to SU and promoting and enhancing the interdisciplinary 
collaborating among SU campus(Computer Science, Education, Mathematics, Physics, 
Chemistry, Biology, EE and ME, CEES center) and with LBRN, LaSPACE, LONI supported six 
research universities(LSU ME, Louisiana Tech. material science, and other four campuses), and 
industries(pharmacy, NASA, and green energy related chemical engineering). 

The four sub-projects will synergistically address complementary tasks to dramatically 
enhancing our fundamental knowledge and practical applications in the biophysics, 
biochemistry, drug design, and nano-size material science. The titles of the research subprojects 
are: (1). A novel reduced coordinate space method for molecular dynamic simulations, by R. E. 
V. Finley and S. Yang; (2). Developing algorithms for predicting the Secondary and tertiary 
structure of proteins and modeling protein docking and interaction, by S. Bai, E. S. Khosravi, 
and S. Yang; (3). MUSIC---a LaSPACE sub-project for NASA research, by S. Yang, E. S. 
Khosravi; and (4) Research outreach---under-represented undergraduate and graduate student 
training by all the members. 

The first project develops and studies a reduced simulation method (RSM) that uses a kD 
coordinate system defined using principal component analysis (PCA) of a standard MD 
trajectory to explore molecular motion. A primary objection of this sub-project is to provide a 
tool, which allows scientists to efficiently survey molecular motion using a limited MD 
trajectory. The essential components of the reduced simulation method include isolating k 
dominant features of an MD trajectory using ARPACK and defining a kD coordinate space; 
constructing an approximation of a potential energy surface based on the defined coordinate 
space; updating coordinates and velocities in the kD space based on the approximate energy 
surface; and analyzing the resulting information with respect to the original 3nD coordinate 
space. We will apply this method to various classes of molecules to do a benchmark test. We will 
compare our simulations to experimental data, such as data obtained from infrared (IR) 
spectroscopy. The IR spectrum of a molecule shows which frequencies of IR radiation are 
absorbed by the molecule and can be used to identify the functional groups in a molecule. This is 
also information that the RSM seeks to reveal. We will compare the data by considering the 
Fourier transform of the velocity autocorrelation function, the power spectrum. Once we finished 
all the benchmark tests, we will extend and interface this method widely into bioinformatics and 



nanomaterial simulation utilizing readily available LONI and TeraGrid high performance 
computing facilities. 

The second sub-project falls into research area of computational biology. Computational 
algorithms will be developed to predict the secondary and ternary structure of proteins. 
Computational modeling will be performed to simulate protein docking and interaction. In this 
research, two proteins, gK and UL20 of Herpes Simplex Virus Type-1, will be used as model 
proteins. The research is expected to achieve efficient algorithms for predicting protein structure, 
facilitating drug design and combat herpes virus infections. 

The third sub-project is on a proposed LaSPACE sub-project working on code design and 
controlling a new Helium balloon for NASA. Dr. Khosravi, Dr. Yang, two graduate, and two 
undergraduate students will work on the project. 

The fourth project is research outreach: training graduate and undergraduate students, especially 
African-American students, at Southern University and A & M College, a traditionally large 
HBCU institution. The PI and Co-PIs have NSF supported STEM program and a proposed NSF 
outreach project. Currently there are 385 undergraduate students and 70 graduate students 
enrolled in Computer Science Department. They will be trained by intimately engaging them in 
the activities aimed at the attainment of the high performance computing technical objectives 
above through our carefully designed training programs. We expect many more students from 
ME/EE, Physics, Chemistry, and Biology Department to benefit from it by virtue of our track 
record in training students. 

The PI, Dr. Khosravi, Chair of the Computer Science Department, is currently funded by Navy, 
Raytheon, NSF, BoR, NIH, and NGA. Two Co-PIs are supported by LONI and Computer 
Science Department. Two ongoing projects, which Dr. Yang is working on, are funded by LBRN 
and LaSPACE. Current close collaborations with CEES in SU, LSU Vet School, LSU/ME, 
Louisiana Tech. Material Science would generate new opportunities to attract more talented 
faculties and post-doctors all over the nation and the world, which without doubt fits into SU and 
LONI’s long term development strategy. 

We propose the following support from LONI: (1). 300K Queenbee CPU time for three years; 
(2) Dr. Rachel 6 month for research sub-project one, 3 month for student training for three years; 
(3) Dr. Yang’s research time: 2, 3, 3 months for the first three sub-project for three years 
respectively, 2 months for training graduate and undergraduate students. No extra support was 
proposed at this time. 

Update: 

SUBR Project 1:  Reduced basis set method development  

Dr. Rachel Vincent-Finley started the initial work on this project in May 2009, at Southern 
University of Baton Rouge.  Her expertise is in reduced basis set MD simulation. The goal is to 
immediately involve current graduate students in the process of molecular analysis.  During the 
2009 – 2010 academic year, independent study modules will provide advanced undergraduate 
students opportunities to become involved in various aspects of the project.  When finishing the 
project, we would expect that our method be used to analyze the protein structure and function, 



MD visualization code developed, and minority students trained for industry and academic job 
markets. 

SUBR Project 2:  gK and UL20 protein structure prediction and interaction  

Kimberlee Lyles got LONI fellowship and started the research in the past Spring 2009 semester 
under Dr. Shuju Bai, Dr. E. Khosravi, and Dr. Shizhong Yang’s instruction. She successfully 
setup the nano-particle/membrane model and started simulating the interaction using NAMD 
package at LONI machines. The results should be sent for conference presentation and journal 
publication when the simulation finished and analyzed. This project is supported by LBRN pilot 
fund. Minority International (India) graduate student Murali K. Ganginela (1st year) and 
undergraduate student Laura Hurst (black) were supported by this project.  

SUBR Project 3:  NASA-LaSPACE supported thermal barrier coating material simulation 

Under the sponsor of NASA-LaSPACE, Dr. E. Khosravi and Dr. Shizhong Yang supported the 
following minority graduate students in the Spring 2009 semester: 

(1). Kiante Roberson:  graduate student (1st  semester), Computer Science Department, 
minornity(black);   

(2). Sadque Ali Mohammed: graduate student (2nd year), Computer Science Department 
International (India);  

(3). Charles alphonce shropshire: graduate student (1st  semester), Computer Science 
Department, minornity (black); 

The following presentation and publication were supported by or related to this project: 

(1). Presentation at 2009 LAS 83rd annual conference: “First principles molecular dynamics 
simulation of nano gold adsorption on (0001) surface of Ruthenium”, Shizhong Yang, Shuju Bai, 
Ebrahim Khosravi, and Guang-Lin Zhao. 

(2). Shizhong Yang, S.M  Guo, Guang-Lin Zhao, and Ebrahim Khosravi, “High infrared 
reflective nickel doped ZrO2 from first principles simulation”, ICCS 2009. (international 
conference  paper). 

(3). Invited talk and paper: “Doped C60 study from first principles simulation”, New3SC- 7, 
(Seventh International Conference on New Theories, Discoveries and Applications of 
Superconductors and Related Materials), Beijing, May, 2009. 

(4). Wendong Wang, Zhenjun Wang, Jinke Tang, Shizhong Yang, Hua Jin, Guang-Lin Zhao, and 
Qiang Li, “Seebeck coefficient and thermal conductivity in doped C60”, Journal of  Renewable 
and Sustainable Energy 1, 23104(2009). 

(5). G.L. Zhao, S. Yang, D. Bagayoko, J. Tang and Z.J. Wang, “Electronic structure of C60 
semiconductors under controlled doping with B, N, and Co atoms”, Diamond & Related 
Materials 17, 749 (2008). 



SUBR Project 4:  Research outreach: HBCU minority graduate and undergraduate student 
training 

In the Spring 2009 semester, SU sponsored LONI HPC workshop training more than 50 
graduate/undergraduate students attend at least one session of the workshop. More than 30 
people attended the whole workshop. In the meantime we actively included minority students in 
our above proposed projects. Currently there are 9 graduate/undergraduate students in the 
BioInformatics/Computational Material group supported by all sorts of grants in our group.  



Project 6. Data Management for Disaster Management though PetaShare 

PIs: Ramesh Kolluru (ULL), Tevfik Kosar (LSU), Raju Gottumukkala (ULL), Rusti Liner 
(ULL); LI CS: Raju Gottumukkala (ULL). 

The NIMSAT Institute at the University of Louisiana at Lafayette develops disaster management 
applications that leverage the cyberinfrastructure resources of the LONI and TeraGrid. These 
disaster management applications rely extensively on urgent, reliable and secure access to 
potentially terabytes of heterogeneous data (in the form of geospatial text, multimedia) ranging 
from geospatial imagery, LIDAR data, databases of critical infrastructures, public and private 
infrastructure, demographics, recent and historical hazard data. PetaShare is an NSF sponsored 
project that provides reliable and efficient access to distributed data resources to support large-
scale data generation, sharing and collaboration requirements. 

The LONI Computational Scientist at ULL, Dr. Raju Gottumukkala would contribute to this 
project and his tasks would involve uploading NIMSAT data to distributed PetaShare storage; 
generating related metadata and cataloguing this data on PetaShare; resolving data format 
conversion issues (e.g. NetCDF, GRIB, KML, Shape files); developing scripts for interfacing the 
data from Petashare with hazard models (e.g ADCIRC, SLOSH, ALOHA), GIS or Google Earth 
based applications and disaster management applications (HURREVAC, OREMS, POD Tool). 
Raju would also closely work with Ms. Rusti Liner, the GIS Manager at NIMSAT in identifying 
data requirements and data sources to catalogue data. Dr. Ramesh Kolluru, the Director of 
NIMSAT would work with the industry partners and government agencies through MOU’s to 
obtain disaster related data. Dr. Tevfik Kosar, the PI and project lead of the Petashare, would 
provide assistance on handling any special needs to data in terms of providing resource 
provisioning, security and reliability. 

This project would be a part time project for one year and would take FTE of three months. The 
LONI Institute can significantly benefit from this project by being recognized as a platform for 
assisting various disaster management agencies both at the state level like GOHSEP (Governors 
Office of Homeland Security and Emergency Preparedness) for the state of Louisiana and has the 
potential to contribute to the nation through agencies like DHS and FEMA.  

Updates: 

People Involved: Raju Gottumukkala, Ramesh Kolluru, Tevfik Kosar, Ismail Akturk, Rusti Liner 

Overview: 

This project leverages Petashare, a data management platform on LONI for various disaster 
preparedness and response applications developed by the NIMSAT Institute.  

Disaster management applications used for disaster preparedness and response rely extensively 
on urgent, reliable and secure access to potentially terabytes of heterogeneous data (in the form 
of geospatial text, multimedia) ranging from geospatial imagery, LIDAR data, databases of 
critical infrastructures, public and private infrastructure, demographics, recent and historical 
hazard data. This data has to be accessed by the geospatial analysis applications (like GRASS) 
running on LONI, Visualization applications at the LITE (Louisiana Immersive Technology 



Enterprise), or has to be accessible by the decision makers on their desktops. Petashare is an 
NSF sponsored project that provides reliable and efficient access to distributed data resources to 
support large-scale data generation, sharing and collaboration requirements. This LI-project 
would use Petashare on LONI, as a highly available data management and storage platform for 
NIMSAT’s disaster preparedness and response.  

Progress: 

Preparing for this hurricane season, We are 

- Investigating mechanisms for rapid access data from the NIMSAT facility, and applications 
running at LITE through visualization tools like Minerva. 

- Collecting and cataloguing data for hurricane preparedness and response,  
- Familiarized with the Petashare interfaces to manage files and investigated mechanisms to 

increase security and resilience of disaster related data. 

Milestones & Timeline: 

4. 06/30/2009 Catalogue hurricane related data and tools 
5. 07/15/2009 Deliver tools to visualize data at LITE 
6. 11/01/2009 Demonstrate a sample application where the data from Petashare is access  

by Parallel GRASS GIS running on LONI and LITE. 

 

 

 



Project 7. Application Profiling on LONI 

PIs: Erik Schnetter (LSU), Maciej Brodowicz (LSU), Steve Brandt (LSU), and Mayank Tyagi 
(LSU); LI CS: unassigned. 

Project Description: As we move to more complex application codes (e.g. current Cactus code 
black hole simulations may contain 200 modules), machines with very large numbers of cores 
(e.g. the Blue Waters NSF system which LSU is involved in will contain over 200,000 cores), 
and more complicated and diverse processors (e.g. multicore, accelerators, pipelines) there is a 
critical need for reliable, easy to use, and user-oriented profiling information to allow developers 
and users to rework or tune their codes. Through the NSF ALPACA project we are already 
developing application level profiling and debugging tools based on the Cactus Framework, 
which can be used at run time. Using these tools requires additional 3rd party software (e.g. Tau, 
PAPI) to be installed, tested, configured and documented on machines, and currently we are 
using external TeraGrid machines for much of our work because of the better set up of this 
software. This project would involve a LONI computational scientist to help configure profiling 
tools that can be used on LONI for current applications, and the scientist would also take part in 
porting our application level profiling scenarios to the LONI machines. In connection with a 
second NSF project called XiRel we are also analyzing performance data with the aim of 
improving our core infrastructure for numerical relativity. The computational scientist would 
also take part in this effort and optimize the DOE Black Oil code developed by Mayank Tyagi 
and Chris White in the UCOMS project which uses the PETSc solvers. 

Effort Requested and Involvement of Computational Scientist: We estimate that this would 
require 6 months of an FTE.  

Benefit to LONI Institute: This would improve the availability and use of profiling tools on 
LONI from the very low level to the higher application level. The involvement of a new 
application code (Black Oil) would ensure that the tools can really be used for applications, 
would improve the code base for an important statewide project, and should provide good 
experience to the computational scientist. 



Project 8. Surface Plasmon Excitation in inhomogeneous metal-dielectric 
Composites 

PIs: Dentcho Genov (LaTech), and Shizhong Yang (SUBR); LI CS: Shizhong Yang (SUBR). 
 

Background: The inhomogeneous metal-dielectric composites are plasmonic nanomaterials that 
have unique geometrical and optical properties. Under electromagnetic wave illumination these 
complex materials manifest energy localization in very small spatial areas (a few nanometers) 
and huge enhancement of the local field intensities, which correspond to excitation of localized 
surface plasmon (SP) modes. At critical metal concentrations, the random films are 
inhomogeneous and self-similar (fractal) on any length-scale. Thus, for any incident wavelength 
resonating clusters exist in the composite. Such broad frequency response results in anomalous 
optical properties including extraordinary absorption and enormous enhancement of nonlinear 
optical processes such as Surface Enhanced Raman Scattering (SERS), high order frequency 
generation, etc. The unique properties of the percolating films make them ideal not only for 
fundamental studies of light-matter interaction in disordered systems, but also for a wide range 
of applications in biological sensing and spectroscopy (including single molecule detection with 
SERS), metamaterials and surface sciences, and condensed matter physics.  
Proposed research:  1. Numerical methods in nanoplasmonics: As part of this proposal we 
seek to rewrite the existing FDFD codes in parallel and develop novel, highly efficient numerical 
methods for calculating the EM response of 2D and 3D random systems of metal nanoparticles. 
Additionally, we intend to use a ‘memoization’ method, an efficient way to do fast searches of 
conduction paths, to develop a new methodology which could resolve the problem in only 
O(N3/2), which is to be compared to O(N3) for the standard Gauss-Seidel method (N is the 
number of particles). Successful development of the numerical codes will make possible 
simulations on the LONI supercomputers of systems with up to 106 and 104 particles in the 2D 
and 3D cases, respectively. This will allow for first time to study local and macroscopic response 
of real systems and compare with experiments. Apart from solving plasmonic nanomaterials the 
developed numerical codes could be effectively applied for investigation of large variety of 
strongly interactive, sub-wavelength ensembles of particles (not necessary metal), including 
dense semiconductor quantum dots systems, periodic arrays with tunable optical properties, 
photonic nano-circuits and optical switches. 2. SP eigenproblem: localization-delocalization 
transition in percolating metal composites: Here, we intend to investigate the nature of SP 
eigenstates at localization-delocalization transition in 3D random media. This transition exists 
regardless of the dimension of the problem. For example, in the 2D case, it is manifested through 
a logarithmic singularity at the center of the energy band. The 3D case, however, has not been 
investigated yet due to computational limitations. To study the collective SP eigenproblem we 
intend to integrate existing parallel eigensolvers (LAPACK) to operate on the LONI machines. 
Due to the memory intese calculations we will look at optimizing the memory partition 
subroutines to take advantage of the operational memory available through the LONI 
infrastructure. This will allow investigation of the multi-fractal characteristics of the critical 
eigenstates and combined with calculation of the SP density of states will provide a complete 
picture of the collective SP phase transition. Consequently, the acquired data will serve as a basis 
for the development of a comprehensive analytical theory describing the electromagnetic 
response of the system at percolation. This theory may reveal new ways to enhance the local 



optical response of the composites materials with direct applications in surface enhanced Raman 
spectroscopy, development of adaptive metal films for implementation as low-pass filters, 
coating materials and tunable optical media.  
Impact of the proposed research: The proposed research will lead to development of novel 
numerical and analytical tools for solving highly complicated problems of EM interaction with 
complex media. Those methods will answer standing fundamental questions concerning the 
nature of collective electronic excitations in metal-dielectric composites. Due to the 
inhomogeneous nature of the problem it is crucial that very large system sizes are investigated. 
Such systems cannot be studied with average computational facilities and utilizing the LONI 
recourses will allow to traverse new regimes of operation that have been a mystery for the last 50 
years. Successful realization of the project, have the potential to establish the LONI Institute as a 
top center for computational electromagnetism. Furthermore, the developed numerical methods 
will have strong practical impact on the development of adaptive composite materials for 
enhanced linear and nonlinear optical processes. For instance, the optimization of SERS from 
molecules deposited on or inside the composites could lead to spectroscopic measurements with 
unsurpassed sensitivity. The large range of applications, could serve as a basis to build on 
previous and establish new collaborations with experimental scientists within the six LONI 
institutions but also with other national universities including groups at UC Berkeley (Prof. X. 
Zhang), and Yale University (Prof. Hui Cao). The first part of this project has been included into 
a RCS proposal submitted on Nov. 7 to the Louisiana Board of Regents, while funding from the 
NSF materials division and DARPA will be sought in relation to the SP eigenproblem. The total 
workloads for the LI faculty and CS are 3 FTE-months per year, for total duration of the proposal 
of 1.5 years and expected supercomputer time allocation of 50K SUs. Also, the LI faculty will 
provide a PC workstation and a graduate student to work full time on the project, which will also 
be the subject of the student PhD thesis.  

 



Project 9. Refinement of Integral Membrane Protein Structure Predictions 

PIs: Christopher Summa (UNO), Steven Rick (UNO), and Zhiyu Zhao (UNO); LI CS: Zhiyu 
Zhao (UNO). 

Protein Structure Prediction 

The field of protein structure prediction concerns itself with the generation of models of protein 
structures that approximate the true, native protein structure as accurately as possible. These 
methods are intended to augment, or even replace, the experimental determination of a protein 
structure where such a determination is either highly derivative (as in the case of a protein with a 
close relative of known structure), or experimentally difficult (as in the case of integral 
membrane proteins). It has been estimated that the generation of an experimental protein 
structure costs, on average, between $250,000 [1] and $300,000 [2] (US). Improved methods in 
structure prediction, therefore, hold the promise of shifting some of the cost burden from 
experimentalists into (relatively) cheap computations, allowing experimentalists to focus on 
those structures of particular interest. 

The Membrane Protein Structure Problem 

It has been estimated that as much as 30% of the open reading frames of the genomes of higher 
eukaryotes code for proteins which span or are otherwise associated with cell membranes [3]. 
Despite their prevalence in biological systems, however, the scarcity of integral membrane 
protein structures stands in sharp contrast to the rapid accumulation of structural data for soluble 
proteins in the Protein Data Bank (PDB). To date roughly 58,236 X-ray or NMR derived 
structures of soluble proteins have been deposited in the PDB, while only ~193 structures of 
membrane proteins are currently known, due to inherent difficulties in membrane protein 
purification and crystallization. There have been a number of spectacular successes in X-ray 
crystallography of membrane proteins in recent years, and recent advances in crystallization 
techniques may well allow structural biologists to lessen the disparity in the structure database in 
the coming years. However, until such time as crystallization of membrane proteins becomes 
routine, method development in structure prediction of integral membrane proteins remains an 
important undertaking. 

Prediction methods complement, enhance, and are enhanced by traditional methods of gaining 
structural information. For example, an initial model can provide a roadmap for mutagenesis 
experiments. The results of mutagenesis experiments can guide the building of an initial model, 
or suggest ways to improve upon an existing one. An experimental structure can either prove or 
disprove a model, can afford us suggestions on how to improve our techniques, and can provide 
a useful template for modeling related proteins with significant sequence homology. 

Protein 3-D Structure Refinement 

One of the greatest shortcomings of macromolecular energy minimization and molecular 
dynamics is that they generally do not preserve the native structure of proteins as observed by X-
ray crystallography. This deformation of the native structure means that these methods are not 
generally used to refine structures produced by homology modeling techniques. In recent work 
[4, 5] we have shown that it is possible to improve an ensemble or near-native globular protein 



structures using energy minimization techniques such that their structures are closer to native 
than the starting structure. A database of 75 globular proteins was used to test the ability of a 
variety of popular molecular mechanics force fields to maintain the native structure. 
Minimization from the native structure is a weak test of potential energy functions: it is 
complemented by a much stronger test in which the same methods are compared for their ability 
to attract a near-native decoy protein structure towards the native structure. Using a powerfully 
convergent energy minimization method, we showed that, of the traditional molecular mechanics 
potentials tested, only one showed a modest net improvement over a large dataset of structurally 
diverse proteins. A smooth, differentiable knowledge-based pairwise atomic potential performed 
better on this test than traditional potential functions. This method is of particular utility because 
of its computational efficiency relative to stochastic search methods. 

We propose to test (using the LONI computational resources) whether the same or similar 
technique can be used for a set of membrane proteins whose crystal structures have been 
determined. Initial tests will focus on energy minimization both of native membrane protein 
structures, and on the ability to make a “perturbed” membrane protein structure (representing, for 
example, the output of a reasonable homology model) revert to its native configuration. Both 
energy minimization and molecular dynamics using replica exchange [6], will be tested using a 
range of potential energy functions for their ability to improve near-native decoys. This work is 
highly computationally intensive, and access to the LONI infrastructure would be of particular 
importance to the success of this project. 

A key component of this work is the comparison of both the pre- and post- refined membrane 
protein structures to the known, native state. A robust method of comparison is essential if we 
are to learn the strengths and limitations of our techniques, and to determine where our methods 
perform well, and where they do not. 

Protein 3-D Structure Alignment 

3-D structures are strongly related to their biological functions [7]. Protein structures reveal more 
evolutionary information than protein sequences do, since the structure of a protein changes 
more slowly in evolution than does its sequence [8]. Also, researchers have frequently observed 
that proteins with low sequential similarities are structurally homogenous. Therefore it is 
particularly important to discover the structural similarities / dissimilarities among different 
proteins. The research of protein 3-D structure similarity is very helpful for many biological 
applications such as predicting the functions of unknown proteins from known similar protein 
structures, identifying protein families with common evolutionary origins, understanding the 
variations among different classes of proteins, and so on. Pairwise protein 3-D structure 
alignment attempts to compare the structural similarity between two protein backbone chains. An 
alignment is characterized by (1) how many positions are matched, (2) where these positions are 
and (3) how well they are matched. The alignment problem is non-trivial – in fact, the problem 
of finding the optimal global alignment between protein structures has been shown to be NP-
hard[9, 10]. 

Introduction to SLIPSA: 

SLIPSA is a Self-Learning and Improving pairwise Protein Structure Alignment algorithm 
developed by Drs. Bin Fu and Zhiyu Zhaoʼs research group. It shows better accuracy when 



compared with other well known algorithms such as CE [11], Dali [12] and SSM [13] (see [14, 
15]). Our algorithm is implemented with Matlab and we have developed a web tool 
(http://fpsa.cs.uno.edu, http://fpsa.cs.panam.edu/) based on this program. SLIPSA is the 
foundation of our protein structure query tool which searches similar structures in the Protein 
Data Bank (PDB) according to a given query structure. Due to large size of PDB and high 
complexity of current protein structure alignment algorithms, protein structure query is very 
time-consuming and computation capability of machines greatly affects query performance in 
terms of both speed and accuracy. Since SLIPSA is a serial program written with Matlab, there is 
a lot of space to improve its speed performance by (1) rewriting the code with C/C++ and (2) 
taking advantage of parallel and distributed computation power of HPCs. 

Effort Requested and Involvement of Computational Scientist 

We would like to request 4 months of full time effort on the part of Dr. Sylvia Zhao. Dr. Zhao 
has extensive expertise in protein structure alignment, programming in Matlab and C/C++ and 
compiling and running code on the LONI cluster. Dr. Zhaoʼs responsibilities will involve some 
programming of the parallel implementation of the SLIPSA algorithm, running energy 
minimization experiments and compiling and analyzing data. Dr. Summa and Dr. Rick will 
provide coding support for the molecular simulation code, and perform data analysis. 

Benefit to LONI Institute 

This proposal represents an interdisciplinary collaboration between a Computational Biologist 
(Dr. Summa), and Computational Physical Chemist (Dr. Rick) and a Computer Scientist (Dr. 
Zhao). The tools developed will be shared with LONI users once they have been validated and 
made “user-friendly”, and should provide a important resource for Computational Structural 
Biology within the LONI network. 
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Project 10. Parallel-GIS: A High Performance Open Source Geospatial 
Analysis 

PIs: Ramesh Kolluru (ULL), Baker Kearfott (ULL), Raju Gottumukkala (ULL); LI CS: Raju 
Gottumukkala (ULL). 

Geographic Resource Analysis Support System (GRASS) is multipurpose open source GIS 
software for geospatial data analysis, modeling, management and visualization. Various modules 
of GRASS are currently being utilized in multiple areas of science such as Geography, 
Sociology, Ecology, Remote Sensing, Urban-Planning, Geostatistics, Geophysics and 
Hydrology. GRASS would be a versatile tool to better understand the impact of disasters on the 
people, community and assets. The various aspects of disaster management efforts can be 
significantly improved by better interlinking the workflow of geospatial data, geospatial analysis 
modules in GRASS, natural disaster prediction models and logistics modules for planning.  
Dr. Ramesh Kolluru and Dr. Baker Kearfott are working on a project through the Governor’s 
Information Technology Initiative (ITI) for University Of Louisiana at Lafayette. The major 
objective of this project is to deploy GRASS on LONI and LITE, parallelize certain modules of 
GRASS that can be applied to disaster management (e.g raster modules like LIDAR data 
processing, satellite image processing algorithms, vector modules like road network analysis), 
and develop optimization/Operations Research algorithms/libraries portable with GRASS for 
supporting emergency management and planning during disasters. 

Dr. Raju Gottumukkala would take primary responsibility in this project through understanding 
various GRASS modules, deploying GRASS on LONI and LITE, interlink various GRASS 
modules (including data and applications) with external models like weather, storm surge or 
plume models, train and assist students with their research and projects in parallelizing certain 
modules of GRASS that can be applied to disaster management, and help Dr. Kearfott and Dr. 
Kolluru with developing MPI based OR algorithms library that can be integrated with GRASS 
modules. There are two student’s who are currently working on this project. Jeevan Gogineni a 
master’s student from Computer Science department and Zhang Haochun, a PhD student from 
Math department both would be working with Raju on this project. 
We request 10 hours per week of the LONI Computational Scientist, Dr. Raju Gottumukkala for 
the specified tasks on this project. 
Updates: 

People Involved: Raju Gottumukkala, Ramesh Kolluru, Baker R. Kearfott 

The major objective of this project is to provide a High-Performance GIS on LONI and LITE 
through GRASS (Geographic Resources Analysis Support System) a multipurpose open source 
GIS software for geospatial data analysis, modeling, management and visualization. High-
Performance GIS improves the disaster management by analyzing data at a fine granular level 
and improve  (e.g raster modules like LIDAR data processing, image processing algorithm, and 
vector modules like road network analysis algorithms). 

Various projects at NIMSAT currently leverage the open source and parallelizable aspects of 
GRASS on LONI. (1) The Point of Distributions (PODs) application uses a parallelized version 
of the shortest path finding module from GRASS for determining the proximity of POD 



locations. The POD application also uses a parallel version of the site selection algorithm to find 
the optimal POD site. These modules have been implemented and tested on the LONI Dell 
systems. (2) The Critical Infrastructure Analysis and Key Resources (CIKR) project extends 
some of the GRASS modules to perform analysis on the nation’s natural gas pipeline network 
and natural gas facilities to identify critical pipelines and facilities.  

 

 

 

 

 

 

 

 



Appendix D 

LI Graduate Fellows, 2008-2009  



Christopher Clayton / Kimberlee Lyles, SUBR (Fall 2008 and Spring 2009, 
respectively) 

Research: 
During the Fall 2008 semester, Mr. Christopher Clayton was supported by the LONI 
Institute fellowship working on the LBRN supported virus gK and UL20 secondary 
structure prediction. He used hidden Markov model and neuro network methods. His 
contributions are: (1). Tested all the available codes and compared gK and UL20 results 
with experimental data. (2). Hidden Markov is better than Neuro Network method in gK 
virus structure prediction. (3). Successfully predicted signal peptides for both gK and 
UL20. 

However, in Spring 2009 semester, Mr, Clayton got sick, and Ms. Kimberlee Lyles 
continued his work on (1). gK and UL20 homolog alignment and functional analysis; (2). 
Molecular dynamics (MD) to study the interaction between gK and UL20. Ms. Lyles did 
gK and UL20 sequence analysis and successfully setup the NAMD model for simple 
nano-particle interaction inside cell membrane. She is doing some test runs of the MD at 
LONI supercomputers and analyzing the states of nano-particle inside the membrane. At 
the same time, she is setting up the gK and UL20/membrane model for the MD 
simulation. The results will be submitted to a conference soon.  
Publications and Presentations of the research: 
1. Presentation at 2009 LAS 83rd annual conference: “First principles molecular dynamics 
simulation of nano gold adsorption on (0001) surface of Ruthenium”, Shizhong Yang, 
Shuju Bai, Ebrahim Khosravi, and Guang-Lin Zhao. 

2. Shizhong Yang, S.M  Guo, Guang-Lin Zhao, and Ebrahim Khosravi, “ High infrared 
reflective nickel doped ZrO2 from first principles simulation”, ICCS 2009. (international 
conference  paper) 
3. Invited talk and paper: “Doped C60 study from first principles simulation”, New3SC-7, 
( Seventh International Conference on New Theories, Discoveries and Applications of 
Superconductors and Related Materials), Beijing, May, 2009. 

4. Wendong Wang, Zhenjun Wang, Jinke Tang, Shizhong Yang, Hua Jin, Guang-Lin 
Zhao, and Qiang Li, “ Seebeck coefficient and thermal conductivity in doped C60”, 
Journal of       Renewable and Sustainable Energy 1, 23104(2009); 
5. G.L. Zhao, S. Yang, D. Bagayoko, J. Tang and Z.J. Wang, “ Electronic structure of 
C60 semiconductors under controlled doping with B, N, and Co atoms”, Diamond & 
Related Materials 17, 749 (2008). 

Use of LONI and HPC resources: 
They have used LONI machines up to more than 1000 cpu to simulate BioInformatics 
and materials. 
Collaborations: 
They are in close contact with LSU Vet School (Gus), Biology (Newcomer), Mechanical 
Engineering (S. Guo), LSU CAMD (K. Lian and P. Zhou), and Physics (Wefel and 
Guzik). 



Jeremy Dewar, Tulane 
Research: 

Mr. Dewar has been looking into a specific approach to solving systems of nonlinear 
hyperbolic conversation laws.  His research has been with examining the performance of 
a smoothness indicator for central-upwind schemes.  Solving the Riemann problem can 
be broken down to solving self-sharpening discontinuities (shock waves) and 
discontinuities that will not self-sharpen (contact waves).  A smoothness indicator can 
discern between these two waves.  This allows for a smooth solution approach to the 
contact waves (this will better preserve the structure of the discontinuity that cannot 
sharpen itself), and a limited solution approach to the shockwaves (keeping such waves 
from causing oscillations without an ‘intelligent’ Riemann problem solver). 
The smoothness indicator he has researched is specific to the Euler gas dynamics 
equations, but can be generalized to other systems of equations by looking at either the 
velocity or the pressure of the system.  This indicator has been extended to a 2D grid and 
gives results similar to well-known results in 1D. 
Publications and Presentations of the research: 
There has not been a publication about this project, yet. This project was given to him as 
a 1st year graduate student with the goal of writing a paper on the results. They intent to 
have public presentations about his work.  Some preliminary results may be discussed at 
ICOSAHOM ’09. 

Use of LONI and HPC resources, and collaborations: 
Mr. Dewar corresponded with Dr. Fujioka, LI computational scientist, about MPI and 
Open MP implementations.  He was a great help in extending the project to multiple 
processors. 



A. Murat Eren, UNO 
Research: 

LI Grad Fellow Murat Eren has made excellent progress in this past year. He has 
significantly impacted the efforts of fellow graduate students in Dr. Winters-Hilt’s group 
as well as significantly improved his advisor’s grant prospects with his nice results and 
excellent presentation of those results. Murat is an amateur photographer, so it is no 
coincidence that he has a good eye for clear presentation of results or visualization of 
data-features. Murat is a highly skilled programmer that has contributed to the design of 
the Pardus Operating system (for the Turkish Army), this aided him greatly in 
establishing a real-time pattern recognition feedback interface between an experimental 
apparatus (a nanopore detector) and my AI-based feature extraction and classification 
methods (1). He is skilled at creating visualization software -- in the past year he created 
visualization software for my channel current feature extraction and classification 
software (2). Not to be left out of the algorithmic development side of the effort, Murat 
has independently developed a kernel-based clustering procedure (unfortunately already 
published in IEEE in 2002), and he did this in just the past month. Murat and Dr. 
Winters-Hilt are now using a novel variant of his kernel-based clustering procedure as a 
preprocessing step prior to using an SVM-based clustering scheme that I’ve explored 
separately – Murat is now helping Dr. Winters-Hilt to re-submit two papers in this regard 
(3,4), as well as prepare a manuscript for the exciting results anticipated for the above 
hybrid clustering approach (5). Mr. Murat’s numerous areas of expertise have had a 
significant impact on the work of fellow Ph.D. students Zuliang Jiang and Carl Baribault, 
as well as Dr. Winters-Hilt’s grant and patent filing efforts (6,7,8). Murat has helped 
Carl, in particular, to make use of the LONI facilities for his HMM-based gene structure 
identification work, and it’s in this latter effort that the group has been making the most 
use of the LONI infrastructure. 
Publications of the research: 
1. Eren AM, Amin I, Alba A, Morales E, Stoyanov A, and Winters-Hilt S. Pattern 
Recognition Informed Feedback for Nanopore Detector Cheminformatics. Submitted to 
BMC Biotechnology. 

2.  Eren AM & Stephen Winters-Hilt. A Visualization Tool for Nanopore Experiments. 
Submitted to MCBIOS Proceedings for BMC Bioinformatics. 

3. Winters-Hilt S, Eren AM, and Armond Jr. K. Distributed SVM Learning and Support 
Vector Reduction. Re-submission planned to BMC Bioinformatics. 

4. Winters-Hilt S, Eren AM, and Merat S. Unsupervised clustering using supervised 
support vector machines. Re-submission planned BMC Bioinformatics. 

5. Winters-Hilt S and Eren AM. SVM-based clustering with kernel-clustering for kernel-
tuning and seed cluster-region identifications. 

6. Winters-Hilt S and Jiang Z. An Efficient Self-Tuning Explicit and Adaptive HMM 
with Duration Algorithm. Accepted by IEEE Transactions on Signal Processing, June 
2009. (http://www.cs.uno.edu/~winters/ESTEAHMMD_preprint.pdf) 
 



Presentations of the research: 
1. A. Murat Eren & Stephen Winters-Hilt. Pattern recognition-informed sampling for 
nanopore biosensing. MidSouth Computational Biology and Bioinformatics Society 
(MCBIOS), Starkville, MS, Feb. 20-21, 2009. 

2. A.Murat Eren & Stephen Winters-Hilt. A Visualization Tool for Nanopore 
Experiments. MidSouth Computational Biology and Bioinformatics Society (MCBIOS), 
Starkville, MS, Feb. 20-21, 2009. 
3. Joshua Morrison, A. Murat Eren, and Stephen Winters-Hilt. Machine Learning Web 
Interfaces for Bioinformatics & Cheminformatics. MidSouth Computational Biology and 
Bioinformatics Society (MCBIOS), Starkville, MS, Feb. 20-21, 2009. 

4. Amanda Alba, Eric Morales, A. Murat Eren, Joshua Morrison and Stephen Winters-
Hilt. Nanopore-transduction based study of individual molecular binding events. 
MidSouth Computational Biology and Bioinformatics Society (MCBIOS), Starkville, 
MS, Feb. 20-21, 2009. 

Patents or Licensing Agreements: 
1. Winters-Hilt S and Zhang J. An efficient implementation for HMM with duration. 
PATENT pending, UNO filing, October 2008. 
2. Winters-Hilt, S., Pattern Recognition Informed (PRI) Nanopore Detection for Sample 
Boosting, Nanomanipulation, and Device Stabilization; and PRI Device Stabilization 
Methods in General. PATENT pending, UNO filing, August 2008. 

Use of LONI and HPC resources: 
As mentioned, via collaboration with fellow PhD researchers Carl Baribault and Zuliang 
Jiang, Murat is helping on gene-structure identification projects that use significant 
computational time – with a rapidly growing demand. The use of LONI facilities would 
be significant, and rapidly-growing, on the basis of the gene-structure identification work 
alone, but now Murat is also engaging in SVM self-tuning methods (in our clustering 
collaboration) as well as with large dataset processing requiring SVM-chunking, both of 
which will also entail extensive use of LONI’s resources. 

Collaborations: 
We have not had extensive collaboration with LONI members outside the group in our 
first year, but in anticipation of students bridging between the AI-side of the Winters-Hilt 
group and the computer forensics work of fellow LONI PI’s Golden Richard and Vassil 
Roussev, we expect to see greater involvement with the LONI PI’s at UNO (the last 
student to do this type work, Brian Roux, just graduated, and worked partly with 
Golden’s group and partly with Winters-Hilt’s). 



John Jack, LA Tech 
Research: 

 Title for his PhD dissertation: "Discrete Nondeterministic Modeling of Biochemical 
Networks":  

The ideas expressed in this work pertain to biochemical modeling.  They explore their 
technique, the Nondeterministic Waiting Time algorithm, for modeling molecular 
signaling cascades.  This algorithm builds on earlier work from the lab of Dr. Andrei 
Paun, the advisor for Mr. Jack’s dissertation.  They discuss several important extensions 
including: (i) a heap with special maintenance functions for sorting reaction waiting 
times, (ii) a nondeterminstic component for handling reaction competition, and (iii) a 
memory enhancement allowing slower reactions to compete with faster reactions. 
Several example systems provide comparisons between modeling with systems of 
ordinary differential equations, the Gillespie Algorithm, and our Nondeterministic 
Waiting Time algorithm.  Their algorithm has a unique ability to exhibit behavior similar 
to the solutions to systems of ordinary differential equations for certain models and 
parameter choices, but it also has the nondeterministic component which yields results 
similar stochastic methods (e.g., the Gillespie Algorithm). 
They also investigate the Fas-mediated apoptotic signaling cascade.  Fas signaling has 
important implications in the research of cancer, autoimmune and neurodegenerative 
disorders.  They provide an exhaustive account of results from the Nondeterminstic 
Waiting Time algorithm in comparison to solutions to the system of ordinary differential 
equations described by another modeling group.  Their work with the Fas pathway led 
them to explore a new model, focusing on the effects of HIV-1 proteins on the Fas 
signaling cascade.  There is extensive information in the literature on the effects of the 
HIV-1 proteins on this pathway.  The model described in their work represents the first 
attempt ever made in modeling Fas-induced apoptosis in lantently infected T cells. 

There are several extensions for the Fas and the HIV models.  Calcium signaling would 
be an interesting avenue to investigate, building on some recent results reported in the 
literature.  We also suggest a new direction for the Nondeterministic Waiting Time 
algorithm exploring parallelization options. 

Publications of the research: 
J. Jack and A. Paun, ``Discrete Modeling of Biochemical Signaling with Memory 
Enhancement,'' LNBI Transactions on Computational Systems Biology 2009, 14 pp. 
[accepted]. 

J. Jack, A. Paun, Simulation of Signaling Pathways through discrete methods, JALC, 
accepted 2009. 

J. Jack, A. Paun, F A. Rodriguez-Paton, Discrete nondeterministic modeling of the FAS 
pathway,  Int. Journal of Foundations of Computer Science, vol. 19 (October 2008), no. 
5, pp. 1147-1162.  
J. Jack, A. Paun, A. Rodriguez-Paton, Effects of HIV-1 Proteins on the Fas-Mediated 
Apoptotic Signaling Cascade: A Computational Study of Latent CD4+ T Cell Activation, 



accepted at Ninth Workshop on Molecular Computation, WMC9, Edinburgh (UK) July 
28-31, 2008, 20pp. 

Presentations of the research: 
Mr. Jack gave a presentation at the EPA's National Center for Computational Toxicology 
(NCCT) on the research involving the Nondeterministic Waiting Time (NWT) algorithm.  
The talk was given in May 2009 and was one hour in length. 

Dr. Andrei Paun (Jack’s dissertation advisor) is presenting various aspects of their 
research at "Descriptional Complexity of Formal Systems" in Magdeburg, Germany.  He 
is an invited speaker at the conference which takes place July 6th - 9th. 
Use of LONI and HPC resources: 
The Nondeterministic Waiting Time algorithm is written in C.  Using MPI, they are able 
to run simultaneous biochemical simulations for model fitting.  Instead of running each 
simulation separately (serial), they can explore multiple kinetic rates on multiple nodes, 
assisting in the fitting of our models to the biochemical information available in the 
literature. 
The models they fit involved HIV-1-infected T cells and cancer cells.  They investigated 
the Fas-mediated signaling cascade, which is one of the pathways responsible for 
apoptosis.  The parallelization also allows them to explore the different cellular 
evolutions due to the nondeterminism of the NWT algorithm. 
Collaborations: 
Via his advisor, Dr. Paun, they had interactions with LSU, specifically with Drs. Thomas 
Klei, Hilary Thompson, Bill Wischusen, Konstantin Gus Kousoulas, and Doan H. 
Nguyen. 
Other achievements:  
Mr. Jack was able to complete the degree requirements for a Ph.D. in Computational 
Analysis and Modeling by May 2009. Without the funding from LONI, it would have 
been difficult for him to accomplish this goal. 
Also, he has been granted a three-four year post-doctoral position at the EPA's National 
Center for Computational Toxicology.  At this post, he will continue his research into 
modeling molecular signaling cascades.  The project he will be a part of is called virtual 
Liver -- modeling the effects of toxic elements on the cellular and intracellular 
interactions of the human liver. 



Jijun Lao, LSU 
Research: 

 During the last year using large-scale massively parallel molecular dynamics simulations 
on LONI computer clusters, they carried out various investigations aimed at revealing the 
fundamentals of the effects of materials microstructure on mechanical properties and 
structural stability of metallic bulk, thin films and nanowire structures. In particular, their 
molecular dynamics simulation studies of Pd nanowires indicate that depending on the 
wire diameter the surface stress can cause Pd nanowire to undergo spontaneous structural 
reorientation or phase transformation. Under tensile loading and unloading Pd nanowires 
transform reversibly between the two crystallographic orientations exhibiting 
pseudoelastic behavior characterized by fully recoverable strains of up to 50%. The 
temperature-dependence of the pseudoelastic behavior enables the shape memory effect 
in Pd nanowires. These novel properties can greatly impact nanowires usage in a large 
class of nanodevices including sensors, actuators and transducers.   

 Mr. Lao is also involved in two research projects: one dealing with MD simulation 
studies of interfacial strain induced formation of metallic nanotubes and nanocoils and 
the other one dealing with the investigation of the pore nucleation and growth in lipid 
bilayer membranes in the presence of dimethylsulfoxide. Using the preliminary results 
we obtained in the first project we have already prepared a first draft of a paper that we 
plan to submit for publication to Physical Review Letters. 

Publications and Presentations of the research: 
1. J. Lao and D. Moldovan, “Surface stress induced structural transformations and 
pseudoelastic effects in palladium nanowires” Appl. Phys. Lett. 93, 093108, 2008 
2. J. Lao and D. Moldovan, “Molecular dynamics simulation study of pseudoelastic 
effects in palladium nanowires”  The Fourth International Conference on Multiscale 
Materials Modeling, Tallahassee, Florida, October 27-31, 2008. 

3. J. Lao and D. Moldovan, “Interfacial strain induced self-rolling of Aluminum 
nanotubes” In preparation,  plan to submit for publication to Physical Review Letters  

Use of LONI and HPC resources: 
The MD simulations for both projects are performed on LONI systems on which we 
currently have a 500,000 hours allocation quota. 



Philip Schexnayder, Jin-Feng Chen, ULL (Spring 2009) 
Research: 

Philip Schexnayder: Despite his short tenure as a graduate student, Philip has made an 
impressive progress in the development of new computational tools for the rhythmic 
analysis of echolocation and communication signals of marine mammals (particularly, 
sperm and beaked whales). The algorithm provides detection of a particular species in a 
continuous stream of broadband acoustic data and a robust (to low Signal-to-Noise-Ratio) 
method for association of rhythmic frequencies with individuals. The method has been 
successfully applied to passive experimental acoustic recordings collected by the Littoral 
Acoustic Demonstration Center (LADC) in the Gulf of Mexico. Multi-channel data 
analysis would benefit from a use of parallel processing techniques and the LONI HPC 
resources. As the next step, we are planning to adapt the code for the LONI environment.  

During the Spring 2009 semester, Philip weekly participated in supercomputing training 
conducted by the OU Supercomputing Center for Education & Research through the UL 
AceessGrid. He is also registered to attend the LONI training in Baton Rouge in the 
summer. 

 
Jin-Feng Chen:  Jin Feng Chen’s research focuses on developing a methodology for the 
construction of 3D Highway models that can be used as engineering analysis tools for 
highway infrastructure system. This involves collecting image and video data collected 
from a driver’s perspective and to extract information pertinent to the roadway, including 
the road surface, the shoulder areas, guardrails, traffic control devices, and all roadside 
elements. The information is then integrated into a 3D environment that will give 
engineers new tools to examine and identify highway features such as the degree of 
curvature, super elevation, sight distance, and pavement edge lines. This tool will enable 
highway engineers to design and evaluate highway infrastructures from new perspectives, 
which are not feasible with the currently available technologies. As a part of this 
research, Jin Feng was involved in the development of a center based Treemap algorithm, 
3D Treemap algorithm and a clustering algorithm to represent the clustered results on a 
browser. 
Publications and Presentations of the research: 
1. Juliette W. Ioup, George E. Ioup, Lisa A. Pflag, Arslan M. Tashmukhambetov, 
Christopher O. Tiemann, Alan Berstein, Natalia Sidorovskaia, Philip Schnenayder et al., 
“Localization to verify the identification of individual sperm whales using click 
properties,” The Journal of the Acoustical Society of America, 125(4, pt.2 of 2), April 
2009, p. 2616 (published abstract) 

2. Natalia Sidorovskaia, Philip Schexnayder, et al., “Rhythmic analysis of sperm whale 
broadband acoustic signals,” The Journal of the Acoustical Society of America, 125(4, 
pt.2 of 2), April 2009, p. 2738 (published abstract) 
3. S. Chu, J. Chen, Z. Wu, V. Raghavan, H. Chu. “A Treemap-based Result Interface for 
Search Engine Users”, 12th International Conference on Human-Computer, Interaction 
(HCI 2007), Volume 8, July 2007. 



4. Philip Schnenayder, Physics Department seminar, April 2009. 
5. Philip Schnenayder, Oral presentation at the 157th meeting of the Acoustical Society 
of America, Portland, Oregon, May 22 2009: “Rhythmic analysis of sperm whale 
broadband acoustic signals”. 

Patent or licensing agreements: 
Shixian Chu, Jinfeng Chen, Zonghuan Wu, Chee-Hung Henry Chu, Vijay Raghavan, 
“Method and Apparatus for Information Visualized Expression and Visualized Human 
Computer Interactive Expression Thereof”, PCT/CN2008/000168 

Use of LONI and HPC resources: 
Philip Schnenayder attended training sessions offered by LONI and LSU HPC. 

Other achievements: 
Philip Schnenayder was awarded partial financial support from the Graduate Student 
Organization to attend the conference. He also received the Acoustical Society of 
America student’s travel grant. 
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Electronic structure of C60 semiconductors under controlled doping
with B, N, and Co atoms

G.L. Zhao a,⁎, S. Yang a, D. Bagayoko a, J. Tang b, Z.J. Wang b

a Physics Department and High Performance Computing Laboratory, Southern University and A & M College, Baton Rouge, LA 70813 USA
b Physics Department, University of New Orleans, New Orleans, LA 70148 USA
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Abstract

We present our recent studies of ab initio density functional theory (DFT) calculations of the electronic structures of several selected n- and
p-type doped C60 semiconductors. A super-cell approach was used. We performed a series of ab initio density functional computations to
systematically study the changes of the electronic structure of C60 semiconductors doped with boron, nitrogen and cobalt atoms. We found that
boron and cobalt doped, face-centered cubic (FCC) C60 solids have the electronic structures of n-type semiconductors. Nitrogen doped FCC C60

solid has an electronic structure similar to those of a p-type semiconductor, with shallow impurity energy levels near the top of the valence bands
of the host material.
© 2008 Elsevier B.V. All rights reserved.
Keywords: Fullerenes; Simulation; n-type and p-type doping; Electronic properties
1. Introduction

The unique properties of C60 materials present some new
opportunities for technology applications [1,2]. Especially, the
very low Debye temperature (ΘD=70 K) and the low thermal
conductivity of C60 bulk semiconductors present an opportu-
nity for constructing new thermoelectric materials with a high
figure-of-merit ZT, [3] where ZT ¼ S2rT

j ; S is the thermoelectric
power (or Seebeck coefficient); σ is the electrical conductivity;
T is the temperature; and κ is the thermal conductivity.
Controlled doping of C60 semiconductors presents an effective
method to tune the electronic properties of the material.
However, to identify suitable doping elements and doping
concentrations in C60 bulk semiconductors, for achieving a
high thermoelectric figure-of-merit, is a challenging task in the
exploration of the new C60 fullerene based thermoelectric
materials. Understanding the electronic structure of the doped
materials is another major task in the research. On the other
hand, ab initio density functional calculations are effective
⁎ Corresponding author.
E-mail address: zhao@phys.subr.edu (G.L. Zhao).

0925-9635/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.diamond.2007.12.033
methods to reveal the electronic structure of the materials
under controlled doping. In this work, we performed the ab
initio density functional calculations to study the electronic
structure of C60 semiconductors doped with B, N, and Co
atoms in the interstitial sites of the parent material in FCC
lattice. Miyamoto et al. [4] studied the B-doped C60 (BC59)
with one carbon atom substituted by a boron atom. Ching et al.
calculated the electronic energy bands, the density of states
(DOS), and the optical properties of C60, K3C60, and K6C60

solids in FCC lattice [5–7]. For more than a decade, most of
the research on the interstitially doped C60 solids focused on
high doping concentrations and for the superconducting
properties. Gu et al. performed AC susceptibility measure-
ments of Sn doped C60 superconductor [8]. Saito and
Oshiyama [9] calculated electronic structures of Ca3C60 and
Ca5C60 solids and Kortan et al. [10] found by measurements
that the high concentration Ca doped C60 solid experi-
enced FCC → BCC (body-centered cubic) → SC(simple
cubic) phase transformations for the Ca concentration from
Ca3C60 → Ca4C60 → Ca5C60. By doping Rb and Tl alloy to
C60 solids, Iqbal et al. [11] increased the Tc to 45 °K. Umemoto
and Saito [12] calculated body-centered-orthorhombic fulleride

mailto:zhao@phys.subr.edu
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Fig. 1. The partial and total densities of states of B-doped C60 solid. The Fermi
energy is set at 0.0 eV.
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Ba4C60 using local density approximation(LDA), they explained
the observed lattice-constant differences, aNbNc. Korenivski
and Rao [13] evaluated the BCC phase Ba6C60 using SQUID
measurements and found the upper critical field Hc2 to be ap-
proximately 2 T. Alkali metal-doped C60 solids at high
concentrations (with the alkali atoms in the interstitial sites of
bulk C60 solids) have been intensively investigated (see Ref. [14–
22] and Ref. [23] for a review).We are aware of no detailed report
of experiment or theoretical work on the electronic properties of
C60 semiconductors with low B, N and Co doping concentrations.
In this brief report, we present the results of utilizing an ab initio
plane-wave pseudopotential method to calculate the changes
of the electronic structure of the above three doped C60

semiconductors.

2. Computation methods

We implemented the first-principle density functional
calculations using the projector augmented wave (PAW)
method, taking the relativistic effects into account [24,25].
The exchange-correlation interaction was described by the
generalized gradient approximation (GGA). The Vienna ab
initio simulation package (VASP) [26–29] was used in these
calculations. The 2s and 2p electron states of C, B and N atoms
were described as valence states, whereas for Co atom, the 3d
and 4s states were treated as valences. The core electron states
were treated as those of free atoms in a frozen core
approximation. We used a super-cell approach that includes
60 carbon atoms and one doping atom (1:60 doping concentra-
tion) as well as 240 carbon atoms and one doping atom (1:240
doping concentration) in the comparative calculations. All the
atomic coordinates and unit-cell volumes were relaxed in the ab
initio DFT calculations. We implemented spin-polarized
electron density calculations. With the plane-wave energy
cutoff at 450 eV, the calculated total energies converged to the
order of about 0.01 meV. The residue forces on atoms were less
than 10 meV/Å. In the super-cell method, we used a 4×4×4
and 1×1×1 Monkhost grids in the k space sampling for the
1:60 and 1:240 doping concentrations, respectively. The Bader
charge [30] was calculated for both the dopant atoms and the
host C60 atoms.

3. Results and discussions

The calculated results of B, N, and Co-doped C60 semi-
conductors with 1:60 concentration are summarized in Table 1.
The calculated total and partial electron density of states (DOS)
Table 1
Summary results of B, N, and Co-doped (1:60 concentration) C60 semiconductors

Dopant Dopant site Type ΔV /V MB(μB) ΔQ (e)

B Tetra n +0.27% 0.0 +0.29
N Tetra p +0.27% 0.0 −0.26
Co Tetra n +0.415% 3.0 +0.415

The positive and negative signs of ΔQ mean losing and gaining electrons in |e|.
The positive and negative signs of ΔV /V denote expansion and contraction of
unit-cell volume, respectively. MB is the magnetic moment of the system in μB.
are presented in Figs. 1–3, where the Fermi level (EF) was set at
0.0 eV. As can be seen from Table 1 and Figs. 1–3, nitrogen
doped C60 solid is a p-type semiconductor, while boron and
cobalt doped C60 solids are n-type semiconductors. There are
small expansions of +0.27 % (for B and N) and +0.415% (for
Co) of the unit-cell volumes in the three doping cases at the
tetrahedral site of FCC C60 solids. The boron and nitrogen
doped C60 have no net magnetic moment. Interestingly, the net
magnetic moment of cobalt doped C60 solid is 3 μB, which is
nearly the same as that of a free cobalt atom.

There is a small charge transfer of about +0.29|e| from the
dopant B atom to the carbon atoms of C60. Similarly, the charge
transfer from the dopant Co atom to the carbon atoms of C60 is
about +0.415|e|. The charge transfer from the dopant N atom to
the carbon atoms of C60 is negative, i.e. −0.26|e|, which is
consistent with the character of p-type doped semiconductors.
Different from the substitutional doping in n- or p-type silicon
semiconductors, the dopants in C60 solids occupy interstitial
sites of the FCC lattice because of the high stability of the C60

fullerene structure and a weak interaction between them. The
charge transfer properties can be understood from the relative
weak electron affinities of B atom (at 0.28 eV) and Co atom (at
0.66 eV) in comparison with that of carbon atom (at 1.26 eV)
[31]. The charge transfers also agree qualitatively with the octet
rule which suggest carbon losing electrons to nitrogen but not to
boron and cobalt. The results are also consistent with the partial
DOS of B and N-doped C60 solid in Figs. 1 and 2. The boron p-
states form the impurity electron states that merge with the
electron states of the conduction band edge of host C60 material



Fig. 3. The spin up and down density of states of Co-doped C60 solid. The Fermi
energy is at 0.0 eV.
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around the Fermi level, as in Fig. 1. Miyamoto et al. [4]
calculated the substitutionally doped BC59 using a local density
approximation (LDA). From the calculated results of DOS, they
found that the BC59 is a hole doped fullerene. The DOS of
dopant boron is situated about 0.2 eVabove the valence band of
C59. The results reported here for C60 solids interstitially doped
with B are different from those of Miyamoto et al. We find the
DOS of the dopant boron to be close to the bottom of the
conduction band of the system and the doped material is an n-
type semiconductor.

The nitrogen p-states form a distinct peak structure that is
located above the top of the valence band of host C60 solid, as in
Fig. 2. Therefore, for interstitial doping, nitrogen doped FCC
C60 solid has an electronic structure similar to that of a p-type
semiconductor, with shallow impurity energy levels near the top
of the valence bands of the host material.

In all of the three doped C60 semiconductors considered, the
total energy is lower for the dopants at the tetrahedral site than
for other sites such as the octahedral sites. Consequently, in this
article, we report the results of the dopant B, N, and Co atoms at
the tetrahedral site of C60 host material. From the partial DOS in
Figs. 1 and 2, we can see that C60 also has a contribution to the
DOS near the Fermi level. This is due to the hybridization of the
C 2p state with states of the corresponding dopant atoms. Fig. 3
shows the spin-polarized electron density of states for Co-doped
C60 semiconductors. The spin up and down DOS of Co-doped
C60 solid have noticeably different structures near the Fermi
level. For the cases of lower doping concentrations at 1:240, we
only observed that the density of states due to the dopant atoms
Fig. 2. The partial and total densities of states of N-doped C60. The Fermi level is
at 0.0 eV.
(B, N, or Co) decreased while the general structure of the DOS
remained nearly the same.

4. Conclusions

In summary, we utilized the ab initio DFT method to cal-
culate the electronic structures of B, N, and Co-doped C60

semiconductors. Both the B and Co-doped C60 solids are n-type
semiconductors. The N-doped C60 solid is a p-type semicon-
ductor. The calculated electronic properties of B, N, and Co-
doped C60 semiconductors will facilitate the exploration of the
new materials for the near future applications.
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Abstract. Effective reproduction is essential for the survival and pro-
liferation of any organism, from the birth of new offspring to the repro-
duction of individual cells. Each portion of a cell’s DNA must be copied
exactly once during the replication phase of its cell cycle to ensure vi-
ability. In humans, this is achieved by a complex pattern of replication
origins and terminations along the chromosomes until the final product
is realized. DNA Tiling Microarrays are utilized to assay discrete pools
of DNA replicated during different parts of the replication phase. We
present a generalized framework for analyzing this discrete timing data
to recover a relatively continuous profile of the DNA replication tim-
ing. This approach can be used to assay DNA replication timing over a
variety of human cell lines or extended to other organisms.

Key words: human replication timing, DNA tiling microarrays

1 Introduction and Related Work

DNA replication is a crucial step in the life cycle of a cell as faithful repro-
duction of the genetic material is essential for viability of daughter cells [1]. In
higher eukaryotes, this process is carried out via the firing of numerous origins
of replication along the chromosomes in order to replicate the DNA in a reason-
able amount of time. The replication forks emanating from these origins work in
parallel to replicate the entire genome, producing a complex schedule of DNA
replication timing.

The replication time of individual areas of the genome is of interest for a
variety of reasons including the influence of chromatin structure, transcriptional
activity, and the possibility of allelic variation in replication timing [2]. Hence,
replication timing has been studied in a number of model organisms including
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Saccharomyces cerevisiae [3, 4], Schizosaccharomyces pombe [5], and Drosophila

melanogaster [6, 7]. Microarray technology has played a major role in many of the
studies of DNA replication timing [8–10], and more recent studies have extended
these techniques to human cell lines [11–16].

One important method used for high resolution studies of DNA replication
timing is the isolation of discrete pools of DNA replicated during different parts
of S-phase, followed by their hybridization to genome tiling microarrays. We
have adopted this method for our work in human DNA replication timing, and
developed algorithms to analyze such data effectively and efficiently. In this pa-
per, we present algorithms and techniques for recovery of a relatively continuous
profile of DNA replication timing from these discrete pools of replicated DNA.

2 Methods

2.1 Data Collection

The starting point for our analysis is a set of discrete pools of DNA replicated
during different parts of S-phase that have each been hybridized to a tiling mi-
croarray. In order to harvest enough DNA for the arrays, biologists synchronize
a population of cells at the entry point of S-phase. The cells are then released
together into the replication phase. Labeling methods are used to isolate the
portions of the DNA which replicate during each part of S-phase. This synchro-
nization and release can introduce non-trivial ‘synchronization error’ whereby
each cell c of the population moves with some delay ∆c with respect to the ac-
tual time of release t. Hence, the time at which cell c begins its replication phase
is not t, as desired, but actually t + ∆c. In the case of application and removal
of drugs to achieve synchronization, the delay for each individual cell amounts
to the amount of time it takes for the cell to recover after the drug has been
removed. This can be viewed as a stochastic process.

The magnitude of synchronization error present with a given technique must
be accounted for when designing the length of the labeling periods to be used in
the experiment. In general, the labeling periods should be made at least twice
as long as the expected synchronization error from the chosen technique. We
have used instantiations of this experimental design to investigate replication
timing in chromosomes 21 and 22 [15], and the ENCODE regions1 [16]. Below,
we present a generalized framework for analyzing this type of experimental data.

Labeling periods begin with the start of S-phase, denoted as 0 hour. The
length of each labeling period, L, provides a delicate balance between temporal
resolution and resistance to synchronization error. Larger values of L decrease
temporal resolution as all DNA replicating within a single time period appears
on the same array. However, as smaller values of L approach the expected syn-
chronization error, noise introduced across time period boundaries increases.

The first time period is 0-to-L hours, followed by L-to-2L hours, 2L-to-3L
hours, and so on. The length of S-phase in the cell line under consideration guides

1 The ENCODE regions [12] comprise approximately 1% of the human genome.
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the choice of how many time periods to assay. Each time period is labeled and
hybridized to its own array set, so the cost of the experiment increases linearly
with the number of time periods. For this reason, it is sometimes desirable to use
less time periods than would cover the full duration of S-phase since the amount
of replicated DNA tends to fall dramatically near the end of the replication phase
[15].

2.2 Time of Replication of 50% (TR50) of a Locus

The ultimate goal of a DNA replication timing study is to identify, with as much
precision as possible, the actual time during S-phase that a given locus replicated.
Under ideal circumstances, a given probe on the array set will display signal2 in a
single time period, with no signal across the other time periods. In this case, the
locus in question has replicated sometime during the time period that displays
signal. However, this scenario is rare due to synchronization error, tiling array
artifacts such as cross-hybridization, and allelic variation in replication timing.
The approach we take is to compute a value called the Time of Replication
of 50% (TR50) for each probe in the array set. This TR50 value is a linear
interpolation of the time at which the cumulative signal across all time periods
for the probe passes the 50% point. We denote the signal for probe p in time
period X-to-Y as (X-to-Y)p.

The steps to compute the TR50 value for probe p are as follows:
Normalization - Remove baseline signal present across all time periods

// Find the minimum signal value of all of the time periods

Minimum = min((0-to-L)p, (L-to-2L)p, ...);

// Subtract the minimum signal value from each of the time periods

(0-to-L)p = (0-to-L)p - Minimum;

(L-to-2L)p = (L-to-2L)p - Minimum;

...

Linear Interpolation - Calculate the TR50 value

Total = (0-to-L)p + (L-to-2L)p + ...; // Sum signal of all time periods

If (Total == 0) // Skip probes with 0 total signal

{ skip this probe; }

// Find the point at which 50% cumulative signal is passed

X = 0; // Start at the first time period

Cum = (0-to-L)p; // Start with the first time period’s signal

While (Cum < (Total / 2.0)) // Check for 50% of total signal

2 Signal for a probe on the array is maintained as a general concept throughout the
paper in order to be applicable to both arrays that have only perfect match (PM)
probes and arrays that pair a mis-match (MM) probe with each PM probe. In the
latter case any negative signals created by the MM probe having higher intensity
than the PM probe are truncated to 0. No negative signals are allowed on the array.



4 Extraction of Human DNA Replication Timing Patterns

{
X = X + L; // Move to the next time period

Cum = Cum + (X-to-X+L)p; // Add next time period’s signal

}

// Perform linear interpolation (X is the beginning of the time period

// where the cumulative signal surpassed 50% of the total signal)

TR50 = X + L * ((0.5 * Total - (Cum - (X-to-X+L)p)) / (X-to-X+L)p);

2.3 Temporal Specificity and Allelic Variation

The TR50 value provides an estimate of the time when the majority of repli-
cation occurs for a given locus in cases where all alleles at the locus replicate
synchronously. This is called temporally specific replication (TSR). However, it
has been well documented that different alleles at a given locus can replicate
asynchronously [17–26]. This phenomenon, which we denote as temporally non-
specific replication (TNSR), can produce a misleading result for the TR50 value.
With TNSR, the TR50 value gives the average replication time over all alleles,
which can produce a value at a time when no allele was being replicated. For this
reason, it is important to identify and separate TNSR probes from TSR probes,
which we do via our Temporal Specificity Algorithm.

Many normal cell lines are diploid in nature, having two copies of each chro-
mosomal locus. However, HeLa cells, which we have used in some of our work,
typically exhibit three copies of each chromosomal locus [16]. Tetraploidy, hav-
ing four homologous sets of chromosomes, is common in plants and appears in
some insects, amphibians, and reptiles [27]. We have generalized our Temporal
Specificity Algorithm for application to cell lines that exhibit N copies of each
chromosomal locus. Though there can be exceptions to the general ploidy in
any given cell line, N should be set to the most prevalent occurrence of copy
number in the cell line. For cell lines that exhibit more than one very common
copy number, the larger value should be chosen for N . Having N larger than
the actual copy number will perform more accurate classification than when the
value of N is less than the actual copy number.

The steps of the Temporal Specificity Algorithm are as follows:
Normalization - This step is the same as in the TR50 calculation3

Total = (0-to-L)p + (L-to-2L)p + ...; // Sum signal of all time periods

If (Total == 0) // Skip probes with 0 total signal

{ skip this probe; }

// Find the maximum sum of all sets of two adjacent time periods

Maxsum = max((0-to-L)p+(L-to-2L)p, (L-to-2L)p+(2L-to-3L)p, ...);

// Find the maximum signal value of all of the time periods

3 In practice the TR50 calculation and Temporal Specificity Algorithm are computed
together, but they are presented separately here for clarity.
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Maximum = max((0-to-L)p, (L-to-2L)p, ...);

// Find the maximum sum of all sets of two adjacent time periods that

// does not include the maximum signal value in either time period

Maxsumnot = 0;

X = L; // start X at the beginning of the 2nd time period

While ((X-to-X+L)p exists)

{
If (((X-L-to-X)p < Maximum) and ((X-to-X+L)p < Maximum))

{ // Neither time period includes the maximum signal

Maxsumnot = max(Maxsumnot, (X-L-to-X)p + (X-to-X+L)p);

}
}

If (Maxsum > (1 - 1/N) * Total) // Are all alleles replicating together?

{ classify probe as TSR; }
Else If (Maxsumnot >= (1/N) * Total) // Is at least one allele separate?

{ classify probe as TNSR; }
Else // Isolated signal is not strong enough to represent an allele.

{ classify probe as TSR; }

This classification scheme might seem arcane at first because it has been
evolved over a number of attempts to classify the probes correctly. The final
algorithm was arrived at after a thorough combinatorial analysis of the possible
positions of replicating alleles with respect to time periods and their boundaries.
We elucidate the reasoning behind each part of the algorithm in detail below.

Our original attempts to classify probes focused on the signal of each time
period individually. However, due to the presence of synchronization error in the
population, loci that replicate near the boundary of two adjacent time periods
can contribute significant signal to both. This causes such loci to appear to
undergo TNSR, even though the alleles may actually replicate together near the
boundary. To address this issue we adopted the strategy of summing adjacent
time periods. The sum of two adjacent time periods gives a view of the replication
that occurs in either time period or on the boundary between them.

The first step of the classification algorithm is to determine if there is strong
evidence that all alleles replicated together. The candidate set of adjacent time
periods is selected by finding the maximum sum of signal for any set of two
adjacent time periods. If this sum exceeds (1 - 1/N) of the total signal, we
classify the probe as TSR. This implies that less than 1/N of the total signal is
contained in the other time periods. With N alleles at the locus, each individual
allele is expected to contribute 1/N of the total signal across all time periods.

The second step is only performed if the first step failed to yield strong evi-
dence for all alleles replicating together. In the second step, we look for evidence
that at least one allele is replicating apart from a time period with the maximum
signal value. We already know (since the first step failed) that at least 1/N of
the signal is isolated from the two adjacent time periods that contained the max-
imum sum. The objective here is to determine if the signal that is isolated from
the maximum signal value is concentrated enough to represent at least one allele.
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To test this, we find the maximum sum of two adjacent time periods that does
not include a time period with the maximum signal. Note that the maximum
signal does not have to appear in one of the two time periods that contributed
to the sum in the first step. Hence this test is subtly unrelated to the first. If
this sum is at least 1/N of the total signal, then there is evidence for at least
one allele replicating apart from the majority of signal. Namely, the evidence is
for an allele to be replicating in one of the two time periods that produced this
sum or on the boundary between them. In this case the probe is classified as
TNSR.

Lastly, if the second test fails to yield evidence for an allele replicating apart
from the majority of signal, then we consider the remaining scattered signal to
be due to array artifacts and classify the probe as TSR.

2.4 Segregation of Temporally Specific and Temporally Non-specific
Area

The probe data computed by the TR50 and Temporal Specificity Algorithm is
very noisy due to cross-hybridization and other microarray artifacts. To address
this, we take advantage of the fact that the replication mechanism provides us
with spatial locality for replicated segments. As a replication fork proceeds, it
causes adjacent loci on the chromosomes to replicate at similar times until the
fork stalls or meets DNA that has already been replicated.

We pass a sliding window over each chromosomal sequence in order to gen-
erate broad regions of replication. The first task is to segregate TSR regions
from TNSR regions. The size of the window used should be chosen to match the
expected size of a replication fragment. Replication fragments will vary in size
based on the length of time that the responsible replication fork operated in the
given time period, so this parameter should be chosen based on what the typical
expected size for a replication fragment is. A variety of strategies can be used to
estimate this [16], but this is also a tunable parameter. Larger window sizes will
attenuate noise in the data more; however, if the window size becomes larger
than the replication fragments, then multiple of them can get merged. Smaller
window sizes will suffer more from the noise inherent in the microarray data.
This parameter can be increased until noise is attenuated at an acceptable level.

We also require a minimum probe density to generate intervals. If too few
probes fall into a window, then such an area will not be classified for lack of
tiling data. This is another tunable parameter. Setting a higher density decreases
coverage of the generated intervals but increases confidence in the classification.

The sliding window is placed at the beginning of each chromosome to start
segregation of the regions. As the window moves from probe to probe, the mini-
mum probe density is tested for and when this density is exceeded a TSR interval
or TNSR interval is begun based on whether there are more TSR or TNSR probes
in the window. In the event of a tie, the window begins when the next probe is
reached (which will break the tie). The current interval is ended when the probe
density drops below the minimum level or when the TSR to TNSR probe ratio
changes direction (in which case a new interval is started).



Extraction of Human DNA Replication Timing Patterns 7

2.5 TR50 Smoothing

The TR50 values provide a noisy view of the replication timing pattern. In order
to get a more continuous estimate of the replication profile, a locally weighted
least squares (lowess) smoothing [28] is performed on the set of TSR probes.
The smoother is set to consider all probes within the same window size used for
the segregation above. Only TR50 values for the TSR probes are used because
TR50 values for TNSR probes are unreliable as discussed above.

3 Results

We used the methods described in Section 2 to analyze two technical replicates
and one biological replicate of the HeLa cell line (human) using Affymetrix
ENCODE tiling arrays [16]. In this section, we report results pertinent to the
methods themselves. Throughout this section, Replicate 1 (Rep1) and Replicate
2 (Rep2) refer to two technical replicates (the same biological sample hybridized
to two sets of arrays) and Replicate 3 (Rep3) refers to the biological replicate.

Computation on the individual probes (Sections 2.2 and 2.3) performs a nor-
malization step for probes that have no time period with 0 signal. The percentage
of probes normalized during this process is shown in Figure 1.

Fig. 1. Percentage of probes normalized for each replicate.

This graph plots the percentage of probes on the array where every time
period had positive signal. Such probes were normalized by subtracting the min-
imum signal from all time periods, in order to remove baseline signal for the
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given probe. The three replicates all exhibit the same trend for each chromo-
some, indicating that the process is indeed removing signal from array artifacts,
instead of removing variations in signal between different replicates.

Figure 2 shows the percentage of probes classified as TSR for each replicate
on each chromosome. In this case, Rep2 and Rep3 show the same general trend
for each chromosome, while Rep1 has a more varied pattern. This underscores
the importance of processing the probes through windows in the next steps since
two technical replicates (Rep1 and Rep2) show varied results at the probe level.

Fig. 2. Percentage of probes classified as temporally specific (TSR) per replicate.

The segregation and TR50 smoothing was done in a window of size 60,000
base pairs. This was chosen based on a profiling calculation of the expected size
of replication fragments in the experiment under consideration [16].

Figure 3 shows the TR50 data for a region on chromosome 21 with the
smoothed TR50 curve overlaid. Segregation of TSR regions from TNSR regions
was performed with a minimum probe density of 25%. This required at least 600
probes to fall inside of the sliding 60,000 base pair window in order to generate
intervals (each probe tiles 25 base pairs). The segregation intervals are shown in
Figure 3 above the TR50 data.

The TR50 data at the probe level is quite noisy, but a pattern can be seen
in the data where tightly grouped probes produce darker areas in the graph.
The smoothed TR50 curve follows these trends closely. There is a late replicat-
ing domain (broad peak) in the graph which is surrounded by early replicating
DNA. These domains have proven to be quite interesting, as the broad peak of
late replication is associated with low gene density, low transcriptional activity,
and a high level of repressive histone marks [2]. Further, the early replicating
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Fig. 3. Replication profile over a region of chromosome 21. Each dot in the graph
corresponds to the TR50 value of a single probe. The smoothed TR50 curve is overlaid.
The segregation of TSR and TNSR regions is shown above the graph.

domains surrounding this broad peak are associated with high gene density, high
transcriptional activity, and high levels of activating histone marks. The troughs
in the replication curve allude to possible sites of replication origin, while the
peaks could be indicative of sites of fork termination. Notice from the segrega-
tion at the top of the figure that there is a large section of TNSR on the right
half of the broad peak of late replication. This area is associated with high levels
of both repressive and activating histone marks. We have found that on average
roughly 20% of the ENCODE regions undergo TNSR [16].

All of the algorithms and techniques that we have presented to generate the
replication timing profile run in linear time with respect to the size of the tiling
array set used. This efficiency is achieved by using incrementally updating sliding
windows. The linear runtime will allow for the general methods presented here
to be utilized for whole genome analysis with moderate computational resource
requirements. The replication timing profile constructed (displayed in Figure
3) produces a relatively continuous view of the replication timing in addition
to identifying TNSR regions where inter-allelic variation of replication timing
occurs.

4 Conclusion

We have presented a generalized framework and algorithms for analyzing a com-
mon type of DNA replication timing assay using tiling arrays. We have also
discussed techniques for choosing parameters for analysis of a given replication
timing array set. This approach overcomes the noise present in such tiling array
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data to reconstruct a relatively continuous replication timing profile and iden-
tify areas of temporally non-specific replication. The algorithms developed have
linear time complexity in the size of the tiling array set so that the approach
can be used for whole genome analysis in a variety of organisms requiring only a
moderate expenditure of computational resources. Lastly, we have discussed an
example of the framework being applied to a set of DNA replication timing data
over a small portion of the human genome. In the future, we intend to utilize
this approach to analyze replication timing over the full human genome.
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Identification and analysis of functional
elements in 1% of the human genome by
the ENCODE pilot project
The ENCODE Project Consortium*

We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the
human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a
number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human
genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively
transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts,
and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new
understanding about transcription start sites, including their relationship to specific regulatory sequences and features of
chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged,
including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of
information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has
yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these
studies are defining a path for pursuit of a more comprehensive characterization of human genome function.

The human genome is an elegant but cryptic store of information. The
roughly three billion bases encode, either directly or indirectly, the
instructions for synthesizing nearly all the molecules that form each
human cell, tissue and organ. Sequencing the human genome1–3 pro-
vided highly accurate DNA sequences for each of the 24 chromosomes.
However, at present, we have an incomplete understanding of the
protein-coding portions of the genome, and markedly less under-
standing of both non-protein-coding transcripts and genomic ele-
ments that temporally and spatially regulate gene expression. To
understand the human genome, and by extension the biological pro-
cesses it orchestrates and the ways in which its defects can give rise to
disease, we need a more transparent view of the information it encodes.

The molecular mechanisms by which genomic information directs
the synthesis of different biomolecules has been the focus of much of
molecular biology research over the last three decades. Previous stud-
ies have typically concentrated on individual genes, with the resulting
general principles then providing insights into transcription, chro-
matin remodelling, messenger RNA splicing, DNA replication and
numerous other genomic processes. Although many such principles
seem valid as additional genes are investigated, they generally have
not provided genome-wide insights about biological function.

The first genome-wide analyses that shed light on human genome
function made use of observing the actions of evolution. The ever-
growing set of vertebrate genome sequences4–8 is providing increas-
ing power to reveal the genomic regions that have been most and least
acted on by the forces of evolution. However, although these studies
convincingly indicate the presence of numerous genomic regions
under strong evolutionary constraint, they have less power in iden-
tifying the precise bases that are constrained and provide little, if any,
insight into why those bases are biologically important. Furthermore,
although we have good models for how protein-coding regions

evolve, our present understanding about the evolution of other func-
tional genomic regions is poorly developed. Experimental studies
that augment what we learn from evolutionary analyses are key for
solidifying our insights regarding genome function.

The Encyclopedia of DNA Elements (ENCODE) Project9 aims to
provide a more biologically informative representation of the human
genome by using high-throughput methods to identify and catalogue
the functional elements encoded. In its pilot phase, 35 groups pro-
vided more than 200 experimental and computational data sets that
examined in unprecedented detail a targeted 29,998 kilobases (kb) of
the human genome. These roughly 30 Mb—equivalent to ,1% of
the human genome—are sufficiently large and diverse to allow for
rigorous pilot testing of multiple experimental and computational
methods. These 30 Mb are divided among 44 genomic regions;
approximately 15 Mb reside in 14 regions for which there is already
substantial biological knowledge, whereas the other 15 Mb reside in
30 regions chosen by a stratified random-sampling method (see
http://www.genome.gov/10506161). The highlights of our findings
to date include:
$ The human genome is pervasively transcribed, such that the
majority of its bases are associated with at least one primary tran-
script and many transcripts link distal regions to established protein-
coding loci.
$ Many novel non-protein-coding transcripts have been identified,
with many of these overlapping protein-coding loci and others
located in regions of the genome previously thought to be transcrip-
tionally silent.
$ Numerous previously unrecognized transcription start sites
have been identified, many of which show chromatin structure
and sequence-specific protein-binding properties similar to well-
understood promoters.

*A list of authors and their affiliations appears at the end of the paper.
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$ Regulatory sequences that surround transcription start sites
are symmetrically distributed, with no bias towards upstream
regions.
$ Chromatin accessibility and histone modification patterns are
highly predictive of both the presence and activity of transcription
start sites.
$ Distal DNaseI hypersensitive sites have characteristic histone
modification patterns that reliably distinguish them from promo-
ters; some of these distal sites show marks consistent with insulator
function.
$ DNA replication timing is correlated with chromatin structure.
$ A total of 5% of the bases in the genome can be confidently
identified as being under evolutionary constraint in mammals; for
approximately 60% of these constrained bases, there is evidence of
function on the basis of the results of the experimental assays per-
formed to date.
$ Although there is general overlap between genomic regions iden-
tified as functional by experimental assays and those under evolu-
tionary constraint, not all bases within these experimentally defined
regions show evidence of constraint.
$ Different functional elements vary greatly in their sequence vari-
ability across the human population and in their likelihood of res-
iding within a structurally variable region of the genome.
$ Surprisingly, many functional elements are seemingly uncon-
strained across mammalian evolution. This suggests the possibility
of a large pool of neutral elements that are biochemically active but
provide no specific benefit to the organism. This pool may serve as a
‘warehouse’ for natural selection, potentially acting as the source
of lineage-specific elements and functionally conserved but non-
orthologous elements between species.

Below, we first provide an overview of the experimental techniques
used for our studies, after which we describe the insights gained from
analysing and integrating the generated data sets. We conclude with a
perspective of what we have learned to date about this 1% of the

human genome and what we believe the prospects are for a broader
and deeper investigation of the functional elements in the human
genome. To aid the reader, Box 1 provides a glossary for many of the
abbreviations used throughout this paper.

Experimental techniques

Table 1 (expanded in Supplementary Information section 1.1) lists
the major experimental techniques used for the studies reported here,
relevant acronyms, and references reporting the generated data sets.
These data sets reflect over 400 million experimental data points
(603 million data points if one includes comparative sequencing
bases). In describing the major results and initial conclusions, we
seek to distinguish ‘biochemical function’ from ‘biological role’.
Biochemical function reflects the direct behaviour of a molecule(s),
whereas biological role is used to describe the consequence(s) of this
function for the organism. Genome-analysis techniques nearly
always focus on biochemical function but not necessarily on bio-
logical role. This is because the former is more amenable to large-
scale data-generation methods, whereas the latter is more difficult to
assay on a large scale.

The ENCODE pilot project aimed to establish redundancy with
respect to the findings represented by different data sets. In some
instances, this involved the intentional use of different assays that were
based on a similar technique, whereas in other situations, different
techniques assayed the same biochemical function. Such redundancy
has allowed methods to be compared and consensus data sets to be
generated, much of which is discussed in companion papers, such
as the ChIP-chip platform comparison10,11. All ENCODE data have
been released after verification but before this publication, as befits
a ‘community resource’ project (see http://www.wellcome.ac.uk/
doc_wtd003208.html). Verification is defined as when the experiment
is reproducibly confirmed (see Supplementary Information section
1.2). The main portal for ENCODE data is provided by the UCSC
Genome Browser (http://genome.ucsc.edu/ENCODE/); this is

Box 1 | Frequently used abbreviations in this paper

AR Ancient repeat: a repeat that was inserted into the early
mammalian lineage and has since become dormant; the majority of
ancient repeats are thought to be neutrally evolving.
CAGE tag A short sequence from the 59 end of a transcript
CDS Coding sequence: a region of a cDNA or genome that encodes
proteins
ChIP-chip Chromatin immunoprecipitation followed by detection of
the products using a genomic tiling array
CNV Copy number variants: regions of the genome that have large
duplications in some individuals in the human population
CS Constrained sequence: a genomic region associated with evidence
of negative selection (that is, rejection of mutations relative to neutral
regions)
DHS DNaseI hypersensitive site: a region of the genome showing a
sharply different sensitivity to DNaseI compared with its immediate
locale
EST Expressed sequence tag: a short sequence of a cDNA indicative of
expression at this point
FAIRE Formaldehyde-assisted isolation of regulatory elements: a
method to assay open chromatin using formaldehyde crosslinking
followed by detection of the products using a genomic tiling array
FDR False discovery rate: a statistical method for setting thresholds on
statistical tests to correct for multiple testing
GENCODE Integrated annotation of existing cDNA and protein
resources to define transcripts with both manual review and
experimental testing procedures
GSC Genome structure correction: a method to adapt statistical tests
to make fewer assumptions about the distribution of features on the
genome sequence. This provides a conservative correction to standard
tests
HMM Hidden Markov model: a machine-learning technique that can
establish optimal parameters for a given model to explain the observed
data

Indel An insertion or deletion; two sequences often show a length
difference within alignments, but it is not always clear whether this
reflects a previous insertion or a deletion
PET A short sequence that contains both the 59 and 39 ends of a
transcript
RACE Rapid amplification of cDNA ends: a technique for amplifying
cDNA sequences between a known internal position in a transcript and
its 59 end
RFBR Regulatory factor binding region: a genomic region found by a
ChIP-chip assay to be bound by a protein factor
RFBR-Seqsp Regulatory factor binding regions that are from
sequence-specific binding factors
RT–PCR Reverse transcriptase polymerase chain reaction: a
technique for amplifying a specific region of a transcript
RxFrag Fragment of a RACE reaction: a genomic region found to be
present in a RACE product by an unbiased tiling-array assay
SNP Single nucleotide polymorphism: a single base pair change
between two individuals in the human population
STAGE Sequence tag analysis of genomic enrichment: a method similar
to ChIP-chip for detecting protein factor binding regions but using
extensive short sequence determination rather than genomic tiling arrays
SVM Support vector machine: a machine-learning technique that can
establish an optimal classifier on the basis of labelled training data
TR50 A measure of replication timing corresponding to the time in the
cell cycle when 50% of the cells have replicated their DNA at a specific
genomic position
TSS Transcription start site
TxFrag Fragment of a transcript: a genomic region found to be present
in a transcript by an unbiased tiling-array assay
Un.TxFrag A TxFrag that is not associated with any other functional
annotation
UTR Untranslated region: part of a cDNA either at the 59 or 39 end that
does not encode a protein sequence
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augmented by multiple other websites (see Supplementary Informa-
tion section 1.1).

A common feature of genomic analyses is the need to assess the
significance of the co-occurrence of features or of other statistical
tests. One confounding factor is the heterogeneity of the genome,
which can produce uninteresting correlations of variables distributed
across the genome. We have developed and used a statistical frame-
work that mitigates many of these hidden correlations by adjusting
the appropriate null distribution of the test statistics. We term this
correction procedure genome structure correction (GSC) (see Sup-
plementary Information section 1.3).

In the next five sections, we detail the various biological insights of
the pilot phase of the ENCODE Project.

Transcription
Overview. RNA transcripts are involved in many cellular functions,
either directly as biologically active molecules or indirectly by encod-
ing other active molecules. In the conventional view of genome
organization, sets of RNA transcripts (for example, messenger
RNAs) are encoded by distinct loci, with each usually dedicated to
a single biological role (for example, encoding a specific protein).
However, this picture has substantially grown in complexity in recent
years12. Other forms of RNA molecules (such as small nucleolar
RNAs and micro (mi)RNAs) are known to exist, and often these
are encoded by regions that intercalate with protein-coding genes.
These observations are consistent with the well-known discrepancy
between the levels of observable mRNAs and large structural RNAs

compared with the total RNA in a cell, suggesting that there are
numerous RNA species yet to be classified13–15. In addition, studies
of specific loci have indicated the presence of RNA transcripts that
have a role in chromatin maintenance and other regulatory control.
We sought to assay and analyse transcription comprehensively across
the 44 ENCODE regions in an effort to understand the repertoire of
encoded RNA molecules.
Transcript maps. We used three methods to identify transcripts
emanating from the ENCODE regions: hybridization of RNA (either
total or polyA-selected) to unbiased tiling arrays (see Supplementary
Information section 2.1), tag sequencing of cap-selected RNA at the
59 or joint 59/39 ends (see Supplementary Information sections 2.2
and S2.3), and integrated annotation of available complementary
DNA and EST sequences involving computational, manual, and
experimental approaches16 (see Supplementary Information section
2.4). We abbreviate the regions identified by unbiased tiling arrays as
TxFrags, the cap-selected RNAs as CAGE or PET tags (see Box 1), and
the integrated annotation as GENCODE transcripts. When a TxFrag
does not overlap a GENCODE annotation, we call it an Un.TxFrag.
Validation of these various studies is described in papers reporting
these data sets17 (see Supplementary Information sections 2.1.4 and
2.1.5).

These methods recapitulate previous findings, but provide
enhanced resolution owing to the larger number of tissues sampled
and the integration of results across the three approaches (see Table 2).
To begin with, our studies show that 14.7% of the bases represented in
the unbiased tiling arrays are transcribed in at least one tissue sample.
Consistent with previous work14,15, many (63%) TxFrags reside out-
side of GENCODE annotations, both in intronic (40.9%) and inter-
genic (22.6%) regions. GENCODE annotations are richer than the
more-conservative RefSeq or Ensembl annotations, with 2,608 tran-
scripts clustered into 487 loci, leading to an average of 5.4 transcripts
per locus. Finally, extensive testing of predicted protein-coding
sequences outside of GENCODE annotations was positive in only
2% of cases16, suggesting that GENCODE annotations cover nearly
all protein-coding sequences. The GENCODE annotations are cate-
gorized both by likely function (mainly, the presence of an open
reading frame) and by classification evidence (for example, transcripts
based solely on ESTs are distinguished from other scenarios); this
classification is not strongly correlated with expression levels (see
Supplementary Information sections 2.4.2 and 2.4.3).

Analyses of more biological samples have allowed a richer descrip-
tion of the transcription specificity (see Fig. 1 and Supplementary
Information section 2.5). We found that 40% of TxFrags are present
in only one sample, whereas only 2% are present in all samples.
Although exon-containing TxFrags are more likely (74%) to be
expressed in more than one sample, 45% of unannotated TxFrags
are also expressed in multiple samples. GENCODE annotations of
separate loci often (42%) overlap with respect to their genomic coor-
dinates, in particular on opposite strands (33% of loci). Further
analysis of GENCODE-annotated sequences with respect to the posi-
tions of open reading frames revealed that some component exons do
not have the expected synonymous versus non-synonymous substi-
tution patterns of protein-coding sequence (see Supplement Infor-
mation section 2.6) and some have deletions incompatible with

Table 1 | Summary of types of experimental techniques used in ENCODE

Feature class Experimental
technique(s)

Abbreviations References Number of
experimental
data points

Transcription Tiling array,
integrated
annotation

TxFrag, RxFrag,
GENCODE

117

118

19

119

63,348,656

59 ends of
transcripts*

Tag sequencing PET, CAGE 121

13

864,964

Histone
modifications

Tiling array Histone
nomenclature{,
RFBR

46 4,401,291

Chromatin{
structure

QT-PCR, tiling
array

DHS, FAIRE 42

43

44

122

15,318,324

Sequence-
specific factors

Tiling array, tag
sequencing,
promoter assays

STAGE, ChIP-
Chip, ChIP-PET,
RFBR

41,52

11,120

123

81

34,51

124

49

33

40

324,846,018

Replication Tiling array TR50 59

75

14,735,740

Computational
analysis

Computational
methods

CCI, RFBR cluster 80

125

10

16

126

127

NA

Comparative
sequence
analysis*

Genomic
sequencing, multi-
sequence
alignments,
computational
analyses

CS 87

86

26

NA

Polymorphisms* Resequencing,
copy number
variation

CNV 103

128

NA

* Not all data generated by the ENCODE Project.
{Histone code nomenclature follows the Brno nomenclature as described in ref. 129.
{Also contains histone modification.

Table 2 | Bases detected in processed transcripts either as a GENCODE
exon, a TxFrag, or as either a GENCODE exon or a TxFrag

GENCODE exon TxFrag Either GENCODE exon
or TxFrag

Total detectable
transcripts (bases)

1,776,157 (5.9%) 1,369,611 (4.6%) 2,519,280 (8.4%)

Transcripts detected
in tiled regions of
arrays (bases)

1,447,192 (9.8%) 1,369,611 (9.3%) 2,163,303 (14.7%)

Percentages are of total bases in ENCODE in the first row and bases tiled in arrays in the second
row.
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protein structure18. Such exons are on average less expressed (25%
versus 87% by RT–PCR; see Supplementary Information section 2.7)
than exons involved in more than one transcript (see Supple-
mentary Information section 2.4.3), but when expressed have a tissue
distribution comparable to well-established genes.

Critical questions are raised by the presence of a large amount of
unannotated transcription with respect to how the corresponding
sequences are organized in the genome—do these reflect longer tran-
scripts that include known loci, do they link known loci, or are they
completely separate from known loci? We further investigated these
issues using both computational and new experimental techniques.
Unannotated transcription. Consistent with previous findings, the
Un.TxFrags did not show evidence of encoding proteins (see Sup-
plementary Information section 2.8). One might expect Un.TxFrags
to be linked within transcripts that exhibit coordinated expression
and have similar conservation profiles across species. To test this, we
clustered Un.TxFrags using two methods. The first method19 used
expression levels in 11 cell lines or conditions, dinucleotide composi-
tion, location relative to annotated genes, and evolutionary conser-
vation profiles to cluster TxFrags (both unannotated and annotated).
By this method, 14% of Un.TxFrags could be assigned to annotated
loci, and 21% could be clustered into 200 novel loci (with an average
of ,7 TxFrags per locus). We experimentally examined these novel
loci to study the connectivity of transcripts amongst Un.TxFrags and
between Un.TxFrags and known exons. Overall, about 40% of the
connections (18 out of 46) were validated by RT–PCR. The second
clustering method involved analysing a time course (0, 2, 8 and 32 h)
of expression changes in human HL60 cells following retinoic-acid
stimulation. There is a coordinated program of expression changes
from annotated loci, which can be shown by plotting Pearson
correlation values of the expression levels of exons inside annotated
loci versus unrelated exons (see Supplementary Information sec-
tion 2.8.2). Similarly, there is coordinated expression of nearby
Un.TxFrags, albeit lower, though still significantly different from
randomized sets. Both clustering methods indicate that there is coor-
dinated behaviour of many Un.TxFrags, consistent with them res-
iding in connected transcripts.
Transcript connectivity. We used a combination of RACE and tiling
arrays20 to investigate the diversity of transcripts emanating from
protein-coding loci. Analogous to TxFrags, we refer to transcripts

detected using RACE followed by hybridization to tiling arrays as
RxFrags. We performed RACE to examine 399 protein-coding loci
(those loci found entirely in ENCODE regions) using RNA derived
from 12 tissues, and were able to unambiguously detect 4,573
RxFrags for 359 loci (see Supplementary Information section 2.9).
Almost half of these RxFrags (2,324) do not overlap a GENCODE
exon, and most (90%) loci have at least one novel RxFrag, which
often extends a considerable distance beyond the 59 end of the locus.
Figure 2 shows the distribution of distances between these new
RACE-detected ends and the previously annotated TSS of each locus.
The average distance of the extensions is between 50 kb and 100 kb,
with many extensions (.20%) being more than 200 kb. Consistent
with the known presence of overlapping genes in the human genome,
our findings reveal evidence for an overlapping gene at 224 loci, with
transcripts from 180 of these loci (,50% of the RACE-positive loci)
appearing to have incorporated at least one exon from an upstream
gene.

To characterize further the 59 RxFrag extensions, we performed
RT–PCR followed by cloning and sequencing for 550 of the 59

RxFrags (including the 261 longest extensions identified for each
locus). The approach of mapping RACE products using microarrays
is a combination method previously described and validated in sev-
eral studies14,17,20. Hybridization of the RT–PCR products to tiling
arrays confirmed connectivity in almost 60% of the cases. Sequenced
clones confirmed transcript extensions. Longer extensions were
harder to clone and sequence, but 5 out of 18 RT–PCR-positive
extensions over 100 kb were verified by sequencing (see Supple-
mentary Information section 2.9.7 and ref. 17). The detection of
numerous RxFrag extensions coupled with evidence of considerable
intronic transcription indicates that protein-coding loci are more
transcriptionally complex than previously thought. Instead of the
traditional view that many genes have one or more alternative tran-
scripts that code for alternative proteins, our data suggest that a given
gene may both encode multiple protein products and produce other
transcripts that include sequences from both strands and from neigh-
bouring loci (often without encoding a different protein). Figure 3
illustrates such a case, in which a new fusion transcript is expressed in
the small intestine, and consists of at least three coding exons from
the ATP5O gene and at least two coding exons from the DONSON
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gene, with no evidence of sequences from two intervening protein-
coding genes (ITSN1 and CRYZL1).
Pseudogenes. Pseudogenes, reviewed in refs 21 and 22, are generally
considered non-functional copies of genes, are sometimes tran-
scribed and often complicate analysis of transcription owing to close
sequence similarity to functional genes. We used various computa-
tional methods to identify 201 pseudogenes (124 processed and 77
non-processed) in the ENCODE regions (see Supplementary Infor-
mation section 2.10 and ref. 23). Tiling-array analysis of 189 of these
revealed that 56% overlapped at least one TxFrag. However, possible
cross-hybridization between the pseudogenes and their correspond-
ing parent genes may have confounded such analyses. To assess better
the extent of pseudogene transcription, 160 pseudogenes (111 pro-
cessed and 49 non-processed) were examined for expression using
RACE/tiling-array analysis (see Supplementary Information section
2.9.2). Transcripts were detected for 14 pseudogenes (8 processed
and 6 non-processed) in at least one of the 12 tested RNA sources,
the majority (9) being in testis (see ref. 23). Additionally, there was
evidence for the transcription of 25 pseudogenes on the basis of their
proximity (within 100 bp of a pseudogene end) to CAGE tags (8),
PETs (2), or cDNAs/ESTs (21). Overall, we estimate that at least 19%
of the pseudogenes in the ENCODE regions are transcribed, which is
consistent with previous estimates24,25.
Non-protein-coding RNA. Non-protein-coding RNAs (ncRNAs)
include structural RNAs (for example, transfer RNAs, ribosomal
RNAs, and small nuclear RNAs) and more recently discovered
regulatory RNAs (for example, miRNAs). There are only 8 well-
characterized ncRNA genes within the ENCODE regions (U70,
ACA36, ACA56, mir-192, mir-194-2, mir-196, mir-483 and H19),
whereas representatives of other classes, (for example, box C/D
snoRNAs, tRNAs, and functional snRNAs) seem to be completely
absent in the ENCODE regions. Tiling-array data provided evidence
for transcription in at least one of the assayed RNA samples for all of
these ncRNAs, with the exception of mir-483 (expression of mir-483
might be specific to fetal liver, which was not tested). There is also
evidence for the transcription of 6 out of 8 pseudogenes of ncRNAs
(mainly snoRNA-derived). Similar to the analysis of protein-
pseudogenes, the hybridization results could also originate from
the known snoRNA gene elsewhere in the genome.

Many known ncRNAs are characterized by a well-defined RNA
secondary structure. We applied two de novo ncRNA prediction
algorithms—EvoFold and RNAz—to predict structured ncRNAs
(as well as functional structures in mRNAs) using the multi-species
sequence alignments (see below, Supplementary Information section
2.11 and ref. 26). Using a sensitivity threshold capable of detecting all
known miRNAs and snoRNAs, we identified 4,986 and 3,707 can-
didate ncRNA loci with EvoFold and RNAz, respectively. Only 268
loci (5% and 7%, respectively) were found with both programs,
representing a 1.6-fold enrichment over that expected by chance;
the lack of more extensive overlap is due to the two programs having
optimal sensitivity at different levels of GC content and conservation.
We experimentally examined 50 of these targets using RACE/
tiling-array analysis for brain and testis tissues (see Supplementary

Information sections 2.11 and 2.9.3); the predictions were validated
at a 56%, 65%, and 63% rate for Evofold, RNAz and dual predictions,
respectively.
Primary transcripts. The detection of numerous unannotated
transcripts coupled with increasing knowledge of the general com-
plexity of transcription prompted us to examine the extent of prim-
ary (that is, unspliced) transcripts across the ENCODE regions.
Three data sources provide insight about these primary transcripts:
the GENCODE annotation, PETs, and RxFrag extensions. Figure 4
summarizes the fraction of bases in the ENCODE regions that over-
lap transcripts identified by these technologies. Remarkably, 93% of
bases are represented in a primary transcript identified by at least two
independent observations (but potentially using the same techno-
logy); this figure is reduced to 74% in the case of primary transcripts
detected by at least two different technologies. These increased spans
are not mainly due to cell line rearrangements because they were
present in multiple tissue experiments that confirmed the spans
(see Supplementary Information section 2.12). These estimates
assume that the presence of PETs or RxFrags defining the terminal
ends of a transcript imply that the entire intervening DNA is tran-
scribed and then processed. Other mechanisms, thought to be
unlikely in the human genome, such as trans-splicing or polymerase
jumping would also produce these long termini and potentially
should be reconsidered in more detail.

Previous studies have suggested a similar broad amount of tran-
scription across the human14,15 and mouse27 genomes. Our studies
confirm these results, and have investigated the genesis of these
transcripts in greater detail, confirming the presence of substantial
intragenic and intergenic transcription. At the same time, many of
the resulting transcripts are neither traditional protein-coding

No coverage

One technology,
one observation 

One technology,
two observations

Two
technologies

All three
technologies

Figure 4 | Coverage of primary transcripts across ENCODE regions. Three
different technologies (integrated annotation from GENCODE, RACE-array
experiments (RxFrags) and PET tags) were used to assess the presence of a
nucleotide in a primary transcript. Use of these technologies provided the
opportunity to have multiple observations of each finding. The proportion
of genomic bases detected in the ENCODE regions associated with each of
the following scenarios is depicted: detected by all three technologies, by two
of the three technologies, by one technology but with multiple observations,
and by one technology with only one observation. Also indicated are
genomic bases without any detectable coverage of primary transcripts.
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Figure 3 | Overview of RACE experiments showing a gene fusion.
Transcripts emanating from the region between the DONSON and ATP5O
genes. A 330-kb interval of human chromosome 21 (within ENm005) is shown,
which contains four annotated genes: DONSON, CRYZL1, ITSN1 and ATP5O.
The 59 RACE products generated from small intestine RNA and detected by

tiling-array analyses (RxFrags) are shown along the top. Along the bottom is
shown the placement of a cloned and sequenced RT–PCR product that has two
exons from the DONSON gene followed by three exons from the ATP5O gene;
these sequences are separated by a 300 kb intron in the genome. A PET tag
shows the termini of a transcript consistent with this RT–PCR product.
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transcripts nor easily explained as structural non-coding RNAs.
Other studies have noted complex transcription around specific loci
or chimaeric-gene structures (for example refs 28–30), but these have
often been considered exceptions; our data show that complex inter-
calated transcription is common at many loci. The results presented
in the next section show extensive amounts of regulatory factors
around novel TSSs, which is consistent with this extensive transcrip-
tion. The biological relevance of these unannotated transcripts
remains unanswered by these studies. Evolutionary information
(detailed below) is mixed in this regard; for example, it indicates that
unannotated transcripts show weaker evolutionary conservation
than many other annotated features. As with other ENCODE-
detected elements, it is difficult to identify clear biological roles for
the majority of these transcripts; such experiments are challenging to
perform on a large scale and, furthermore, it seems likely that many
of the corresponding biochemical events may be evolutionarily neut-
ral (see below).

Regulation of transcription
Overview. A significant challenge in biology is to identify the tran-
scriptional regulatory elements that control the expression of each
transcript and to understand how the function of these elements is
coordinated to execute complex cellular processes. A simple, com-
monplace view of transcriptional regulation involves five types of
cis-acting regulatory sequences—promoters, enhancers, silencers,
insulators and locus control regions31. Overall, transcriptional regu-
lation involves the interplay of multiple components, whereby the
availability of specific transcription factors and the accessibility of
specific genomic regions determine whether a transcript is gener-
ated31. However, the current view of transcriptional regulation is
known to be overly simplified, with many details remaining to be
established. For example, the consensus sequences of transcription
factor binding sites (typically 6 to 10 bases) have relatively little
information content and are present numerous times in the genome,
with the great majority of these not participating in transcriptional
regulation. Does chromatin structure then determine whether such a
sequence has a regulatory role? Are there complex inter-factor inter-
actions that integrate the signals from multiple sites? How are signals
from different distal regulatory elements coupled without affecting all
neighbouring genes? Meanwhile, our understanding of the repertoire
of transcriptional events is becoming more complex, with an increas-
ing appreciation of alternative TSSs32,33 and the presence of non-
coding27,34 and anti-sense transcripts35,36.

To better understand transcriptional regulation, we sought to
begin cataloguing the regulatory elements residing within the 44
ENCODE regions. For this pilot project, we mainly focused on the
binding of regulatory proteins and chromatin structure involved in
transcriptional regulation. We analysed over 150 data sets, mainly
from ChIP-chip37–39, ChIP-PET and STAGE40,41 studies (see Sup-
plementary Information section 3.1 and 3.2). These methods use
chromatin immunoprecipitation with specific antibodies to enrich
for DNA in physical contact with the targeted epitope. This enriched
DNA can then be analysed using either microarrays (ChIP-chip) or
high-throughput sequencing (ChIP-PET and STAGE). The assays
included 18 sequence-specific transcription factors and components
of the general transcription machinery (for example, RNA polymer-
ase II (Pol II), TAF1 and TFIIB/GTF2B). In addition, we tested more
than 600 potential promoter fragments for transcriptional activity by
transient-transfection reporter assays that used 16 human cell lines33.
We also examined chromatin structure by studying the ENCODE
regions for DNaseI sensitivity (by quantitative PCR42 and tiling
arrays43,44, see Supplementary Information section 3.3), histone com-
position45, histone modifications (using ChIP-chip assays)37,46, and
histone displacement (using FAIRE, see Supplementary Information
section 3.4). Below, we detail these analyses, starting with the efforts
to define and classify the 59 ends of transcripts with respect to their
associated regulatory signals. Following that are summaries of

generated data about sequence-specific transcription factor binding
and clusters of regulatory elements. Finally, we describe how this
information can be integrated to make predictions about transcrip-
tional regulation.
Transcription start site catalogue. We analysed two data sets
to catalogue TSSs in the ENCODE regions: the 59 ends of
GENCODE-annotated transcripts and the combined results of two
59-end-capture technologies—CAGE and PET-tagging. The initial
results suggested the potential presence of 16,051 unique TSSs.
However, in many cases, multiple TSSs resided within a single small
segment (up to ,200 bases); this was due to some promoters con-
taining TSSs with many very close precise initiation sites47. To nor-
malize for this effect, we grouped TSSs that were 60 or fewer bases
apart into a single cluster, and in each case considered the most
frequent CAGE or PET tag (or the 59-most TSS in the case of TSSs
identified only from GENCODE data) as representative of that clus-
ter for downstream analyses.

The above effort yielded 7,157 TSS clusters in the ENCODE
regions. We classified these TSSs into three categories: known (pre-
sent at the end of GENCODE-defined transcripts), novel (supported
by other evidence) and unsupported. The novel TSSs were further
subdivided on the basis of the nature of the supporting evidence (see
Table 3 and Supplementary Information section 3.5), with all four of
the resulting subtypes showing significant overlap with experimental
evidence using the GSC statistic. Although there is a larger relative
proportion of singleton tags in the novel category, when analysis is
restricted to only singleton tags, the novel TSSs continue to have
highly significant overlap with supporting evidence (see Supplemen-
tary Information section 3.5.1).
Correlating genomic features with chromatin structure and tran-
scription factor binding. By measuring relative sensitivity to DNaseI
digestion (see Supplementary Information section 3.3), we identified
DNaseI hypersensitive sites throughout the ENCODE regions. DHSs
and TSSs both reflect genomic regions thought to be enriched for
regulatory information and many DHSs reside at or near TSSs. We
partitioned DHSs into those within 2.5 kb of a TSS (958; 46.5%) and
the remaining ones, which were classified as distal (1,102; 53.5%). We
then cross-analysed the TSSs and DHSs with data sets relating to
histone modifications, chromatin accessibility and sequence-specific
transcription factor binding by summarizing these signals in aggreg-
ate relative to the distance from TSSs or DHSs. Figure 5 shows rep-
resentative profiles of specific histone modifications, Pol II and
selected transcription factor binding for the different categories of
TSSs. Further profiles and statistical analysis of these studies can be
found in Supplementary Information 3.6.

In the case of the three TSS categories (known, novel and unsup-
ported), known and novel TSSs are both associated with similar
signals for multiple factors (ranging from histone modifications
through DNaseI accessibility), whereas unsupported TSSs are not.

Table 3 | Different categories of TSSs defined on the basis of support from
different transcript-survey methods

Category Transcript survey
method

Number of TSS
clusters
(non-redundant)*

P value{ Singleton
clusters{ (%)

Known GENCODE 59 ends 1,730 2 3 10
270

25 (74 overall)
Novel GENCODE sense

exons
1,437 6 3 10

239

64

GENCODE
antisense exons

521 3 3 10
28

65

Unbiased
transcription survey

639 7 3 10
263

71

CpG island 164 4 3 10
290

60

Unsupported None 2,666 - 83.4

* Number of TSS clusters with this support, excluding TSSs from higher categories.
{ Probability of overlap between the transcript support and the PET/CAGE tags, as calculated by
the Genome Structure Correction statistic (see Supplementary Information section 1.3).
{ Per cent of clusters with only one tag. For the ‘known’ category this was calculated as the per
cent of GENCODE 59 ends with tag support (25%) or overall (74%).
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The enrichments seen with chromatin modifications and sequence-
specific factors, along with the significant clustering of this evidence,
indicate that the novel TSSs do not reflect false positives and probably
use the same biological machinery as other promoters. Sequence-
specific transcription factors show a marked increase in binding
across the broad region that encompasses each TSS. This increase
is notably symmetric, with binding equally likely upstream or
downstream of a TSS (see Supplementary Information section 3.7
for an explanation of why this symmetrical signal is not an artefact
of the analysis of the signals). Furthermore, there is enrichment
of SMARCC1 binding (a member of the SWI/SNF chromatin-
modifying complex), which persists across a broader extent than
other factors. The broad signals with this factor indicate that the
ChIP-chip results reflect both specific enrichment at the TSS and
broader enrichments across ,5-kb regions (this is not due to tech-
nical issues, see Supplementary Information section 3.8).

We selected 577 GENCODE-defined TSSs at the 59 ends of a pro-
tein-coding transcript with over 3 exons, to assess expression status.
Each transcript was classified as: (1) ‘active’ (gene on) or ‘inactive’
(gene off) on the basis of the unbiased transcript surveys, and (2)
residing near a ‘CpG island’ or not (‘non-CpG island’) (see Sup-
plementary Information section 3.17). As expected, the aggregate

signal of histone modifications is mainly attributable to active TSSs
(Fig. 5), in particular those near CpG islands. Pronounced doublet
peaks at the TSS can be seen with these large signals (similar to
previous work in yeast48) owing to the chromatin accessibility at
the TSS. Many of the histone marks and Pol II signals are now clearly
asymmetrical, with a persistent level of Pol II into the genic region, as
expected. However, the sequence-specific factors remain largely sym-
metrically distributed. TSSs near CpG islands show a broader distri-
bution of histone marks than those not near CpG islands (see
Supplementary Information section 3.6). The binding of some tran-
scription factors (E2F1, E2F4 and MYC) is extensive in the case of
active genes, and is lower (or absent) in the case of inactive genes.
Chromatin signature of distal elements. Distal DHSs show char-
acteristic patterns of histone modification that are the inverse of
TSSs, with high H3K4me1 accompanied by lower levels of
H3K4Me3 and H3Ac (Fig. 5). Many factors with high occupancy at
TSSs (for example, E2F4) show little enrichment at distal DHSs,
whereas other factors (for example, MYC) are enriched at both
TSSs and distal DHSs49. A particularly interesting observation is
the relative enrichment of the insulator-associated factor CTCF50 at
both distal DHSs and TSSs; this contrasts with SWI/SNF components
SMARCC2 and SMARCC1, which are TSS-centric. Such differential
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Figure 5 | Aggregate signals of tiling-array experiments from either ChIP-
chip or chromatin structure assays, represented for different classes of
TSSs and DHS. For each plot, the signal was first normalized with a mean of
0 and standard deviation of 1, and then the normalized scores were summed
at each position for that class of TSS or DHS and smoothed using a kernel
density method (see Supplementary Information section 3.6). For each class
of sites there are two adjacent plots. The left plot depicts the data for general

factors: FAIRE and DNaseI sensitivity as assays of chromatin accessibility
and H3K4me1, H3K4me2, H3K4me3, H3ac and H4ac histone modifications
(as indicated); the right plot shows the data for additional factors, namely
MYC, E2F1, E2F4, CTCF, SMARCC1 and Pol II. The columns provide data
for the different classes of TSS or DHS (unsmoothed data and statistical
analysis shown in Supplementary Information section 3.6).
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behaviour of sequence-specific factors points to distinct biological
differences, mediated by transcription factors, between distal regula-
tory sites and TSSs.
Unbiased maps of sequence-specific regulatory factor binding.
The previous section focused on specific positions defined by TSSs
or DHSs. We then analysed sequence-specific transcription factor
binding data in an unbiased fashion. We refer to regions with
enriched binding of regulatory factors as RFBRs. RFBRs were iden-
tified on the basis of ChIP-chip data in two ways: first, each invest-
igator developed and used their own analysis method(s) to define
high-enrichment regions, and second (and independently), a strin-
gent false discovery rate (FDR) method was applied to analyse all
data using three cut-offs (1%, 5% and 10%). The laboratory-specific
and FDR-based methods were highly correlated, particularly for
regions with strong signals10,11. For consistency, we used the results
obtained with the FDR-based method (see Supplementary Infor-
mation section 3.10). These RFBRs can be used to find sequence
motifs (see Supplementary Information section S3.11).
RFBRs are associated with the 59 ends of transcripts. The distri-
bution of RFBRs is non-random (see ref. 10) and correlates with the
positions of TSSs. We examined the distribution of specific RFBRs
relative to the known TSSs. Different transcription factors and his-
tone modifications vary with respect to their association with TSSs
(Fig. 6; see Supplementary Information section 3.12 for modelling of
random expectation). Factors for which binding sites are most
enriched at the 59 ends of genes include histone modifications,
TAF1 and RNA Pol II with a hypo-phosphorylated carboxy-terminal
domain51—confirming previous expectations. Surprisingly, we found
that E2F1, a sequence-specific factor that regulates the expression of
many genes at the G1 to S transition52, is also tightly associated with
TSSs52; this association is as strong as that of TAF1, the well-known
TATA box-binding protein associated factor 1 (ref. 53). These results
suggest that E2F1 has a more general role in transcription than prev-
iously suspected, similar to that for MYC54–56. In contrast, the large-
scale assays did not support the promoter binding that was found in
smaller-scale studies (for example, on SIRT1 and SPI1 (PU1)).
Integration of data on sequence-specific factors. We expect that
regulatory information is not dispersed independently across the
genome, but rather is clustered into distinct regions57. We refer to
regions that contain multiple regulatory elements as ‘regulatory clus-
ters’. We sought to predict the location of regulatory clusters by

cross-integrating data generated using all transcription factor and
histone modification assays, including results falling below an arbit-
rary threshold in individual experiments. Specifically, we used four
complementary methods to integrate the data from 129 ChIP-chip
data sets (see Supplementary Information section 3.13 and ref. 58.
These four methods detect different classes of regulatory clusters and
as a whole identified 1,393 clusters. Of these, 344 were identified by all
four methods, with another 500 found by three methods (see
Supplementary Information section 3.13.5). 67% of the 344 regula-
tory clusters identified by all four methods (or 65% of the full set of
1,393) reside within 2.5 kb of a known or novel TSS (as defined above;
see Table 3 and Supplementary Information section 3.14 for a break-
down by category). Restricting this analysis to previously annotated
TSSs (for example, RefSeq or Ensembl) reveals that roughly 25% of
the regulatory clusters are close to a previously identified TSS. These
results suggest that many of the regulatory clusters identified by
integrating the ChIP-chip data sets are undiscovered promoters or
are somehow associated with transcription in another fashion. To
test these possibilities, sets of 126 and 28 non-GENCODE-based
regulatory clusters were tested for promoter activity (see Supple-
mentary Information section 3.15) and by RACE, respectively.
These studies revealed that 24.6% of the 126 tested regulatory clusters
had promoter activity and that 78.6% of the 28 regulatory clusters
analysed by RACE yielded products consistent with a TSS58. The
ChIP-chip data sets were generated on a mixture of cell lines, pre-
dominantly HeLa and GM06990, and were different from the CAGE/
PET data, meaning that tissue specificity contributes to the presence
of unique TSSs and regulatory clusters. The large increase in pro-
moter proximal regulatory clusters identified by including the addi-
tional novel TSSs coupled with the positive promoter and RACE
assays suggests that most of the regulatory regions identifiable by
these clustering methods represent bona fide promoters (see
Supplementary Information 3.16). Although the regulatory factor
assays were more biased towards regions associated with promoters,
many of the sites from these experiments would have previously
been described as distal to promoters. This suggests that common-
place use of RefSeq- or Ensembl-based gene definition to define
promoter proximity will dramatically overestimate the number of
distal sites.
Predicting TSSs and transcriptional activity on the basis of chro-
matin structure. The strong association between TSSs and both his-
tone modifications and DHSs prompted us to investigate whether the
location and activity of TSSs could be predicted solely on the basis
of chromatin structure information. We trained a support vector
machine (SVM) by using histone modification data anchored around
DHSs to discriminate between DHSs near TSSs and those distant from
TSSs. We used a selected 2,573 DHSs, split roughly between TSS-
proximal DHSs and TSS-distal DHSs, as a training set. The SVM
performed well, with an accuracy of 83% (see Supplementary
Information section 3.17). Using this SVM, we then predicted new
TSSs using information about DHSs and histone modifications—of
110 high-scoring predicted TSSs, 81 resided within 2.5 kb of a novel
TSS. As expected, these show a significant overlap to the novel TSS
groups (defined above) but without a strong bias towards any par-
ticular category (see Supplementary Information section 3.17.1.5).

To investigate the relationship between chromatin structure and
gene expression, we examined transcript levels in two cell lines using
a transcript-tiling array. We compared this transcript data with the
results of ChIP-chip experiments that measured histone modifica-
tions across the ENCODE regions. From this, we developed a variety
of predictors of expression status using chromatin modifications as
variables; these were derived using both decision trees and SVMs (see
Supplementary Information section 3.17). The best of these correctly
predicts expression status (transcribed versus non-transcribed) in
91% of cases. This success rate did not decrease dramatically when
the predicting algorithm incorporated the results from one cell line to
predict the expression status of another cell line. Interestingly, despite
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the striking difference in histone modification enrichments in TSSs
residing near versus those more distal to CpG islands (see Fig. 5 and
Supplementary Information section 3.6), including information
about the proximity to CpG islands did not improve the predictors.
This suggests that despite the marked differences in histone modifi-
cations among these TSS classes, a single predictor can be made,
using the interactions between the different histone modification
levels.

In summary, we have integrated many data sets to provide a more
complete view of regulatory information, both around specific sites
(TSSs and DHSs) and in an unbiased manner. From analysing mul-
tiple data sets, we find 4,491 known and novel TSSs in the ENCODE
regions, almost tenfold more than the number of established genes.
This large number of TSSs might explain the extensive transcription
described above; it also begins to change our perspective about reg-
ulatory information—without such a large TSS catalogue, many of
the regulatory clusters would have been classified as residing distal to
promoters. In addition to this revelation about the abundance of
promoter-proximal regulatory elements, we also identified a consid-
erable number of putative distal regulatory elements, particularly on
the basis of the presence of DHSs. Our study of distal regulatory
elements was probably most hindered by the paucity of data gener-
ated using distal-element-associated transcription factors; neverthe-
less, we clearly detected a set of distal-DHS-associated segments
bound by CTCF or MYC. Finally, we showed that information about
chromatin structure alone could be used to make effective predic-
tions about both the location and activity of TSSs.

Replication
Overview. DNA replication must be carefully coordinated, both
across the genome and with respect to development. On a larger scale,
early replication in S phase is broadly correlated with gene density
and transcriptional activity59–66; however, this relationship is not
universal, as some actively transcribed genes replicate late and vice
versa61,64–68. Importantly, the relationship between transcription and
DNA replication emerges only when the signal of transcription is
averaged over a large window (.100 kb)63, suggesting that larger-
scale chromosomal architecture may be more important than the
activity of specific genes69.

The ENCODE Project provided a unique opportunity to examine
whether individual histone modifications on human chromatin can
be correlated with the time of replication and whether such correla-
tions support the general relationship of active, open chromatin with
early replication. Our studies also tested whether segments showing
interallelic variation in the time of replication have two different
types of histone modifications consistent with an interallelic vari-
ation in chromatin state.
DNA replication data set. We mapped replication timing across the
ENCODE regions by analysing Brd-U-labelled fractions from syn-
chronized HeLa cells (collected at 2 h intervals throughout S phase)
on tiling arrays (see Supplementary Information section 4.1).
Although the HeLa cell line has a considerably altered karyotype,
correlation of these data with other cell line data (see below) suggests
the results are relevant to other cell types. The results are expressed as
the time at which 50% of any given genomic position is replicated
(TR50), with higher values signifying later replication times. In addi-
tion to the five ‘activating’ histone marks, we also correlated the TR50
with H3K27me3, a modification associated with polycomb-mediated
transcriptional repression70–74. To provide a consistent comparison
framework, the histone data were smoothed to 100-kb resolution,
and then correlated with the TR50 data by a sliding window correla-
tion analysis (see Supplementary Information section 4.2). The
continuous profiles of the activating marks, histone H3K4 mono-,
di-, and tri-methylation and histone H3 and H4 acetylation, are
generally anti-correlated with the TR50 signal (Fig. 7a and Sup-
plementary Information section 4.3). In contrast, H3K27me3 marks
show a predominantly positive correlation with late-replicating seg-
ments (Fig. 7a; see Supplementary Information section 4.3 for addi-
tional analysis).

Although most genomic regions replicate in a temporally specific
window in S phase, other regions demonstrate an atypical pattern of
replication (Pan-S) where replication signals are seen in multiple
parts of S phase. We have suggested that such a pattern of replication
stems from interallelic variation in the chromatin structure59,75. If one
allele is in active chromatin and the other in repressed chromatin,
both types of modified histones are expected to be enriched in the
Pan-S segments. An ENCODE region was classified as non-specific
(or Pan-S) regions when .60% of the probes in a 10-kb window
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replicated in multiple intervals in S phase. The remaining regions
were sub-classified into early-, mid- or late-replicating based on the
average TR50 of the temporally specific probes within a 10-kb win-
dow75. For regions of each class of replication timing, we determined
the relative enrichment of various histone modification peaks in
HeLa cells (Fig. 7b; Supplementary Information section 4.4). The
correlations of activating and repressing histone modification peaks
with TR50 are confirmed by this analysis (Fig. 7b). Intriguingly, the
Pan-S segments are unique in being enriched for both activating
(H3K4me2, H3ac and H4ac) and repressing (H3K27me3) histones,
consistent with the suggestion that the Pan-S replication pattern
arises from interallelic variation in chromatin structure and time of
replication75. This observation is also consistent with the Pan-S rep-
lication pattern seen for the H19/IGF2 locus, a known imprinted
region with differential epigenetic modifications across the two
alleles76.

The extensive rearrangements in the genome of HeLa cells led us to
ask whether the detected correlations between TR50 and chromatin
state are seen with other cell lines. The histone modification data with
GM06990 cells allowed us to test whether the time of replication of
genomic segments in HeLa cells correlated with the chromatin state
in GM06990 cells. Early- and late-replicating segments in HeLa cells
are enriched and depleted, respectively, for activating marks in
GM06990 cells (Fig. 7b). Thus, despite the presence of genomic rear-
rangements (see Supplementary Information section 2.12), the TR50
and chromatin state in HeLa cells are not far from a constitutive
baseline also seen with a cell line from a different lineage. The enrich-
ment of multiple activating histone modifications and the depletion
of a repressive modification from segments that replicate early in S
phase extends previous work in the field at a level of detail and scale
not attempted before in mammalian cells. The duality of histone
modification patterns in Pan-S areas of the HeLa genome, and the
concordance of chromatin marks and replication time across two
disparate cell lines (HeLa and GM06990) confirm the coordination
of histone modifications with replication in the human genome.

Chromatin architecture and genomic domains
Overview. The packaging of genomic DNA into chromatin is inti-
mately connected with the control of gene expression and other
chromosomal processes. We next examined chromatin structure
over a larger scale to ascertain its relation to transcription and other
processes. Large domains (50 to .200 kb) of generalized DNaseI
sensitivity have been detected around developmentally regulated
gene clusters77, prompting speculation that the genome is organized

into ‘open’ and ‘closed’ chromatin territories that represent higher-
order functional domains. We explored how different chromatin
features, particularly histone modifications, correlate with chro-
matin structure, both over short and long distances.
Chromatin accessibility and histone modifications. We used his-
tone modification studies and DNaseI sensitivity data sets (intro-
duced above) to examine general chromatin accessibility without
focusing on the specific DHS sites (see Supplementary Informa-
tion sections 3.1, 3.3 and 3.4). A fundamental difficulty in analysing
continuous data across large genomic regions is determining the
appropriate scale for analysis (for example, 2 kb, 5 kb, 20 kb, and so
on). To address this problem, we developed an approach based on
wavelet analysis, a mathematical tool pioneered in the field of signal
processing that has recently been applied to continuous-value geno-
mic analyses. Wavelet analysis provides a means for consistently
transforming continuous signals into different scales, enabling the
correlation of different phenomena independently at differing scales
in a consistent manner.
Global correlations of chromatin accessibility and histone modi-
fications. We computed the regional correlation between DNaseI
sensitivity and each histone modification at multiple scales using a
wavelet approach (Fig. 8 and Supplementary Information section
4.2). To make quantitative comparisons between different histone
modifications, we computed histograms of correlation values be-
tween DNaseI sensitivity and each histone modification at several
scales and then tested these for significance at specific scales. Figure
8c shows the distribution of correlation values at a 16-kb scale, which
is considerably larger than individual cis-acting regulatory elements.
At this scale, H3K4me2, H3K4me3 and H3ac show similarly high
correlation. However, they are significantly distinguished from
H3K4me1 and H4ac modifications (P , 1.5 3 10233; see Supple-
mentary Information section 4.5), which show lower correlation with
DNaseI sensitivity. These results suggest that larger-scale relation-
ships between chromatin accessibility and histone modifications
are dominated by sub-regions in which higher average DNaseI sens-
itivity is accompanied by high levels of H3K4me2, H3K4me3 and
H3ac modifications.
Local correlations of chromatin accessibility and histone modifi-
cations. Narrowing to a scale of ,2 kb revealed a more complex
situation, in which H3K4me2 is the histone modification that is
best correlated with DNaseI sensitivity. However, there is no clear
combination of marks that correlate with DNaseI sensitivity in a
way that is analogous to that seen at a larger scale (see Supplemen-
tary Information section 4.3). One explanation for the increased
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complexity at smaller scales is that there is a mixture of different
classes of accessible chromatin regions, each having a different pat-
tern of histone modifications. To examine this, we computed the
degree to which local peaks in histone methylation or acetylation
occur at DHSs (see Supplementary Information section 4.5.1). We
found that 84%, 91% and 93% of significant peaks in H3K4 mono-,
di- and tri-methylation, respectively, and 93% and 81% of significant
peaks in H3ac and H4ac acetylation, respectively, coincided with
DHSs (see Supplementary Information section 4.5). Conversely, a
proportion of DHSs seemed not to be associated with significant
peaks in H3K4 mono-, di- or tri-methylation (37%, 29% and 47%,
respectively), nor with peaks in H3 or H4 acetylation (both 57%).
Because only a limited number of histone modification marks were
assayed, the possibility remains that some DHSs harbour other his-
tone modifications. The absence of a more complete concordance
between DHSs and peaks in histone acetylation is surprising given the
widely accepted notion that histone acetylation has a central role in
mediating chromatin accessibility by disrupting higher-order chro-
matin folding.
DNA structure at DHSs. The observation that distinctive hydroxyl
radical cleavage patterns are associated with specific DNA struc-
tures78 prompted us to investigate whether DHS subclasses differed
with respect to their local DNA structure. Conversely, because dif-
ferent DNA sequences can give rise to similar hydroxyl radical cleav-
age patterns79, genomic regions that adopt a particular local structure
do not necessarily have the same nucleotide sequence. Using a Gibbs
sampling algorithm on hydroxyl radical cleavage patterns of 3,150
DHSs80, we discovered an 8-base segment with a conserved cleavage
signature (CORCS; see Supplementary Information section 4.6). The
underlying DNA sequences that give rise to this pattern have little
primary sequence similarity despite this similar structural pattern.
Furthermore, this structural element is strongly enriched in promoter-
proximal DHSs (11.3-fold enrichment compared to the rest of the
ENCODE regions) relative to promoter-distal DHSs (1.5-fold enrich-
ment); this element is enriched 10.9-fold in CpG islands, but is higher
still (26.4-fold) in CpG islands that overlap a DHS.
Large-scale domains in the ENCODE regions. The presence of
extensive correlations seen between histone modifications, DNaseI

sensitivity, replication, transcript density and protein factor binding
led us to investigate whether all these features are organized system-
atically across the genome. To test this, we performed an unsuper-
vised training of a two-state HMM with inputs from these different
features (see Supplementary Information section 4.7 and ref. 81). No
other information except for the experimental variables was used for
the HMM training routines. We consistently found that one state
(‘active’) generally corresponded to domains with high levels of H3ac
and RNA transcription, low levels of H3K27me3 marks, and early
replication timing, whereas the other state (‘repressed’) reflected
domains with low H3ac and RNA, high H3K27me3, and late replica-
tion (see Fig. 9). In total, we identified 70 active regions spanning
11.4 Mb and 82 inactive regions spanning 17.8 Mb (median size
136 kb versus 104 kb respectively). The active domains are markedly
enriched for GENCODE TSSs, CpG islands and Alu repetitive ele-
ments (P , 0.0001 for each), whereas repressed regions are signifi-
cantly enriched for LINE1 and LTR transposons (P , 0.001). Taken
together, these results demonstrate remarkable concordance between
ENCODE functional data types and provide a view of higher-order
functional domains defined by a broader range of factors at a mark-
edly higher resolution than was previously available82.

Evolutionary constraint and population variability
Overview. Functional genomic sequences can also be identified by
examining evolutionary changes across multiple extant species and
within the human population. Indeed, such studies complement
experimental assays that identify specific functional elements83–85.
Evolutionary constraint (that is, the rejection of mutations at a par-
ticular location) can be measured by either (i) comparing observed
substitutions to neutral rates calculated from multi-sequence
alignments86–88, or (ii) determining the presence and frequency of
intra-species polymorphisms. Importantly, both approaches are
indifferent to any specific function that the constrained sequence
might confer.

Previous studies comparing the human, mouse, rat and dog
genomes examined bulk evolutionary properties of all nucleotides
in the genome, and provided little insight about the precise positions
of constrained bases. Interestingly, these studies indicated that the
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majority of constrained bases reside within the non-coding portion
of the human genome. Meanwhile, increasingly rich data sets of
polymorphisms across the human genome have been used exten-
sively to establish connections between genetic variants and disease,
but far fewer analyses have sought to use such data for assessing
functional constraint85.

The ENCODE Project provides an excellent opportunity for more
fully exploiting inter- and intra-species sequence comparisons to
examine genome function in the context of extensive experimental
studies on the same regions of the genome. We consolidated the
experimentally derived information about the ENCODE regions
and focused our analyses on 11 major classes of genomic elements.
These classes are listed in Table 4 and include two non-experimentally
derived data sets: ancient repeats (ARs; mobile elements that inserted
early in the mammalian lineage, have subsequently become dormant,
and are assumed to be neutrally evolving) and constrained sequences
(CSs; regions that evolve detectably more slowly than neutral
sequences).
Comparative sequence data sets and analysis. We generated 206 Mb
of genomic sequence orthologous to the ENCODE regions from 14
mammalian species using a targeted strategy that involved isolating89

and sequencing90 individual bacterial artificial chromosome clones.
For an additional 14 vertebrate species, we used 340 Mb of ortholo-
gous genomic sequence derived from genome-wide sequencing
efforts3–8,91–93. The orthologous sequences were aligned using three
alignment programs: TBA94, MAVID95 and MLAGAN96. Four inde-
pendent methods that generated highly concordant results97 were
then used to identify sequences under constraint (PhastCons88,
GERP87, SCONE98 and BinCons86). From these analyses, we deve-
loped a high-confidence set of ‘constrained sequences’ that corre-
spond to 4.9% of the nucleotides in the ENCODE regions. The
threshold for determining constraint was set using a FDR rate of
5% (see ref. 97); this level is similar to previous estimates of the
fraction of the human genome under mammalian constraint4,86–88

but the FDR rate was not chosen to fit this result. The median length
of these constrained sequences is 19 bases, with the minimum being
8 bases—roughly the size of a typical transcription factor binding
site. These analyses, therefore, provide a resolution of constrained
sequences that is substantially better than that currently available
using only whole-genome vertebrate sequences99–102.

Intra-species variation studies mainly used SNP data from Phases I
and II, and the 10 re-sequenced regions in ENCODE regions with 48
individuals of the HapMap Project103; nucleotide insertion or dele-
tion (indel) data were from the SNP Consortium and HapMap.We
also examined the ENCODE regions for the presence of overlaps with
known segmental duplications104 and CNVs.
Experimentally identified functional elements and constrained
sequences. We first compared the detected constrained sequences

with the positions of experimentally identified functional elements. A
total of 40% of the constrained bases reside within protein-coding
exons and their associated untranslated regions (Fig. 10) and, in
agreement with previous genome-wide estimates, the remaining
constrained bases do not overlap the mature transcripts of protein-
coding genes4,5,88,105,106. When we included the other experimental
annotations, we found that an additional 20% of the constrained
bases overlap experimentally identified non-coding functional
regions, although far fewer of these regions overlap constrained
sequences compared to coding exons (see below). Most experimental
annotations are significantly different from a random expectation for
both base-pair or element-level overlaps (using the GSC statistic, see
Supplementary Information section 1.3), with a more striking devi-
ation when considering elements (Fig. 11). The exceptions to this are
pseudogenes, Un.TxFrags and RxFrags. The increase in significance
moving from base-pair measures to the element level suggests that
discrete islands of constrained sequence exist within experimentally
identified functional elements, with the surrounding bases appar-
ently not showing evolutionary constraint. This notion is discussed
in greater detail in ref. 97.

We also examined measures of human variation (heterozygosity,
derived allele-frequency spectra and indel rates) within the sequences
of the experimentally identified functional elements (Fig. 12). For
these studies, ARs were used as a marker for neutrally evolving
sequence. Most experimentally identified functional elements are
associated with lower heterozygosity compared to ARs, and a few
have lower indel rates compared with ARs. Striking outliers are
39 UTRs, which have dramatically increased indel rates without an
obvious cause. This is discussed in more depth in ref. 107.

These findings indicate that the majority of the evolutionarily
constrained, experimentally identified functional elements show
evidence of negative selection both across mammalian species and
within the human population. Furthermore, we have assigned at least
one molecular function to the majority (60%) of all constrained bases
in the ENCODE regions.
Conservation of regulatory elements. The relationship between
individual classes of regulatory elements and constrained sequences
varies considerably, ranging from cases where there is strong evo-
lutionary constraint (for example, pan-vertebrate ultraconserved
regions108,109) to examples of regulatory elements that are not con-
served between orthologous human and mouse genes110. Within
the ENCODE regions, 55% of RFBRs overlap the high-confidence

All 44 ENCODE regions
(29,998 kb)

4.9% 
Coding 32% 

8% UTRs 

Unannotated 

20% 
Other ENCODE 
experimental 
annotations 

40% 

Constrained 

Non-constrained 

Figure 10 | Relative proportion of different annotations among
constrained sequences. The 4.9% of bases in the ENCODE regions
identified as constrained is subdivided into the portions that reflect known
coding regions, UTRs, other experimentally annotated regions, and
unannotated sequence.

Table 4 | Eleven classes of genomic elements subjected to evolutionary
and population-genetics analyses

Abbreviation Description

CDS Coding exons, as annotated by GENCODE
59 UTR 59 untranslated region, as annotated by GENCODE
39 UTR 39 untranslated region, as annotated by GENCODE
Un.TxFrag Unannotated region detected by RNA hybridization to tiling

array (that is, unannotated TxFrag)
RxFrag Region detected by RACE and analysis on tiling array
Pseudogene Pseudogene identified by consensus pseudogene analysis
RFBR Regulatory factor binding region identified by ChIP-chip assay
RFBR-SeqSp Regulatory factor binding region identified only by ChIP-chip

assays for factors with known sequence-specificity
DHS DNaseI hypersensitive sites found in multiple tissues
FAIRE Region of open chromatin identified by the FAIRE assay
TSS Transcription start site
AR Ancient repeat inserted early in the mammalian lineage and

presumed to be neutrally evolving
CS Constrained sequence identified by analysing multi-sequence

alignments

ARTICLES NATURE | Vol 447 | 14 June 2007

810
Nature   ©2007 Publishing Group



constrained sequences. As expected, RFBRs have many uncon-
strained bases, presumably owing to the small size of the specific
binding site. We investigated whether the binding sites in RFBRs
could be further delimited using information about evolutionary
constraint. For 7 out of 17 factors with either known TRANSFAC
or Jaspar motifs, our ChIP-chip data revealed a marked enrichment
of the appropriate motif within the constrained versus the uncon-
strained portions of the RFBRs (see Supplementary Information sec-
tion 5.1). This enrichment was seen for levels of stringency used for
defining ChIP-chip-positive sites (1% and 5% FDR level), indicating
that combining sequence constraint and ChIP-chip data may provide
a highly sensitive means for detecting factor binding sites in the
human genome.
Experimentally identified functional elements and genetic vari-
ation. The above studies focus on purifying (negative) selection.
We used nucleotide variation to detect potential signals of adaptive
(positive) selection. We modified the standard McDonald–Kreitman
test (MK-test111,112) and the Hudson–Kreitman–Aguade (HKA)113

test (see Supplementary Information section 5.2.1), to examine
whether an entire set of sequence elements shows an excess of poly-
morphisms or an excess of inter-species divergence. We found that
constrained sequences and coding exons have an excess of poly-
morphisms (consistent with purifying selection), whereas 59 UTRs

show evidence of an excess of divergence (with a portion probably
reflecting positive selection). In general, non-coding genomic regions
show more variation, with both a large number of segments that
undergo purifying selection and regions that are fast evolving.

We also examined structural variation (that is, CNVs, inversions
and translocations114; see Supplementary Information section 5.2.2).
Within these polymorphic regions, we encountered significant over-
representation of CDSs, TxFrags, and intra-species constrained
sequences (P , 1023, Fig. 13), and also detected a statistically signifi-
cant under-representation of ARs (P 5 1023). A similar overrepre-
sentation of CDSs and intra-species constrained sequences was found
within non-polymorphic segmental duplications.
Unexplained constrained sequences. Despite the wealth of comple-
mentary data, 40% of the ENCODE-region sequences identified as
constrained are not associated with any experimental evidence of
function. There is no evidence indicating that mutational cold
spots account for this constraint; they have similar measures of con-
straint to experimentally identified elements and harbour equal
proportions of SNPs. To characterize further the unexplained con-
strained sequences, we examined their clustering and phylogenetic
distribution. These sequences are not uniformly distributed across
most ENCODE regions, and even in most ENCODE regions the
distribution is different from constrained sequences within experi-
mentally identified functional elements (see Supplementary
Information section 5.3). The large fraction of constrained sequence
that does not match any experimentally identified elements is not
surprising considering that only a limited set of transcription factors,
cell lines and biological conditions have thus far been examined.
Unconstrained experimentally identified functional elements. In
contrast, an unexpectedly large fraction of experimentally identified
functional elements show no evidence of evolutionary constraint
ranging from 93% for Un.TxFrags to 12% for CDS. For most types
of non-coding functional elements, roughly 50% of the individual
elements seemed to be unconstrained across all mammals.

There are two methodological reasons that might explain the
apparent excess of unconstrained experimentally identified func-
tional elements: the underestimation of sequence constraint or over-
estimation of experimentally identified functional elements. We do
not believe that either of these explanations fully accounts for the
large and varied levels of unconstrained experimentally functional
sequences. The set of constrained bases analysed here is highly accur-
ate and complete due to the depth of the multiple alignment. Both
by bulk fitting procedures and by comparison of SNP frequencies to
constraint there is clearly a proportion of constrained bases not cap-
tured in the defined 4.9% of constrained sequences, but it is small (see
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Supplementary Information section 5.4 and S5.5). More aggressive
schemes to detect constraint only marginally increase the overlap
with experimentally identified functional elements, and do so with
considerably less specificity. Similarly, all experimental findings have
been independently validated and, for the least constrained experi-
mentally identified functional elements (Un.TxFrags and binding
sites of sequence-specific factors), there is both internal validation
and cross-validation from different experimental techniques. This
suggests that there is probably not a significant overestimation of
experimentally identified functional elements. Thus, these two expla-
nations may contribute to the general observation about uncon-
strained functional elements, but cannot fully explain it.

Instead, we hypothesize five biological reasons to account for the
presence of large amounts of unconstrained functional elements. The
first two are particular to certain biological assays in which the ele-
ments being measured are connected to but do not coincide with the
analysed region. An example of this is the parent transcript of an
miRNA, where the current assays detect the exons (some of which
are not under evolutionary selection), whereas the intronic miRNA
actually harbours the constrained bases. Nevertheless, the transcript
sequence provides the critical coupling between the regulated pro-
moter and the miRNA. The sliding of transcription factors (which
might bind a specific sequence but then migrate along the DNA) or
the processivity of histone modifications across chromatin are more
exotic examples of this. A related, second hypothesis is that deloca-
lized behaviours of the genome, such as general chromatin access-
ibility, may be maintained by some biochemical processes (such as
transcription of intergenic regions or specific factor binding) without
the requirement for specific sequence elements. These two explana-
tions of both connected components and diffuse components related
to, but not coincident with, constrained sequences are particularly
relevant for the considerable amount of unannotated and uncon-
strained transcripts.

The other three hypotheses may be more general—the presence
of neutral (or near neutral) biochemical elements, of lineage-
specific functional elements, and of functionally conserved but
non-orthologous elements. We believe there is a considerable pro-
portion of neutral biochemically active elements that do not confer a
selective advantage or disadvantage to the organism. This neutral
pool of sequence elements may turn over during evolutionary time,

emerging via certain mutations and disappearing by others. The size
of the neutral pool would largely be determined by the rate of emer-
gence and extinction through chance events; low information-
content elements, such as transcription factor-binding sites110 will
have larger neutral pools. Second, from this neutral pool, some ele-
ments might occasionally acquire a biological role and so come under
evolutionary selection. The acquisition of a new biological role would
then create a lineage-specific element. Finally, a neutral element from
the general pool could also become a peer of an existing selected
functional element and either of the two elements could then be
removed by chance. If the older element is removed, the newer ele-
ment has, in essence, been conserved without using orthologous
bases, providing a conserved function in the absence of constrained
sequences. For example, a common HNF4A binding site in the
human and mouse genomes may not reflect orthologous human
and mouse bases, though the presence of an HNF4A site in that
region was evolutionarily selected for in both lineages. Note that both
the neutral turnover of elements and the ‘functional peering’ of ele-
ments has been suggested for cis-acting regulatory elements in
Drosophila115,116 and mammals110. Our data support these hypo-
theses, and we have generalized this idea over many different func-
tional elements. The presence of conserved function encoded by
conserved orthologous bases is a commonplace assumption in com-
parative genomics; our findings indicate that there could be a sizable
set of functionally conserved but non-orthologous elements in the
human genome, and that these seem unconstrained across mammals.
Functional data akin to the ENCODE Project on other related spe-
cies, such as mouse, would be critical to understanding the rate of
such functionally conserved but non-orthologous elements.

Conclusion

The generation and analyses of over 200 experimental data sets from
studies examining the 44 ENCODE regions provide a rich source of
functional information for 30 Mb of the human genome. The first
conclusion of these efforts is that these data are remarkably inform-
ative. Although there will be ongoing work to enhance existing assays,
invent new techniques and develop new data-analysis methods, the
generation of genome-wide experimental data sets akin to the
ENCODE pilot phase would provide an impressive platform for
future genome exploration efforts. This now seems feasible in light
of throughput improvements of many of the assays and the ever-
declining costs of whole-genome tiling arrays and DNA sequencing.
Such genome-wide functional data should be acquired and released
openly, as has been done with other large-scale genome projects, to
ensure its availability as a new foundation for all biologists studying
the human genome. It is these biologists who will often provide the
critical link from biochemical function to biological role for the
identified elements.

The scale of the pilot phase of the ENCODE Project was also
sufficiently large and unbiased to reveal important principles about
the organization of functional elements in the human genome. In
many cases, these principles agree with current mechanistic models.
For example, we observe trimethylation of H3K4 enriched near active
genes, and have improved the ability to accurately predict gene activ-
ity based on this and other histone modifications. However, we also
uncovered some surprises that challenge the current dogma on bio-
logical mechanisms. The generation of numerous intercalated tran-
scripts spanning the majority of the genome has been repeatedly
suggested13,14, but this phenomenon has been met with mixed opi-
nions about the biological importance of these transcripts. Our ana-
lyses of numerous orthogonal data sets firmly establish the presence
of these transcripts, and thus the simple view of the genome as having
a defined set of isolated loci transcribed independently does not seem
to be accurate. Perhaps the genome encodes a network of transcripts,
many of which are linked to protein-coding transcripts and to the
majority of which we cannot (yet) assign a biological role. Our per-
spective of transcription and genes may have to evolve and also poses
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some interesting mechanistic questions. For example, how are splic-
ing signals coordinated and used when there are so many overlapping
primary transcripts? Similarly, to what extent does this reflect neutral
turnover of reproducible transcripts with no biological role?

We gained subtler but equally important mechanistic findings
relating to transcription, replication and chromatin modification.
Transcription factors previously thought to primarily bind promo-
ters bind more generally, and those which do bind to promoters are
equally likely to bind downstream of a TSS as upstream. Interestingly,
many elements that previously were classified as distal enhancers are,
in fact, close to one of the newly identified TSSs; only about 35% of
sites showing evidence of binding by multiple transcription factors
are actually distal to a TSS. This need not imply that most regulatory
information is confined to classic promoters, but rather it does sug-
gest that transcription and regulation are coordinated actions beyond
just the traditional promoter sequences. Meanwhile, although distal
regulatory elements could be identified in the ENCODE regions, they
are currently difficult to classify, in part owing to the lack of a broad
set of transcription factors to use in analysing such elements. Finally,
we now have a much better appreciation of how DNA replication is
coordinated with histone modifications.

At the outset of the ENCODE Project, many believed that the
broad collection of experimental data would nicely dovetail with
the detailed evolutionary information derived from comparing mul-
tiple mammalian sequences to provide a neat ‘dictionary’ of con-
served genomic elements, each with a growing annotation about
their biochemical function(s). In one sense, this was achieved; the
majority of constrained bases in the ENCODE regions are now assoc-
iated with at least some experimentally derived information about
function. However, we have also encountered a remarkable excess of
experimentally identified functional elements lacking evolutionary
constraint, and these cannot be dismissed for technical reasons. This
is perhaps the biggest surprise of the pilot phase of the ENCODE
Project, and suggests that we take a more ‘neutral’ view of many of the
functions conferred by the genome.

METHODS

The methods are described in the Supplementary Information, with more

technical details for each experiment often found in the references provided in

Table 1. The Supplementary Information sections are arranged in the same order

as the manuscript (with similar headings to facilitate cross-referencing). The first

page of Supplementary Information also has an index to aid navigation. Raw

data are available in ArrayExpress, GEO or EMBL/GenBank archives as appro-

priate, as detailed in Supplementary Information section 1.1. Processed data are

also presented in a user-friendly manner at the UCSC Genome Browser’s

ENCODE portal (http://genome.ucsc.edu/ENCODE/).
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Abstract: Using molecular dynamics free energy simulations with TIP3P explicit solvent,
we compute the hydration free energies of 504 neutral small organic molecules and compare
them to experiments. We find, first, good general agreement between the simulations and
the experiments, with an rms error of 1.24 kcal/mol over the whole set (i.e., about 2 kT) and
a correlation coefficient of 0.89. Second, we use an automated procedure to identify
systematic errors for some classes of compounds and suggest some improvements to the
force field. We find that alkyne hydration free energies are particularly poorly predicted due
to problems with a Lennard-Jones well depth and find that an alternate choice for this well
depth largely rectifies the situation. Third, we study the nonpolar component of hydration
free energiessthat is, the part that is not due to electrostatics. While we find that repulsive
and attractive components of the nonpolar part both scale roughly with surface area (or
volume) of the solute, the total nonpolar free energy does not scale with the solute surface
area or volume, because it is a small difference between large components and is dominated
by the deviations from the trend. While the methods used here are not new, this is a more
extensive test than previous explicit solvent studies, and the size of the test set allows
identification of systematic problems with force field parameters for particular classes of
compounds. We believe that the computed free energies and components will be valuable
to others in the future development of force fields and solvation models.

I. Introduction

Aqueous solvation (hydration) of molecules is important for
much of chemistry and biochemistry. Many experimental
hydration free energies are available, providing a wonderful
opportunity for testing force fields and computational treat-
ments of solvation.

There have been a number of extensive tests of hydration
free energies computed using continuum representations of
water and static solute conformations.1-4 One recent study
extended this by sampling ensembles of solute conformations
using classical molecular dynamics and using these to
compute hydration free energies.5 Continuum representations
of solvent, however, have known limitations,6,7 and explicit
treatment of solvent provides a “gold standard” for molecular
simulations. Early explicit solvent hydration free energy
studies were limited by computational cost to a few
compounds and, more recently, by the availability of
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parameters for small molecules. Thus a variety of studies
have looked at hydration free energies of amino acid side
chain analogs in explicit solvent (for example, refs 8-11),
but few have studied a more diverse set.

With recent computational and methodological develop-
ments, both of these hurdlesscomputational cost and
parameterssare now at least partially surmountable. Hydra-
tion free energy calculations can now be conducted more
efficiently,8,12 and computers are faster. Recent developments
also make possible semiautomatic parametrization of small
molecules, using general small molecule force fields like the
general Amber force field (GAFF)13 and parameter assign-
ment tools like Antechamber.14 Thus, two recent studies have
examined hydration free energies of a total of roughly 60
small molecules in explicit solvent.4,12

Here, we perform a much more extensive test of explicit
solvent modeling, on a test set of 504 molecules previously
used for implicit solvent hydration free energy
calculations5smore than 10 times larger than the largest
previous explicit solvent tests.12 Because this test is so
extensive, we believe it provides a good benchmark for the
best results that can currently be expected from molecular
dynamics models of hydration. We also hope that others will
find this compilation of computational and experimental
results useful for analysis and force field parametrization
efforts.

II. Simulation Methods

A. General Simulation Parameters. In this work, we use
alchemical free energy calculations to compute hydration free
energies in explicit solvent for 504 small molecules, using
the compound set from a previous implicit solvent study.5

Simulation protocols were similar to those used in previous
explicit solvent studies.4,12 Hydration free energies were
computed using the Bennett acceptance ratio (BAR).15 A
brief summary of the methods follows, and we note the
deviations from the previous studies.4,12

Here, starting molecular conformations were the same as
those for the previous implicit solvent study,5 except that
here a single starting conformation was used for each
molecule (rather than 5) due to computational limitations
relating to the size of the set. Simulations were performed
in GROMACS 3.3.116,17 using the GAFF small molecule
parameters13 as assigned by Antechamber14 (as in the implicit
solvent study).5 Here, AM1-BCC18,19 partial charges were
assigned using the Merck-Frosst implementation of AM1-
BCC.

This data set contains several nitro-containing compounds
which did not have improper torsions for the nitro-ring
system in the GAFF parameter set, specifically improper
torsions for GAFF types ca-o-no-o and c3-o-no-o. We added
these using generic GAFF values (that is, the values used
for the majority of the improper torsions in GAFF)sa barrier
height of 2.2 kcal/mol, a phase shift of 180°, and a periodicity
of 2.

After setup in Antechamber and Leap, small molecule
parameters were converted to GROMACS topology and
coordinate files using a Perl conversion script developed

previously.20 Small molecules were then solvated using
GROMACS utilities in a dodecahedral water box with at
least 1.2 nm from the solute to the nearest box edge using
the TIP3P model of water.21 The number of water molecules
varied depending on the solute size. Simulations were
performed separately at a variety of different alchemical
intermediate λ values, with the number of λ values and the
amount of equilibration as described previously.12 Production
simulations were 5 ns in length at each λ value, and free
energies and uncertainties were computed as described
previously.4,12 Uncertainties were computed using the block
bootstrap procedure described previously. Cutoffs and simu-
lation parameters were as described previously except that
the real-space electrostatic cutoff was 10 Å rather than 9 Å.

We computed the electrostatic and nonpolar components
of solvation. The electrostatic component was computed as
the free energy of turning on the solute partial charges in
water, less the free energy of the same transformation in
vacuum. The nonpolar component was the free energy of
turning on the Lennard-Jones interactions between the
uncharged solute and water, as in previous studies.4,12

Alternative definitions of the nonpolar component are pos-
sible.44

B. Analysis of the Nonpolar Component. In implicit
solvent models, the nonpolar component of solvation is often
assumed to correlate with the surface area and/or the volume
based on theoretical arguments relating to cavity creation
cost.22-26 To explore this we computed the solvent accessible
surface area and volume for all of the solutes considered
here using GROMACS tool g_sas with a probe radius of
1.4 nm.

We also further dissected the nonpolar part (due the
Lennard-Jones interactions) into repulsive and attractive
components using the Weeks-Chandler-Andersen (WCA)
separation.27 To do this, we implemented the WCA separa-
tion in a modified version of GROMACS 3.3.1.45

In our main study, we simply computed the total nonpolar
component and retained the trajectories. The attractive
component for each solute was then obtained by applying
the WCA separation to stored trajectories of the fully
interacting solute and reprocessing these simulations with
the attractive interactions turned off to re-evaluate the
energies. We computed the free energy for turning off
the attractive interactions using exponential averaging (the
Zwanzig relation)28 and standard error analysis. This assumes
that phase-space overlap is good between the ensemble where
the solute has attractive interactions with water and that
where it does not. Error analysis should tell us if this is not
the case. We further tested this by recomputing the attractive
contribution using simulations at a series of separate λ values
(where λ modifies only the attractive interactions) for selected
solutes (phenol, p-xylene, pyridine, and toluene) and found
that computed free energies were within uncertainty of the
values computed using exponential averaging, indicating
overlap was sufficient.

With these attractive components, we then obtained
repulsive components by subtracting the attractive component
from the total nonpolar component. This probably results in
slightly larger uncertainties in computed repulsive compo-
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nents than would have resulted from computing the repulsive
component separately, but it also saves a large amount of
computer time since we had already computed the total
nonpolar component, and the repulsive portion of the
calculation is the most difficult to converge.

C. Identification of Systematic Errors. Some functional
groups may lead to systematic errors, resulting in errors
which are larger for some types of molecules than for other
types. Alternatively, there might be no systematic errors. We
seek an approach to easily identify systematic errors and
prioritize functional groups which have the largest errors.

We make a list of compounds and sort it by rms error,
from largest error to smallest error. Following a method that
is often used to determine enrichment factors for drug
discovery, we look at the cumulative distribution function
(CDF) for each functional groupsthe probability of com-
pounds with that functional group having a ranked rms error
up to rank x. Those functional groups that are systematically
wrong will tend to cluster at high rms error and will result
in a rapid rise in the CDF versus x. This can be assessed
easily by computing the area under the CDF, biased by a
weighting function to give the most weight to high rms errors.
Here, we do this using the recently developed BEDROC
metric,29 which evaluates the integral of the CDF multiplied
by an exponentially decaying weighting factor and then
rescales this to run from 0 to 1. Chemical groups which occur
most often in compounds with high rms errors will have
larger BEDROC values, while chemical groups which have
more random errors will have smaller BEDROC values
(the expected BEDROC value for a uniform distribution can
be computed analytically).29 Chemical groups that only occur
in compounds with low rms errors have the smallest
BEDROC values. In Section III we report BEDROC values
for a variety of chemical groups and atom types. Uncertain-
ties were computed using the standard deviation of the mean
for 40 iterations of a bootstrap procedure where BEDROC
values for each chemical group are recomputed using a new
list of compounds made up of a random selection of
compounds from the original list.

Here, BEDROC values were computed using a weighting
factor of R ) 1.0. This value was obtained empirically by
experimenting with different R values to see what gave the
best ability to recognize functional groups which differ
substantially from random. If R is too large, the weighting
is too strong, and only compounds at the very highest rms
errors matter. If R is too small, making BEDROC equivalent
to the ROC metric, the weighting of the early part of the
curve is too weak, also apparently reducing the ability to
recognize systematic errors. R ) 1.0 was a good compromise.

To avoid having to assign functional groups to all of the
compounds in the test set by hand, we used the program
Checkmol,30 which automatically assigns chemical groups
to molecules. We used MDL molfiles generated by OpenEye′s
OEChem toolkit as input. This resulted in an extremely large
set of chemical groups, so we retained only those chemical
groups which occurred in at least 5 molecules. We also
combined some small groups. For example, we made a single
group of amines, containing all types of amines. We also
did the same for amides, ethers, esters, thiols, acids, and

alcohols. We also manually created a “hypervalent S” group
and included the appropriate compounds in this group. The
resulting list of molecules assigned to chemical groups was
used to generate BEDROC values for these chemical groups.

We also tried using Student’s t-test to look for systematic
errors to supplement the BEDROC approach. We used our
own implementations of the t-test and SciPy′s implementa-
tion of the incomplete beta function for computing the
significance. Results from this are discussed below.

III. Results and Discussion

A. The Mean Error Relative to Experiment Is Less
than 1 kcal/mol. Here we evaluate the agreement between
computed hydration free energies and the experimental values
for the full test set. A previous study on the same 504 small-
molecule test set compared the accuracy of several different
implicit solvent models5 using molecular dynamics free
energy calculations. rms errors ranged from 2.014 ( 0.008
kcal/mol to 2.433 ( 0.002 kcal/mol depending on the implicit
solvent model, with correlation coefficients (r2) from 0.685
( 0.001 to 0.774 ( 0.001. In all four solvent models tested,
the computed hydration free energies were systematically
too negative relative to experiments (the solutes preferred
the water phase too much in the simulations), so the mean
error was negative (-0.65 ( 0.09 to -1.1 ( 0.1).

Here, using explicit TIP3P water, we find an rms error of
1.26 ( 0.01 kcal/mol, with a correlation coefficient of 0.889
( 0.006 and a mean error of 0.676 ( 0.002 (Figure 1).
Hence, on average, explicit solvent simulations give signifi-
cantly better agreement with experiments than our earlier
implicit solvent study, consistent with an earlier comparison.4

Interestingly, the systematic errors of explicit and implicit

Figure 1. Calculated hydration free energies versus experi-
ment. Shown are the calculated hydration free energies versus
experiment for the full test set. The diagonal line is x ) y.
Vertical error bars denote computed uncertainties, and hori-
zontal error bars are a conservative estimate.
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solvent studies are in opposite directions. In explicit solvent,
the hydration free energies here are systematically too
positive. These differences are likely due to the solvent
models rather than the force field parameters, since the solute
parameters are very similar in the two cases. Systematic
errors in other explicit solvent models tended to be in the
same direction as the explicit solvent deviation here,8 so
perhaps limitations of the water model are playing a role.
Another potential source of such differences is the neglect,
in implicit solvent models, of asymmetries in the response
of water to solutes of different polarities.7 Another origin of
differences could be the nonpolar term in the implicit models.
That is, the term γ × A (where A is the surface area) in
implicit solvent models involves an adjustable parameter
which can change the errors. A table of the full results from
this study is available in the Supporting Information.

B. Improving the Alkyne Lennard-Jones Parame-
ters and Identifying Other Systematic Errors. Are there
systematic errors in the force field parameters for molecules
in our test set? We found that the computed hydration free
energies for alkynes were systematically much too positive
(Figure 1 and the Supporting Information). There were six
alkynes in the set, and the mean error was 1.92 ( 0.21 kcal/
mol. All of the computed hydration free energies were
actually around 2 kcal/mol, while experimental values are
close to zero. For all of the alkynes, the electrostatic
component of hydration is quite small (-0.8 to -0.9 kcal/
mol), since these molecules are largely nonpolar. We
reasoned that errors in alkyne parameters are thus not likely
to be in the electrostatic terms, nor are the errors expected
to come from the bonded parameters (bond stretching, angle
bending, etc.), which should affect hydration free energies
only weakly. Hence, we focused on the alkyne Lennard-
Jones parameters. In GAFF, the alkyne carbon Lennard-Jones
parameters are identical to those for all carbons except
selected sp2 carbons (the ‘c2’ atom type) and are taken
directly from comparable carbons in older AMBER force
fields.13 We were particularly concerned about the parameters
for the GAFF “c1” atom type, for the triple bonded carbons
in alkynes. These apparently originated with the work of
Howard et al., where they “were obtained by analogy to the
Weiner et al. and Cornell et al. force fields”.31 In that work,
those Lennard-Jones parameters were taken to be the same
as for the other carbons.

Many AMBER Lennard-Jones parameters were originally
taken from the OPLS force field, so we examined the OPLS
choices for triple bonded carbons. It turned out that OPLS
uses several different atom types for alkyne carbons,
originating from simulations of linear and substituted
alkynes,32-34 and some of these have much stronger disper-
sion interactions than those for the GAFF c1 type, which is
intuitively reasonable. It seemed likely that missing disper-
sion interactions could account for at least part of the error
we were seeing for alkynes, thus we examined modifying
the Lennard-Jones well-depth for alkynes in GAFF.

We sought to avoid adding additional atom types to GAFF,
but OPLS has several different carbon well-depths for
alkynes, depending on whether the carbon is terminal (ε )
0.086 kcal/mol), nonterminal with an attached atom having

two or three hydrogens (ε ) 0.210 kcal/mol), nonterminal
with an attached atom having one hydrogen (ε ) 0.135 kcal/
mol), or nonterminal with an attached phenyl or other atom
having no hydrogens (ε ) 0.100 kcal/mol).32-34 To avoid
adding additional atom types to GAFF, we needed to pick
just one of these, so we chose the one which gave the most
accurate hydration free energies when used for all alkyne
triple bonded carbons. This was ε ) 0.210 kcal/mol. The
original GAFF well depth was ε ) 0.086 kcal/mol.

Using this new ε value for triple-bonded carbons, the
computed hydration free energies for alkynes are much closer
to zero (although still slightly positive); now the mean error
is 0.49 ( 0.07 kcal/mol, down from 1.92 ( 0.21 kcal/mol
initially. Increasing the well depth further could reduce this
somewhat more, but this might cause other inconsistencies
within the force field. Nevertheless, the systematic error here
on alkynes is compelling, and we recommend that future
GAFF studies use a well depth of ε ) 0.210 kcal/mol for
triple bonded carbons (GAFF types c1, cg, and ch).46

The alkynes also provide an example of how the BEDROC
metric works for identifying systematic errors. Before the
adjustment of the well depth for alkynes, the BEDROC value
(with R ) 1) for alkynes was 0.90 ( 0.02 (compared to
0.49 for a random distribution with this R),47 indicating that
alkynes were systematically wrong. After the fix, the
BEDROC value was 0.26 ( 0.05, indicating that alkynes
now actually are considerably better than other typical
compounds (Figure 2). Although our correction of ε was
done without regard for the carbonitriles, the change results
in a decrease in BEDROC for the carbonitriles from 0.86 (
0.05 to 0.73 ( 0.06 (compared to 0.49 for uniform). So
carbonitriles are now improved too but still have substantial
systematic errors. With this change, the overall rms error
decreases slightly to 1.24 ( 0.01 kcal/mol, and the correlation
coefficient remains essentially the same (0.891 ( 0.006). In
all that follows we report values computed with the new well
depth.

We believe that the approach utilized here (looking for
compounds that are over-represented at the highest rms
errors) is a general and useful strategy for identifying
systematic flaws in the energy functions used for molecular
modeling simulations and prioritize reparameterization ef-
forts. Functional groups which tend to cause significant errors
should occur frequently at the high-rms error end of the set,
while functional groups which are not necessarily linked to
the errors should be roughly randomly distributed over the
test set. For example, one would intuitively expect that
whether a compound is aromatic or not will have little to do
with whether it is systematically mispredicted. Indeed,
aromatic compounds have a BEDROC value of 0.48 ( 0.03,
roughly randomly distributed (Figure 2). BEDROC values
by functional group for the set are shown in Table 1. These
BEDROC values show that cyclic hydrocarbons, alkynes
(with the fix), alkanes, aldehydes, and ketones are now
particularly well predicted. On the other hand, there appear
to be systematic errors for alcohols, alkyl bromides, and
carbonitriles.

We also tried another approach for identifying systematic
errors involving Student′s t-test, which compares the means
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of two distributions and provides a measure of the signifi-
cance of any difference in the means. We applied this
approach in two different ways:

(1) We compared the mean experimental value for each
functional group with the mean calculated value for each
functional group (Supporting Information, Table 5). This
proved not to be particularly useful, as these means are
significantly different for almost every functional group. This
is not surprising given the fact that the mean error across
the entire test set is 0.676 ( 0.002, so most computed values
(in all functional groups) are too positive. This does show
that results could be improved across the entire set by
addressing this systematic offset, but it does not provide any
insight into which functional groups are particularly
problematic.

(2) We compared the error for the compounds in each
functional group with the error for the entire set (Table 2).
This shows which functional groups have a significantly
different performance than the overall set, though this
performance could be better or worse. We also show the
mean error for each functional group in Table 2; functional
groups with mean errors around 0.676 kcal/mol are typical,
while those with larger mean errors are worse than average,
and those with smaller mean errors are better than average.
The t-test tells us which of these differences are significant,
and many are. This appears to be a useful analysis that
complements the BEDROC analysis. The advantage of the
BEDROC analysis is that it tells us which functional groups
have the worst errors, while this analysis can tell us which
functional groups have the most significant errors.

Figure 2. CDFs for selected functional groups versus error. Shown are cumulative distribution functions for finding compounds
with particular functional groups at a given ranked error. Compounds found far to the left have very large errors; compounds far
to the right have very small errors. An ideal random distribution of errors would give rise to a linear rise in the CDF. CDFs are
shown for (a) alkynes before fixing the Lennard-Jones well-depth, (b) alkynes after fixing the Lennard-Jones well-depth, and (c)
aromatics.
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The study done here uses one particular charge model.
Charge model may affect which compounds are particularly
poorly predicted, though in two recent tests, the compounds
which were poorly predicted tended to be poorly predicted
by most charge models.4,35 Still, our analysis here does not
in general point to a specific source of error. Errors may be
due to the charge model, Lennard-Jones parameters, or
bonded parameters, some combination, or even due to the
water model. In the case of the alkynes, we can be fairly
confident that the source of error is the Lennard-Jones
parameters for the reasons noted above. But for the other
cases noted here, further work will be required to determine
the source of error.

C. The Total Nonpolar Component Does Not Corre-
late with Surface Area or Volume. We examined the
nonpolar components (the nonelectrostatic component of the
hydration free energy) for our data set. The total nonpolar
contribution to the solvation free energy is typically assumed
to correlate with surface area or volume in implicit solvent
models. Yet we find that there is essentially no correlation.
Plots of nonpolar components versus surface area and volume
are shown in Figure 3. The correlation of the nonpolar
component with surface area is r2 ) 0.019 ( 0.001, and
that with volume is r2 ) 0.011 ( 0.001. The molecules in
this test set are small enough that surface area and volume
are highly correlated (r2 ) 0.991 ( 0.001).

We further dissect the nonpolar component using the WCA
separation of the Lennard-Jones potential energy (and thus
the nonpolar component) into attractive and repulsive parts.
The potential is split based on the sign of the force, as
discussed in the Methods section. We find that both the

attractive and repulsive components individually correlate
strongly with surface area and volume (repulsive: r2 ) 0.964
( 0.002 with surface area, r2 ) 0.952 ( 0.002 with volume;
attractive: r2 ) 0.945 ( 0.002 with surface area, r2 ) 0.946
( 0.002 with volume; Figure 4), and it is only the total (the
small difference of the two large individual components) that
does not correlate well with surface area or volume. This is
in accord with previous work on a smaller set of com-
pounds.36 Essentially, the total nonpolar component is the
sum of two anticorrelated quantities, and so the total ends
up being dominated by the scatter in these quantities. It is
interesting to note that the minimum in the Lennard-Jones
potential is precisely where these two forces, the attractive
and repulsive components, are very well balanced, so it is
perhaps not surprising that the attractive and repulsive
components correlate so well.

The observed poor correlation, and the importance of
attractive interactions, is consistent with several previous
studies which have found that the nonpolar component of
solvation does not correlate well with surface area.36-39

Why is the correlation with surface area so poor? In Figure
3, it is apparent that compounds containing only carbon and
hydrogen have a nonpolar component that is less favorable
to solvation than molecules of an equal size which addition-
ally contain nitrogen and/or oxygen. The likely reason for
this is that nitrogen and oxygen atoms tend to have stronger
attractive dispersion interactions with their environment than

Table 1. BEDROC Values by Functional Group for the
Different Functional Groups Represented in the Test Set,
Compared to What Would Be Expected for the Same
Number of Compounds Distributed Randomly Across the
Test Seta

functional group number BEDROC

acid 73 0.48 ( 0.03
alcohol 38 0.76 ( 0.03
aldehyde 20 0.22 ( 0.04
alkanes 28 0.16 ( 0.03
alkene 35 0.55 ( 0.04
alkyl bromide 17 0.72 ( 0.08
alkyl chloride 31 0.61 ( 0.05
alkyl iodide 9 0.44 ( 0.06
alkyne 6 0.26 ( 0.04
amine 44 0.47 ( 0.04
aromatic compound 170 0.48 ( 0.03
aryl chloride 20 0.54 ( 0.05
carbonitrile 12 0.73 ( 0.07
cyclic hydrocarbon 8 0.14 ( 0.03
ester 8 0.46 ( 0.11
ether 42 0.60 ( 0.04
halogen derivative 22 0.58 ( 0.07
heterocyclic compound 48 0.60 ( 0.04
hypervalent S 5 0.62 ( 0.20
ketone 25 0.26 ( 0.06
nitro compound 17 0.63 ( 0.08
other 29 0.62 ( 0.06
phenol or hydroxyhetarene 33 0.60 ( 0.05
thiol 5 0.46 ( 0.04

a Functional groups with high BEDROC values (relative to the
value for random, roughly 0.5 here) are overrepresented in
compounds with high RMS errors.

Table 2. Statistics from Applying Student′s t-Test to the
Difference between the Calculated and Experimental
Means by Functional Groupa

functional group number t-value significance mean error

acid 73 -7.43 4e-13 -0.34
alcohol 38 3.62 0.0003 1.29
aldehyde 20 -3.04 0.003 -0.07
alkanes 28 -1.69 0.09 0.31
alkene 35 2.34 0.02 1.07
alkyl bromide 17 3.31 0.001 1.50
alkyl chloride 31 2.31 0.02 1.09
alkyl iodide 9 0.59 0.6 0.86
alkyne 6 -0.38 0.7 0.49
amine 44 -0.65 0.5 0.55
aromatic compound 170 -1.05 0.3 0.55
aryl chloride 20 1.65 0.1 1.04
carbonitrile 12 3.22 0.001 1.63
cyclic hydrocarbon 8 -1.18 0.2 0.21
ester 8 -1.69 0.09 0.02
ether 42 2.18 0.03 1.01
halogen derivative 22 0.32 0.8 0.73
heterocyclic compound 48 2.38 0.02 1.02
hypervalent S 5 -4.55 7e-06 -1.50
ketone 25 -2.77 0.006 0.05
nitro compound 17 1.86 0.06 1.13
other 29 -0.48 0.6 0.55
phenol or

hydroxyhetarene
33 2.72 0.007 1.16

thiol 5 0.51 0.6 0.89

a Shown are the number of compounds in each functional
group, the calculated t value, the computed significance
(probability that t could be this large or larger by chance), and the
mean error for this group (in kcal/mol). The overall mean error is
0.676 ( 0.002 kcal/mol, so groups with mean errors smaller than
this may be significantly better than average (until the mean error
becomes negative), while those with mean errors larger than this
may be significantly worse.
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do carbon and hydrogen. Several other studies have noted
that dispersion interactions play an important role in nonpolar
solvation.36-39 Even interior solute atoms contribute to these
attractive interactions in an important way.40 Other factors
may also contribute to the poor correlation with surface area.
For example, geometric effects may play an important role
as well.

Overall, our results strongly support the growing consensus
that implicit solvent models should move beyond the simple
surface area model for treatment of the nonpolar component,
perhaps at least to include a treatment of dispersion interac-
tions. A number of alternate models have already been
proposed.36,38,39,41,42

IV. Conclusions

We used molecular dynamics simulations in explicit TIP3P
water to compute the hydration free energies for a set of
504 neutral compounds. We compared the results with
experimental data in the most extensive such test in explicit
solvent to date. We find a good correlation (r2 of 0.891 (

0.06) and an rms error of 1.24 ( 0.01 kcal/mol or roughly
2 kT. We believe this is representative of the accuracy that
can be expected from the best current physical models for
hydration free energies. It may be possible to develop new
models which can do somewhat better, though we expect
that it may be very hard to increase accuracies past 1 kT. A
key finding is that these explicit solvent free energies are
considerably more accurate than the corresponding implicit
solvent values for the same data set.

At the same time, many of the molecules in this test set
are relatively small and simple compared to typical druglike
molecules, which may be highly polyfunctional. Recent work
suggests that overall performance of the approach applied
here may be significantly worse in tests where the compounds
involved are more polar and polyfunctional.4,35 This may
suggest we need much more hydration free energy data on
more polyfunctional, druglike molecules in order to refine
our force fields.

Here, we also propose a way to identify systematic errors
in force field parameters for particular functional groups. We
do this using the BEDROC method.29 Using this approach,

Figure 3. Nonpolar components versus solvent accessible
surface area and volume. Shown are the calculated nonpolar
component of the hydration free energies versus solvent
accessible surface area and volume for the compounds in the
set. Carbon and hydrogen containing compounds are black,
those with oxygen additionally are red, those with nitrogen
additionally are blue, and those with nitrogen and oxygen both
are magenta. Compounds with diamond symbols contain
other elements in addition to C, H, N, and O. In the surface
area plot, the line is a typical implicit solvent nonpolar
component estimate of Gnp ) (0.00542 ·SA + 0.92) kcal/mol1.

Figure 4. Repulsive and attractive parts of the nonpolar
component versus surface area. Shown are the repulsive (a)
and attractive (b) parts of the nonpolar component, as
calculated using the WCA separation, plotted versus the
solvent accessible surface area for solutes in the test set.
Similar plots comparing the repulsive and attractive compo-
nents to volume are given in the Supporting Information.
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we were able to fix a systematic problem with alkyne
Lennard-Jones parameters. We also identified several other
classes of compounds which appear to have systematic errors,
and for which further force field development should be done.
Having a method to systematically identify problematic
compound classes provides good opportunities for force field
improvements.

In addition, we studied the nonpolar component of the
hydration free energy for the compounds in the test set. We
find that while the large repulsion and attraction terms both
correlate well with the size (area or volume) of the solute,
the total nonpolar component, which is a small difference
between these two quantities, does not. This strongly suggests
that implicit solvent models need to move away from treating
the nonpolar component as simply dependent on the surface
area. The data additionally suggest that new models must
address the nonlinear behavior arising from the delicate balance
of repulsive and attractive nonpolar terms. Furthermore, implicit
solvent models that have been parametrized to match experi-
mental hydration free energies using a simple surface area-based
nonpolar term may need to be reparameterized.

Here, the real value of this study is not the methods
presentedsthe methods were used in previous work. Rather,
it is the extensive nature of the test, which provides the
opportunity to actually identify systematic errors in the force
field descriptions of particular functional groups. It also
provides guidance into what compounds are likely to be
particularly challenging to study computationally with current
force fields.

Because we believe the real value of this study is these
results, we have deposited the full set of computed free
energies, components, starting molecular structures, and
parameters for this work in the Supporting Information. We
hope that others find this experimental data set and the
computational results to be useful in future studies of
solvation and for force field development.
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Here, we computed the aqueous solvation (hydration) free energies of 52 small drug-like molecules using an
all-atom force field in explicit water. This differs from previous studies in that (1) this was a blind test (in an
event called SAMPL sponsored by OpenEye Software) and (2) the test compounds were considerably more
challenging than have been used in the past in typical solvation tests of all-atom models. Overall, we found
good correlations with experimental values which were subsequently made available, but the variances are
large compared to those in previous tests. We tested several different charge models and found that several
standard charge models performed relatively well. We found that hypervalent sulfur and phosphorus compounds
are not well handled using current force field parameters and suggest several other possible systematic errors.
Overall, blind tests like these appear to provide significant opportunities for improving force fields and solvent
models.

1. Introduction

Hydration free energies provide an important metric of the
accuracy of physics-based methods used in molecular simula-
tions. Since these can now be calculated very precisely, they
can be compared with experiment to test force fields and identify
systematic errors.1-4 They also can provide insight into the
underlying solvation effects such as hydrophobicity,5 surface
effects,6 and solvent asymmetries.7 For these and other reasons,
there have been a wide range of recent computational studies
of small molecule hydration free energies from explicit solvent
simulations.1,2,4,8-14

A major advantage of physical methods is their potential
ability to predict properties of compounds that have not been
previously studied. Ideally this ability could be used in drug
discovery and other applications. With this in mind, it is
important to test methods not only in retrospective tests but also
prospectively, as they would be used in real applications. Here
we report the results of a blind test for computing hydration
free energies with explicit solvent molecular dynamics simula-
tions. This test was done as part of OpenEye’s Statistical
Assessment of Modeling of Proteins and Ligands (SAMPL)
challenge. Hydration free energies were computed with no
knowledge of experimental values, then submitted to the
moderators of the SAMPL project, who then provided the
experimental values.

2. Methods

Starting mol2 files were provided by the organizers of
OpenEye’s SAMPL event; names and 2D structures are provided
in the work of Guthrie.15 We then prepared five partial charge
sets for use with AMBER small molecule parameters: a negative

control, two positive controls, and two sets for testing. The
negative control was Merck molecular mechanics force field
(MMFF) charges, which we expected to perform poorly.16

Positive controls were RESP HF/6-31G* and AM1-BCC partial
charges. We tested PM3-BCC v0.2 and PM3-BCC v0.3 partial
charges, which are under development by C. I. Bayly and
collaborators as potential successors to AM1-BCC. MMFF
charges were computed using routine Merck & Co. internal
software. RESP charges were computed as described previ-
ously,16 except that a B3LYP (cc-pVTZ) minimization was done
on an extended conformation holding all non-H-containing
dihedrals constant; the restraint weight was 0.001 in both stages;
and for all topologically equivalent atoms, charges were
averaged as the last step. For time reasons, geometry optimiza-
tion was not entirely completed for molecule 23, though the
forces were in the last significant figure before the convergence
threshold. AM1-BCC charges were computed as described
previously.16,17

The approach for the free energy calculations here was very
similar to that in several previous studies of hydration free
energies.2,4,11 We used explicit solvent molecular dynamics
simulations with the TIP3P water model18 and Amber GAFF19,20

small molecule parameters. Simulations were conducted using
the April 2, 2007 CVS version of the GROMACS 3.3.1 software
package21 (which incorporated several bugfixes past the 3.3.1
release itself). The hydration free energy calculations involved
several components as described previously,4 with each simula-
tion conducted independently from the same starting structure.
First, solute electrostatics are turned off in water linearly with
the variable λ (where λ ) 0, 0.25, 0.5, 0.75, and 1.0 in turn).
Second, solute-water Lennard-Jones interactions are turned off
in water using soft core potentials22 with the parameters
suggested by Shirts8 (R ) 0.5, with a soft core exponent of 1),
as previously.4 For this step, λ values were 0.0, 0.05, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, and 1.0.
Finally, solute electrostatics were turned back on in vacuum
(with λ ) 0, 0.25, 0.5, 0.75, and 1.0). The free energy of each
of these component steps was computed using the Bennett

† Part of the special section “Calculation of Aqueous Solvation Energies
of Drug-Like Molecules: A Blind Challenge”.
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acceptance ratio (BAR)23 and then the total hydration free energy
was computed as ∆Ghyd ) ∆Gchg,vac - ∆Gchg - ∆GLJ, where
∆Gchg denotes the free energy of turning off the electrostatics
in water, ∆Gchg,vac denotes the same quantity for vacuum, and
∆GLJ denotes the free energy of turning off the solute-water
Lennard-Jones interactions in water.

Protocols were generally as described previously.4 Briefly,
at each lambda value, the (same) starting structure was
minimized using steepest descents minimization. The resulting
structures were then run through an equilibration procedure
consisting of 10 ps of constant volume equilibration, followed
by 100 ps of constant pressure equilibration. Production
simulations were 5 ns at each λ. We did make some minor
modifications to our previous protocols. We replaced the
L-BFGS minimizations with up to 5000 steps of steepest
descents minimization for each molecule at each λ value
(because the GROMACS L-BFGS minimizer would often
terminate too early, resulting in forces that remained too large;
we achieved better minimization with the steepest descents
minimizer). For simulations in water, we used a neighbor list
cutoff of 1.0 Å and an electrostatic cutoff of 1.0 Å (this change
was because the 3.3.1 version of GROMACS requires these
two cutoffs be equal when using lattice-sum electrostatics).
Small molecules were solvated using GROMACS utilities in a
dodecahedral simulation box with at least 1.2 nm from the solute
to the nearest simulation box edge; in some cases, previous
simulations used slightly smaller box sizes. For each charge
set, a separate set of electrostatic annihilation calculations was
performed, rather than computing the free energy of changing
the charges from a reference set as in the previous work (this
change was to avoid introducing the potential for additional error
by adding an extra step to the calculation). Additionally,
following constant pressure equilibration, at each lambda value,
we performed an affine transformation on the atomic coordinates
to scale the volume to the average box volume from the constant
pressure equilibration. The box was then fixed at this size during
the subsequent constant volume simulations, and an additional
100 ps of data was discarded to equilibration before collecting
data for analysis. This change was made because occasionally
box volumes at the end of constant pressure equilibration could
be far from the mean, and fixing the box volume to this value
for constant volume production could lead to artifactual densi-
ties. Adding the affine transformation ensures the box volume,
and hence density, is correct for the constant volume production.
Data and error analysis was as described previously;2,4,11

computed uncertainties reported in the Supporting Information
represent the estimated standard error in the mean. Nonpolar
components, which do not depend on the charge model, were
only calculated once.

WIth the data we generate, we want to be able to identify
whether there are particular functional groups that tend to cause
systematic errors, or whether errors are not particularly linked
to functional groups. We begin with the realization that, if a
functional group is not associated with systematic errors, it
should be roughly as likely to occur in compounds that have
large errors relative to experiment as in compounds with small
errors relative to experiment. For example, a previous study
found that whether a compound is aromatic or not has no bearing
on whether it is well- or poorly predicted.11 So, to identify
systematic errors, what we seek to find is chemical groups that
are statistically over-represented in the compounds with the
largest errors. There are many potential ways to perform such
a search, and here we choose just one such way that appears to
work well for us. We first sort the molecules by the absolute

value of the error relative to experiment, from largest to smallest
errors. We then use the package Checkmol24 to group com-
pounds by functional group. We then want a statistical metric
to assess which are over-represented at the largest errors. We
choose the BEDROC metric25 for this task, as in one previous
study.11 Basically, BEDROC computes a Boltzmann-weighted
area under the cumulative probability distribution function for
finding compounds (with a particular chemical group) at a
particular error, then rescales the resulting numbers to fall
between 0 and 1. The weighting simply makes the early (high-
error) part of the curve dominate. Here, we compute BEDROC
values (with R ) 1) for different functional groups. Those
functional groups which have particularly high BEDROC values
(relative to random) are typically associated with large errors
(and thus may have parameter or other problems), as noted
previously.11 Thus, the BEDROC values we report here are
simply a numerical metric that tells us whether or not a particular
functional group is especially likely to be associated with large
errors relative to experiment.

Experimental results are taken from the tables of Guthrie,15

and experimental error bars shown in the plot are taken from
the uncertainty estimates described in that work. Some potential
sources of error are discussed there as well.

3. Results and Discussion

A variety of previous explicit solvent hydration free energy
studies had rms errors relative to experiment in the 0.8-1.6
kcal/mol range,2,4,11 which might have implied similar accuracies
here. However, the composition of this test set is very different.
Prior test sets contained mainly monofunctional molecules with
relatively standard or common functional groups. They were,

Figure 1. Representative molecules from the test sets. Shown are
reference molecules with the typical number of heavy atoms in the
previous (a) and this (b) test sets. 1-methylcyclohexene is shown in
(a) and has 7 heavy atoms; 2,2-dimethyl-2,3-dihydrobenzofuran-7-yl
methylcarbamate (also known as carbofuran) is shown in (b) and has
16 heavy atoms.

TABLE 1: Statistics for the Charge Models Tested in This
Studya

charge
model

rms error
(kcal/mol)

R2

(kcal/mol)
mean error
(kcal/mol)

RESP 3.51 ( 0.20 0.76 ( 0.08 -1.68(0.42
AM1-BCC 3.82 ( 0.21 0.83 ( 0.09 -1.88 ( 0.45
MMFF 5.75 ( 0.20 0.60 ( 0.08 -3.92 ( 0.57
PM3BCC v0.2 4.13 ( 0.22 0.76 ( 0.09 -2.57 ( 0.44
PM3BCC v0.3 4.05 ( 0.21 0.80 ( 0.09 -2.47(0.43

a Shown are RMS error, correlation coefficient (R2), and mean
error.
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in some ways, unlike typical drugs because they lacked the
polyfunctionality common in many drugs. On the other hand,
the SAMPL set is much different, and in some respects more
drug-like (many of the compounds are pesticides). Most of the
SAMPL molecules are larger (16.3 heavy atoms on average,
compared to 7.1 in a previous extensive test),11 highly poly-
functional, and very polar (see the discussion and structures in
ref 15). Also, a number of these functional groups have been
rarely, if ever, studied with fixed-charge force fields. Finally,
this test set takes us fairly far afield from the usual functional
groups (such as amino acid side chain analogs, nucleic acids,
and common cosolvents) which have been studied in developing
the GAFF parameter set.19,20 These factors make this SAMPL
test much more challenging. To illustrate the difference,
representative molecules are shown in Figure 1.

Here, we tried several different charge models with the same
GAFF bonded and nonbonded parameters. We expected the
RESP HF/6-31G*26 and AM1-BCC16,17 charge models would
do fairly well, and as a negative control we used MMFF charges,
which we expected to perform relatively poorly, as they were
developed for a different force field. We also tested two other

charge models to see how they compared against these others.
Statistics are shown in Table 1. We use rms error and R2, the
correlation coefficient, as our metrics for quality, and also report
mean error to show whether there is a systematic offset in
computed values. We find that, as expected, MMFF performs
worst. Both PM3-BCC charge models are intermediate in terms
of rms error, and comparable to RESP and AM1-BCC in terms
of R2, and RESP and AM1-BCC have the lowest rms errors.
Here, RESP has the lowest rms error, 3.5 ( 0.2 kcal/mol, and
an R2 value of 0.76 ( 0.08. Except for MMFF, rms errors fall
between 3.5 and 4.1 kcal/mol, and R2 values are decent, running
from 0.76 ( 0.08 to 0.83 ( 0.09. Computed hydration free
energies versus experiment are shown in Figures 2 and 3, and
a full table of computed values and components is provided in
the Supporting Information.

Overall, rms errors here are markedly higher than in previous
studies,2,4,11 probably reflecting the difficulty of this highly polar
and polyfunctional test set, as well as its deviations from the
regions of chemical space the force field has been tested in.
Previous work on more typical functional groups showed that
computed results for more polar compounds with more negative

Figure 2. Computed versus experimental hydration free energies for the charge models studied. Shown are computed hydration free energies
versus experiment, for partial charges from (a) RESP HF/6-31G*; (b) AM1-BCC; and (c) MMFF. Red triangles denote compounds containing
hypervalent sulfur; green squares denote those containing hypervalent phosphorus, and blue circles denote the remainder of the compounds.
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hydration free energies had larger errors;11 this set has a higher
proportion of highly polar compounds, which may have played
a significant role in the lower accuracy here. Here, we group
the compounds by functional group, sort the list by the
magnitude of the error relative to experiment, and use the
BEDROC metric to look for functional groups that are
disproportionately associated with large errors. High BEDROC
values mean a particular functional group occurs mostly in
compounds with large errors, while low BEDROC values mean
it occurs mostly in compounds with small errors, and intermedi-
ate values mean the functional group is distributed roughly
randomly. Thus high BEDROC values may be an indication of
force field errors for a particular functional group.

BEDROC values for the functional groups we examined
are shown in Figure 4 by charge model. A random distribu-
tion (for these numbers of compounds) gives a BEDROC
value of 0.49-0.50. Some functional groups show particularly
significant deviations from random. BEDROC values for
ureas, compounds with hypervalent sulfur, sulfonamides, and
compounds with hypervalent phosphorus are all significantly
worse than random with AM1-BCC. In contrast, nitrates are
particularly well predicted. These trends are consistent across
all the charge models, except that nitro-containing compounds

also perform poorly in MMFF and PM3-BCC v0.2, and
hypervalent phosphorus compounds are reasonably well pre-
dicted with PM3-BCC and RESP.

It seems clear that something is significantly wrong with the
calculations or experiments for the compounds with hypervalent
sulfur. Figure 2a shows the compounds with hypervalent sulfur
for the AM1-BCC charge set, with those containing hypervalent
sulfur and phosphorus highlighted with a different color and
symbol. All of the computed values for these compounds are
off from the experimental values in the same direction by several
kcal/mol (mean error -8.10(0.40 kcal/mol with AM1-BCC).
Hypervalent phosphorus compounds are also particularly poorly
predicted with AM1-BCC and several other charge models
(Figure 2a). Together, these two groups account for the worst
outliers; if hypervalent sulfur and phosphorus compounds are
excluded, the AM1-BCC rms error is 1.6 ( 0.2 kcal/mol (down
from 3.8 ( -0.2) and the R2 increases to 0.9 ( 0.1 (from 0.8
( 0.1), more in line with the accuracies seen in previous
studies.2,11 Of course, excluding outliers always makes results
better, and is only possible retrospectively.

Should we have known that hypervalent sulfur and phospho-
rus compounds might be a problem? Our previous retrospective
study11 only had five hypervalent sulfur compounds, and we
find a BEDROC value of 0.6 ( 0.2, within uncertainty of
random, so the data is inconclusive. The situation was even
worse for hypervalent phosphorus compounds, for which there
were only two representatives.

We believe this analysis suggests a systematic problem with
force field parameters for hypervalent sulfur and possibly
hypervalent phosphorus compounds that was statistically insig-
nificant in earlier work, essentially due to the small number of
such compounds in the earlier test set.

What might be the problem with these parameters? While
AMBER27 and GAFF28 use a variety of atom types for sulfur
and phosphorus, the Lennard-Jones parameters for all sulfur
atom types are identical. Similarly, the Lennard-Jones param-
eters for all phosphorus atom types are identical. This seems
surprising, as the chemical environment seems likely to affect
the strength of dispersion interactions between these atoms and
their surroundings. Another study recently found that the
Lennard-Jones parameters for triple bonded carbons had been

Figure 3. Computed versus experimental hydration free energies for the PM3-BCC charge models. Shown are computed hydration free energies
versus experiment, for partial charges from (a) PM3-BCC v0.2 and (b) PM3-BCC v0.3. Red triangles denote compounds containing hypervalent
sulfur; green squares denote those containing hypervalent phosphorus, and blue circles denote the remainder of the compounds.

Figure 4. BEDROC values by functional group and charge model.
Shown are computed BEDROC values (R ) 1.0) for different functional
groups represented in the test set, for all of the charge models examined.
A table of values, including uncertainties, is shown in the Supporting
Information.
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taken from those for aromatic carbons in AMBER and GAFF
and that this underestimated the attractive interactions between,
for example, alkynes and water, leading to systematic errors.4

Something similar could be going on here. Apparently the
original AMBER sulfur parameters were taken from OPLS27

(though the AMBER force field files indicate that free energy
perturbation calculations also played a role), but now OPLS
has moved to using different Lennard-Jones parameters for
different sulfur atom types, while AMBER has maintained the
single set of parameters. The (single set of) phosphorus
parameters for AMBER were originally developed by Weiner
et al.29 and GAFF simply took this set and applied it to all the
phosphorus atom types.28 This practice of taking Lennard-Jones
parameters derived for an element in one particular environment
and applying it to the same element in a substantially different
chemical environment, differing even in terms of the number
of bonds, could be the cause of some of these systematic errors.

rms errors in the range of those reported here (3.5 kcal/mol and
up) are large for practical applications. For example, a 3.5 kcal/
mol error in a binding free energy calculation would be larger than
the range in binding affinities in many lead series! In some sense,
the compounds tested here are “drug-like”, so this is at first a
discouraging result. But as noted, rms errors are much better (and
more in line with previous studies) if the hypervalent sulfur and
phosphorus compounds are excluded, so the poor accuracy seen
here may be simply pointing the way toward the need for
refinements of the force field for these particular compounds.

We are not aware of any force fields or methods that would be
expected to give better results for this set. Other participants in
the SAMPL challenge seemed to achieve at best comparable
results.15 The same held true in another recent prospective test,2

where the best Poisson-Boltzmann based approach gave accuracies
no better than molecular dynamics free energy calculations. Even
a later retrospective study using a quantum mechanical continuum
solvation model gave accuracies that were roughly comparable (rms
errors between 1.08 and 1.88 kcal/mol,30 versus rms errors between
1.33 and 2.0 kcal/mol with explicit solvent in the previous study)2.
So, from a methods point of view, there is no reason to expect
that other methods should perform any better on this set. However,
if the dominant source of error here is indeed a parameter problem
for a small subset of the compounds, it might suggest that a method
more grounded in quantum mechanics might do substantially better
here.

4. Conclusions

Opportunities for prospective or blind tests of computational
free energy methods have been relatively rare. This represents
the second such test for calculations of hydration free energies.2

These tests are helpful, as they provide a way to avoid any
possibility of being influenced by knowledge of the “right
answer” and thus to genuinely test the method with no
adjustments to parameters.

Overall, this prospective test has provided an opportunity to
test explicit solvent simulations in a region of chemical space
in which they have been rarely applied. Stepping into the
“wilderness” in this way appears to present some risks, as errors
were larger here than in previous studies considering simpler,
often monofunctional, compounds that were more similar to
typical protein or nucleic acid components. It was encouraging
that correlations with experimental values remained fairly strong
(R2 of 0.75 and higher, except for our negative control charge
model), though errors were relatively high. Some functional
groups were particularly poorly predicted, suggesting that further
force field development for these functional groups may improve

accuracies. We believe that regular studies of this nature will
provide substantial benefits for the development of solvation
models and force fields, and will aid in identifying systematic
errors with force fields and making improvements.
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We review insights from computational studies of affinities of ligands binding to proteins. The power of
structural biology is in translating knowledge of protein structures into insights about their forces, binding,
and mechanisms. However, the complementary power of computer modeling is in showing ‘‘the rest of the
story’’ (i.e., how motions and ensembles and alternative conformers and the entropies and forces that
cannot be seen in single molecular structures also contribute to binding affinities). Upon binding to a protein,
a ligand can bind in multiple orientations; the protein or ligand can be deformed by the binding event;
waters, ions, or cofactors can have unexpected involvement; and conformational or solvation entropies
can sometimes play large and otherwise unpredictable roles. Computer modeling is helping to elucidate
these factors.
Introduction: Computer Modeling Is an Important Tool
for Understanding Ligand Binding to Proteins
Structure-based computer modeling of ligand-protein interac-

tions is now a core component of modern drug discovery

(Charifson and Kuntz, 1997). It is now difficult to imagine the

drug discovery process without computation (Jorgensen,

2004). Computational methods have played a key role in the

drug discovery process for a growing number of marketed

drugs, including HIV protease inhibitors (Charifson and Kuntz,

1997; Greer et al., 1994; Jorgensen, 2004) and zanamivir (an

antiviral neuraminidase inhibitor) (von Itzstein et al., 1993), and

in the development of new drug candidates, such as HIV

integrase inhibitors (Hazuda et al., 2004; Schames et al., 2004),

hepatitis C protease inhibitors (Liverton et al., 2008; Thomson

and Perni, 2006), and beta-secretase inhibitors (BACE-1)

(Stauffer et al., 2007).

An early step in this field was the invention of the DOCK

method in 1982 (Kuntz et al., 1982). There are now at least four

classes of physical computer methods (listed from fastest to

slowest, and least physical to most physical): (1) very fast molec-

ular docking methods, including DOCK, Glide, AutoDock, FlexX,

ICN, PMF, and GOLD, (2) approximate free energy methods, in

which the solvent and protein motions are taken into account

with fewer approximations, (3) relative binding free energy

(RBFE) methods, which include full solvent and protein motions,

but which require prior knowledge of the structure of a complex

of the protein with a ligand that is similar to the one of interest,

and (4) absolute binding free energy (ABFE) methods, which

are the most expensive computationally, but which include the

physics in the most rigorous way that is currently practical (see

Figure 1). ABFE methods start from an unbound ligand and

potentially the unbound structure of the protein to attempt to

predict the structures, affinities, and thermal properties of the

complexes of interest. Mining minima is another method that is

very nearly in this last category and has provided insight into

binding (Chang and Gilson, 2004; Gilson and Zhou, 2007;

Head et al., 1997).
St
Different Computer Methods Trade Off Speed versus
Physical Accuracy
First, we define some terms. A lead compound is a molecule,

typically in early-stage drug discovery, that can be further chem-

ically modified to improve its properties as a possible drug candi-

date. A complex is a receptor and ligand bound together. A pose

is one conformation of a ligand in a complex and specifies both

the ligand conformation and its position relative to the receptor.

A pose can refer either to a conformation that is known from an

experimental structure of a complex, or to a hypothetical confor-

mation generated in a computer model. The apo form refers to

the structure of the protein that has no ligand bound to it. The

holo form refers to the structure of the protein when it is

complexed with ligand. The binding free energy, DGo, is the

free energy of the complex minus the free energies of the ligand

and apo protein separately in aqueous solution. The binding free

energy is related to the equilibrium association constant, Ka, (in

units of M�1) by DGo = �RT ln (Co Ka), where R is the gas

constant, T is the absolute temperature, and Co is the standard

concentration (1 M). The binding affinity, or dissociation

constant, equals 1/Ka. The binding free has two components,

DG = DH – TDS, where H is the enthalpy and S is the entropy.

Here are some of the key approaches used for studying binding.

Docking

Docking methods start with a known protein structure and

a known ligand structure and aim to rapidly generate an optimal

protein-ligand bound conformation. Docking was designed to be

very rapid (seconds or less per compound), which is desirable for

screening large libraries in the short times required for modern

pharmaceutical lead discovery. Docking explores many ligand

conformations and orientations, and in some cases even

different potential binding sites. The different poses are rank

ordered by a score, a quantity that ideally would correlate with

the free energy of binding, and is obtained either from a physical

or knowledge-based potential. Often, docking approaches treat

the protein as completely rigid, having a single fixed receptor

conformation. Other docking methods treat protein motions by
ructure 17, April 15, 2009 ª2009 Elsevier Ltd All rights reserved 489

mailto:dmobley@gmail.com


Structure

Review
moving only certain atoms out of the way. Though some modern

docking approaches can allow for some motions of side chains

or backbone (Corbeil et al., 2007; Cozzini et al., 2008; Leach,

1994; Meiler and Baker, 2006; Sherman et al., 2006; Wei et al.,

2004), treating these degrees of freedom slows down the

computations considerably. Docking is an appealing way to

generate leads (Shoichet et al., 2002) because of its speed and

ability to screen large libraries of potential leads (Huang and

Jacobson, 2007; Babaoglu et al., 2008). But because docking

trades off physical accuracy for speed, it is seldom accurate

enough to predict binding affinities or rank-order compounds.

Its power to discriminate binders from nonbinders varies widely

depending on the target protein (Graves et al., 2008; Warren

et al., 2006). But because of its speed, docking approaches

are the method of choice for filtering out compounds that are

likely nonbinders and for identifying native-like poses.

MM-PBSA/GBSA

MM-PBSA/GBSA is more physically rigorous than docking.

The acronym stands for molecular mechanics with Poisson-

Boltzmann + surface area or MM-GBSA (GB stands for General-

ized Born), and the method was originated by the Kollman and

Case labs in the late 1990s (Cheatham et al., 1998; Kollman

et al., 2000; Srinivasan et al., 1998), with parallel work by others

(Vorobjev and Hermans, 1999). It involves greater computational

cost than docking (at least several hours per compound), but

also is more physical in its more extensive conformational

sampling. MM-PBSA aims to estimate the binding free energies,

or relative binding free energies, of related compounds. Here,

a computer generates representative bound and unbound

structures by molecular mechanics simulations or by energy

minimization of a protein-ligand complex, usually in explicit

solvent. The goal is to estimate the change in enthalpy on binding

by comparing the average enthalpy of bound and unbound

states, but this would be a small difference of two large, noisy

energies. So after the all-atom simulations, the water is removed

and the enthalpies and binding free energies are estimated using

an implicit (Poisson-Boltzmann or Generalized Born) representa-

tion of water. The binding free energy estimate includes the

Figure 1. Relative Publication Numbers
for Different Computational Methods
From Google Scholar (July 2008). MM-PBS,
molecular-mechanics with Poisson-Boltzmann
surface area; RBFE, relative binding free energy;
ABFE, absolute binding free energy. Percentages,
in the order listed in the legend, are 88%, 1%,
11%, and 0.04%.

enthalpy change plus the change in

salvation free energy from the implicit

solvent model.

In many cases, an approximate value

of the entropy is also estimated from

these simulations. Because MM-PBSA/

GBSA invests more effort in sampling

and entropies, it is closer to a true free

energy calculation. However, often,

because of limitations in the approxima-

tions for estimating entropy (Gilson and

Zhou, 2007), entropic contributions are omitted when estimating

relative binding strengths, in the hope that these contributions

will cancel when comparing similar ligands (Gilson and Zhou,

2007; Shirts et al., 2009).

Early results with the MM-PBSA method were quite promising

(typically with mean-squared errors under 3 kcal/mol for the first

several years) (Huo et al., 2002; Kuhn and Kollman, 2000; Mardis

et al., 2001; Rizzo et al., 2004; Schwarzl et al., 2002; Shirts et al.,

2009), but more recent studies have seen larger errors in some

cases (Shirts et al., 2009). Applications have typically been

limited to single targets, so it is difficult to evaluate how well

the method does generally.

The drawbacks of MM-PBSA/GBSA are that it, too, is

sometimes not predictive (Pearlman, 2005; Shirts et al., 2009;

Steinbrecher et al., 2006) and it requires prior knowledge of

a likely bound complex as a starting point, although such starting

conformations can be taken from prior docking (Steinbrecher

et al., 2006).

Relative Binding Free Energies

A still more rigorous approach uses the energetics of a physical

force field and extensive conformational sampling from molec-

ular dynamics simulations to actually compute differences in

binding free energies between similar ligands. This can be

done using computational alchemy to obtain the difference in

binding free energies, DDGA/B. This is the free energy of

changing ligand A into ligand B in the receptor, minus the free

energy of changing A into B in solution. To compute this free

energy difference for just one pair of ligands binding to the

same protein can cost several hundred CPU days. These relative

free energies can be computed precisely—given sufficiently long

molecular dynamics simulations—using one of several different

analysis techniques (Shirts et al., 2007). Though the accuracy

of the binding free energies obtained from this method depends

on the accuracy of the underlying molecular mechanics force

field, it does treat fully, at least in principle, free energies associ-

ated with conformational change as well as entropies.

The first alchemical calculations were performed in the 1980s

in the McCammon lab (Tembe and McCammon, 1984; Wong
490 Structure 17, April 15, 2009 ª2009 Elsevier Ltd All rights reserved
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and McCammon, 1986), and then by others (Hermans and

Subramaniam, 1986; Warshel et al., 1986; Bash et al., 1987;

Shirts et al., 2007). Limitations of these methods are the high

computational costs and the need to know at least one bound

structure of a similar ligand in the protein as a starting point.

Accuracies are generally better than for MM-PBSA (Pearlman,

2005; Steinbrecher et al., 2006) and docking (Mobley et al.,

2007b; Pearlman and Charifson, 2001), but few systematic

comparisons have been done. These methods are only useful

for comparing related ligands or receptors.

Absolute Binding Free Energies

The most powerful approach, in principle, is the method of

absolute binding free energies (ABFE) (Boresch et al., 2003;

Hermans and Wang, 1997; Roux et al., 1996). Like RBFE

methods, ABFE methods also use full molecular dynamics simu-

lations with fully detailed atomic force fields, and also involve

separate sets of simulations for the solvated ligand, the solvated

protein, and the complex. But ABFE methods do not require prior

knowledge of the binding affinity of a related ligand, hence the

term absolute. There have been two groups of ABFE approaches.

The first begins with the structure of the ligand of interest bound

to the protein. However, the ultimate goal is to begin with no prior

knowledge of either the structure or affinity of the ligand complex.

A second, more recent group replaces starting knowledge of the

structure with one or more docking poses (Mobley et al., 2006,

2007b; Jayachandran et al., 2006). Various studies suggest that

ABFE methods are fairly accurate, with good correlations to

experimental binding affinities and with RMS errors often less

than 3 kcal/mol (Deng and Roux, 2006; Fujitani et al., 2005;

Jayachandran et al., 2006; Mobley et al., 2007b; Shirts et al.,

2007; Wang et al., 2006), and sometimes much better.

Ligand Binding Is Described by Energy Landscapes,
Not Just Single Structures
The enterprise of structural biology has given us powerful ‘‘eyes’’

to see single structures—specific native structures and specific

bound complexes—and some of the driving forces that hold

them together: hydrogen bonds, hydrophobic interactions, ion

pairing, and van der Waals packing. However, ‘‘what you see’’

is not always ‘‘what you get.’’ Other equally important forces,

namely the entropies, are not visible in native structures.

To capture both the observable and nonobservable contribu-

tions to the energetics, it is important to note that binding takes

place on an energy landscape. Exploring energy landscapes

often requires modeling and computer simulations. For binding,

the energy landscape is the free energy of the system as a func-

tion of its degrees of freedom, which are many, and include

translational, rotational, conformational, and solvation degrees

of freedom.

Upon Binding, a Ligand Loses Translational

and Rotational Entropy

Relative to a receptor, a ligand has three translational degrees of

freedom (x, y, and z directions) and three orientational degrees of

freedom. When bound, motion in these degrees of freedom

becomes restricted. This loss of freedom results in an entropic

and free energy cost, opposing binding and favoring the dissoci-

ated state (Chang et al., 2007; Chang and Gilson, 2004; Chen

et al., 2004; Deng and Roux, 2006; Lee and Olson, 2006; Wang

et al., 2006). The loss of freedom depends on the mobility
Str
remaining in the binding site, so that in a series of increasingly

tightly bound structures there will be increasing losses in trans-

lational and rotational entropies, resulting in a contribution

opposing binding.

Upon Binding, a Ligand Can Lose Internal Freedom

and Entropy

Some simple models assume that the ligand entropy lost on

binding correlates with the number of rotatable bonds in the

ligand (Böhm, 1993; Gilson and Zhou, 2007; Huey et al., 2007;

Laederach and Reilly, 2003; Taylor et al., 2002; Gohlke and

Klebe, 2002). The ligand is envisioned to start in its unbound

state having access to all possible conformers and to end in its

bound state having a single conformer. However, interestingly,

more rigorous recent computational studies in host-guest

systems indicate that losses in ligand conformational entropy

on binding are not strongly correlated with the number of rotat-

able bonds (Chang and Gilson, 2004; Chen et al., 2004; Guimar-

aes and Cardozo, 2008). Recent work on salvation free energies

of small molecules has led to similar conclusions (Mobley et al.,

2008). Not all small-molecule conformers are populated equally

in solution. Thus computing accurate ligand affinities (and

entropy losses) requires more accurate treatments of the

different ligand populations in solution. Entropic contributions

can also vary between different conformations of the same

ligand in a particular receptor (Chen et al., 2004; Gilson and

Zhou, 2007), which may be important even for docking (Ruvinsky

and Kozintsev, 2005).

A Ligand Can Bind to a Receptor in Different Poses

A ligand can sometimes adopt multiple different conformations

or orientations upon binding (see Figure 2). These different poses

can be separated by energetic barriers. In some cases the

different poses are due to ligand or protein symmetries. HIV-1

protease is a dimer with a nearly symmetric active site; as

a result, many HIV protease inhibitors have two nearly identically

Figure 2. Hypothetical Ligand Binding Energy Landscape
Ligand binding energy landscapes (top) can be rough, with multiple minima.
These multiple minima can correspond to multiple distinct ligand binding
conformations in the receptor (bottom).
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Figure 3. Small Changes in a Ligand May
Modify the Binding Landscape
It is not uncommon to find that small modifications
in a ligand (bottom) may lead to drastic changes in
the observed binding mode (bottom) (Stout et al.,
1999; Badger et al., 1988; Böhm and Klebe,
1996; Kim, 2007a, 2007b; Pei et al., 2006; Reich
et al., 1995; Stoll et al., 2003). This can be
explained by an energy landscape with multiple
minima (top), which is altered slightly by minor
modifications to the ligand (top left versus top
right), leading to a substantial change in the
binding mode.
binding modes (e.g., see Protein Data Bank [PDB] codes 1AXA,

1IZH, 1MUI, and 1U8G). Ligand symmetries can lead to trivial

cases of multiple binding modes, which have significant entropic

implications. Multiple binding modes are observed also when

symmetries do not play a role. Computational studies show

multiple distinct ligand binding modes in binding sites in T4

lysozyme (Mobley et al., 2006, 2007b), neutrophil elastase

(Steinbrecher et al., 2006), estrogen receptor inhibitors (Oosten-

brink and van Gunsteren, 2004), FKBP inhibitors (Jayachandran

et al., 2006), biotin and streptavidin (Lazaridis et al., 2002), and

cytochrome P450cam (Paulsen and Ornstein, 1992).

Do experimental studies support these predictions of multiple

ligand conformations? The challenge is that multiple conformers

are difficult to determine experimentally. But there is at least

some direct crystallographic evidence suggesting multiple

relevant orientations: in T4 lysozyme (Graves et al., 2005; Mobley

et al., 2006, 2007b), influenza neuraminidase (Stoll et al., 2003)

and possibly in trypsin (Stubbs et al., 2002), where the binding

mode is affected by pH. Multiple binding modes of fragment-

like kinase inhibitors have also been observed (Constantine

et al., 2008). Multiple orientations or binding modes have also

been seen in thymidylate synthase (Montfort et al., 1990), in

the binding of an HIV-1 cell entry inhibitor to the core of HIV-1

gp41 (Zhou et al., 2000), the binding of a transition state analog

to an AmpC beta lactamase mutant (Chen et al., 2006), the

binding of thiocamphor to cytochrome P450cam (Raag and

Poulos, 1991), the binding of flavin to para hydroxybenzoate

hydrolase (Gatti et al., 1994), and in the binding of some HIV-1

protease inhibitors (Murthy et al., 1992). There is additional

evidence for multiple orientations in several other cases (Birdsall

et al., 1989; Böhm and Klebe, 1996; Lazaridis et al., 2002;

Mewshaw et al., 2005; Orville et al., 1997; Uytterhoeven et al.,

2002). Spectroscopic data (Deng et al., 2001) and studies of

drastically different binding modes of related inhibitors (Figure 3)

(Stout et al., 1999; Badger et al., 1988; Böhm and Klebe, 1996;

Kim, 2007a, 2007b; Pei et al., 2006; Reich et al., 1995; Stoll

et al., 2003), some of which may have multiple binding modes

(Montfort et al., 1990), suggest that multiple binding modes

may be relatively common.

Proteins Wiggle, and May Have Multiple Conformers

in Both the Bound and Unbound States

It is not only ligands that can have multiple binding modes.

Proteins can, too (Mobley et al., 2007a, 2007b). We refer here

not to induced fit, where the ligand binding event causes
492 Structure 17, April 15, 2009 ª2009 Elsevier Ltd All rights reserve
a change in protein conformation. Rather, we focus on internal

motions or freedom of the protein that occur either in the apo

structure of the protein itself or in the complex itself. Compari-

sons of different apo structures of the same proteins show that

there are some rotamer changes near binding sites even in the

absence of the ligand (Najmanovich et al., 2000), suggesting

that multiple rotameric states may be relevant; this is also

supported by NMR data (Chou and Bax, 2001). Structural data

in the apolar T4 lysozyme binding cavity suggests that helix F,

which borders on the binding cavity, can undergo substantial

motions of 1.5–2.5 Å with little free energy cost (Morton and

Matthews, 1995); various other motions occur in T4 lysozyme

as well (Zhang et al., 1995). DHFR appears to have multiple

relevant conformations, both in isolation and when binding

ligands, and the populations are modulated by pH (Birdsall

et al., 1989); each state in the catalytic cycle appears to have

at least partially occupied conformations that resemble those

before or after it in the cycle (Boehr et al., 2006). Crystallographic

evidence suggests multiple protein conformations due to

domain motion in some cases (Ma et al., 2002). Multiple

conformers are also seen in host-guest binding (Chang and

Gilson, 2004; Chen et al., 2004) and can be critical for protein

mechanisms such as enzyme catalytic motions (Eisenmesser

et al., 2005; Arora and Brooks, 2007; Henzler-Wildman et al.,

2007; Henzler-Wildman and Kern, 2007). Several other studies

also have provided evidence for multiple protein conformations

(Eisenmesser et al., 2002; Gerstein et al., 1994; Min et al.,

2005a, 2005b; Fragai et al., 2006).

Strain: A Measure of the Free Energy of Deformation

Ligand binding to a protein may induce strain. Strain refers to an

energy cost, usually associated with a deformation of some sort.

To achieve the lowest free energy of binding in the complex, the

protein and/or ligand may become deformed relative to its

unbound state in solvent, which costs energy (strain). Computa-

tional studies in the apolar lysozyme model binding site have

found that protein strain energies for a valine side-chain rotamer

change can be 3–4 kcal/mol (Deng and Roux, 2006; Mobley

et al., 2007a, 2007b). When such strain energies are not taken

into account, it leads to errors in predicted binding free energies

(Mobley et al., 2007a, 2007b).

Computational modeling suggests that ligand strain free ener-

gies can be significant. In a survey of 150 crystallographic

protein-ligand complexes, Perola and Charifson (2004) used

molecular mechanics scoring functions to assess strain energies
d
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and found that roughly 50% of ligands with 4–6 rotatable bonds

had strain energies more than 3 kcal/mol, and, overall, 40% of

ligands had strain energies more than 5 kcal/mol. Another study

computed quantum mechanical torsional potentials for a variety

of PDB ligands and found that typical strain energies could be on

the order of 0.6 kcal/mol per torsion motif, amounting to roughly

3 kcal/mol for a ligand with five torsion motifs (Hao et al., 2007).

Another study found, for several ligands, that free energy costs of

restricting the ligand to the bound conformation could be a few

kcal/mol (Tirado-Rives and Jorgensen, 2006). More recent

work suggests that these values could be overestimates of

the true strain, as crystal structures (from which strain is esti-

mated) may be refined with a different force field than is used

in estimating the strain, introducing artifacts. Nevertheless,

strain energies often appear to be greater than several kT (Huang

et al., 2006). See also Warren and Perola’s (Warren and Perola,

2008) presentation on the topic from OpenEye’s CUP meeting

(http://www.eyesopen.com/about/events/cups-2008/pdfs-CUP/

CUP9-Field-of-Extremes.pdf). Apparently, binding interactions

can be strong enough to pay a substantial strain price for

deforming one or both partners. Hence the true bound structure

of a complex will not be the one that maximizes the interaction

energy between the receptor and ligand, but rather the one

that best balances the tradeoff between gaining additional

favorable interactions while also inducing strain (Sharp, 2005).

Some experiments support this contention that strain free

energies can be substantial. In an NMR study on maltose binding

protein, Tang et al. (2007) found that the unbound protein was

predominantly (roughly 95%) in the open apo conformation,

and had a smaller (roughly 5%) population in a minor apo confor-

mation that was more like the holo conformation, but with no

evidence that it populated the holo conformation at all in the

absence of the ligand. Thus the minor apo conformation is

roughly 1.7 kcal/mol less favorable than the major apo confor-

mation, and the holo conformation is probably still more unfavor-

able. In another instance, in NtrCr, a conformational switch in

bacteria that undergoes a conformational change upon phos-

phorylation, the active conformation has been shown to be

partially populated even when the protein is unphosphorylated

(Volkman et al., 2001), but with a smaller population. Based on

the populations, this active-like conformation is about 2 kcal/

mol less favorable than the norm in active conformation. So,

functional protein conformational changes can make significant

contributions to the thermodynamics.

Ligand Binding Can Cause Conformational Change

in Protein Structures

When a ligand binds to a protein, it causes conformational

changes in the protein. This may or may not be accompanied

by strain in the protein, as strain is an (invisible) energy cost.

Ligand-induced protein conformational changes are not rare

events. Comparisons of apo and holo structures from the PDB

show that backbone conformational motions on ligand binding

are relatively common; 20% of binding residues (Gutteridge

and Thornton, 2005) and 25% of binding sites (Najmanovich

et al., 2000) across a variety of proteins have backbone Ca

motions more than 1 Å. And 15% of binding site residues have

side-chain motions of more than 2 Å (Gutteridge and Thornton,

2005), whereas only 30%–40% of binding sites have been

shown to undergo no side-chain rotamer changes (Najmanovich
St
et al., 2000). More anecdotal reports of conformational changes

on ligand binding are available for a wide range of systems;

kinases, for example, are notoriously flexible (Noble et al.,

2004; Vajpai et al., 2008; Weisberg et al., 2007), as are many

other proteins (Böhm and Klebe, 1996; Kim, 2007a; Meiler and

Baker, 2006; Teague, 2003). An extreme example may be

natively disordered proteins in which large parts of the protein

may become ordered upon interacting with binding partners

(Hilser and Thompson, 2007; Radivojac et al., 2007; Wright and

Dyson, 1999).

In addition, a given protein can adopt different conformations

for different ligands. A PDB study of 206 binding site pairs (each

pair consisting of two structures of the same protein with

different, similar ligands in the binding site) showed that in

83% of the cases there were significant conformational changes

in the binding sites between pair members (Bostrom et al., 2006);

changes were judged significant if the RMSD for all side-chain

atoms if at least one amino acid residue within 5 Å of the ligand

is greater than 1.0 Å. The most frequent differences were

changes in water architecture and side-chain conformation

(both occurring in over 50% of the pairs). Significant backbone

conformational changes occurred in only 7% of the set; changes

were judged significant if the RMSD of at least one backbone

heavy atom in three or more consecutive amino acids is more

than 0.5 Å. A smaller study found examples of substantial confor-

mational changes on binding similar ligands for a variety of

systems as well (Kim, 2007a). It is even possible for a single

ligand to bind to different protein conformations under different

solution conditions (Miller and Dill, 1997). Thus, changes in

binding site architecture, at least at the side-chain and water

level, should be regarded as the rule, rather than the exception.

Small Changes in Conformation Can Cause Big Changes

in Binding Affinities

Some computational studies predict that even when a binding

site structure is not perturbed very much, its energetics can

change substantially. For example, simulations show that

neglecting even small protein motions can lead to large errors

(RMS errors relative to experiment of nearly 20 kcal/mol when

protein motions are not allowed), relative to much smaller errors

(1.7 kcal/mol RMS) when protein motion is allowed. Even small

relaxations of the protein reduced the RMS errors to 4–5 kcal/

mol) (Mobley et al., 2007b). This is important for both conceptual

and practical reasons. Conceptually, it means the strength or

quality of binding interactions is sensitive to minute details of

the bound structure and is not easily assessed by simple metrics

like hydrogen bond counts or apparent fit. Practically, it means

that free energy methods that include these protein conforma-

tional changes can potentially have much higher accuracy than

docking methods that neglect them.

The conclusion that these small changes can make big differ-

ences in the energetics is supported by a variety of docking and

(re)scoring studies that have looked at the effects of introducing

small amounts of protein flexibility. Though scores do not neces-

sarily improve for all ligands, they do typically change substan-

tially, showing some improvement (Graves et al., 2008; Huang

et al., 2006; Meiler and Baker, 2006; Sousa et al., 2006; Wei

et al., 2004). But introducing protein flexibility without accounting

for protein strain energies can potentially increase false positive

rates by making binding sites too permissive (Graves et al., 2008;
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Sousa et al., 2006; Wei et al., 2004). This likely highlights the role

of conformational change and strain.

Differences in Solvation Can Contribute

to Binding Affinities

Several detailed binding free energy studies have suggested that

differences in solvation may play an important role in differences

in binding free energy between relatively similar compounds

(Jiao et al., 2008; Reddy and Erion, 2001). Two molecules might

have similar interactions with a protein, similar strain energies,

etc., but have different solvation properties in water, leading

to solvation-driven differences in binding free energies. These

differences may not always be intuitive. For example, the

N-methylacetamide/amine ‘‘problem’’ (Rizzo and Jorgensen,

1999) suggests that adding a hydrophobic methyl group to acet-

amide or ammonia increases the affinity for water, whereas

subsequent methylations decrease the affinity.

The importance of solvation and desolvation is supported by

an emerging trend toward including approximate estimates of

solvation/desolvation energies in approximate docking methods

for scoring protein-ligand binding. Including such estimates

appears to result in improved scoring (Ferrara et al., 2004; Gilson

and Zhou, 2007;Shoichet et al., 1999). Without these contribu-

tions, charged ligands can wrongly appear to bind better than

polar ligands in a polar binding site. A charged ligand may

make favorable electrostatic interactions in a polar binding

site, but it also costs a huge amount of energy to remove it

from water (Brenk et al., 2006; Gilson and Zhou, 2007; Shoichet

et al., 1999). In other cases, a small modification to a ligand can

potentially lead to affinity gains due to a change in the desolva-

tion cost (Kangas and Tidor, 2001).

Bound Waters Usually Contribute Favorably to Ligand

Binding, But Not Always, and Their Contributions

Are Highly Variable

Computer simulations have been used to study the role of

crystallographic waters in binding thermodynamics (Barillari

et al., 2007; Hamelberg and McCammon, 2004; Lu et al., 2006;

Olano and Rick, 2004; Zhang and Hermans, 1996; see also

Helms and Wade [1995, 1998a, 1998b] for desolvation of a buried

binding cavity). In many cases, binding or ordering of waters

occurs concurrently with ligand binding, so it can be extremely

difficult to experimentally assess the contribution of water

binding to overall binding thermodynamics. Computational

methods can directly compute the free energy of inserting or

removing a water molecule from a binding site, providing key

insight that is hard to obtain experimentally.

These computational studies indicate that bound waters

contribute substantially to binding free energies, contributing

as much as �10 kcal/mol for some waters (Barillari et al.,

2007), but smaller values between �3 and �6 kcal/mol are

more typical (Barillari et al., 2007; Hamelberg and McCammon,

2004; Lu et al., 2006; Olano and Rick, 2004; Zhang and Hermans,

1996). In some cases, crystallographic waters appear substan-

tially unfavorable relative to bulk, raising the possibility of prob-

lems with refinement or force fields (Barillari et al., 2007; Olano

and Rick, 2004). Perhaps ligands can be designed with improved

affinities by recognizing nearby sites where waters can be easily

displaced (Abel et al., 2008; Pan et al., 2007).

Sometimes ligand binding can involve concerted reordering of

many water molecules. In some hydrophobic sites in proteins
494 Structure 17, April 15, 2009 ª2009 Elsevier Ltd All rights reserve
that bind fatty acids or lipids, whole networks of more than

a half-dozen water molecules shift their structures to form

a ‘‘hydrophobic’’ interface with the ligand (LaLonde et al.,

1994; Sulsky et al., 2007).

Protonation States Can Change on Binding,

Influencing Affinity

Binding free energies can also be affected by other unseen and

unexpected factors. For example, protonation states can

change on binding (Czodrowski et al., 2007; Dullweber et al.,

2001; Gohlke and Klebe, 2002; Steuber et al., 2007), as can

tautomeric states (Pospisil et al., 2003) and other factors. In

some cases, multiple protonation or tautomeric states can be

relevant, as observed crystallographically for one CDK2 inhibitor

(Furet et al., 2002) and hypothesized in another instance (Lee

et al., 1996). ‘‘Similar’’ ligands may also adopt different proton-

ation states on binding (Dullweber et al., 2001).

Perspective
We have reviewed some recent computational studies of ligand

binding to proteins. Ultimately, to predict accurate binding affin-

ities, it will be necessary to go beyond predicting a single ‘‘domi-

nant’’ conformation of the ligand complexed with the protein.

Binding free energy is not driven by a single conformation, but

rather by the free energy landscape. It is the shape of the energy

landscape that is crucial, the shape and width of the minima

influences entropies. Entropies are key contributors to binding

thermodynamics and are not observable in single bound struc-

tures. Other factors about the full landscape also play key roles,

such as multiple ligand poses, protein conformations, strain

energies, changes in water structure, and solvation and proton-

ation all play roles. And none of these are observable in single

structures. Computational tools can help provide insight into

the unseen landscape, so those doing crystallographic studies

may want to complement their work by using computational

tools to explore this landscape. And those relying on crystallo-

graphic data (e.g., in a drug design context) should be aware

that there are various binding possibilities that might not be

captured in a single crystal structure.
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Abstract 
  First principles （ or ab initio ）  density-functional-theory (DFT) with projected 
augmented wave (PAW) method simulations were performed to calculate the electronic 
structures and optical properties of 25% nickel (Ni) doped cubic ZrO2 crystals. We implemented 
two ab initio DFT application methods to the ZrO2 ceramic elastic constant, structure stability, 
and optical property calculation. The Cerply-Alder type local density approximation（LDA）
models show that the interstitial and substituting nickel doped ZrO2 structures are metastable, 
through the elastic stability analysis, while the structure of 25% Ni doped at substitute site with a 
Zr vacancy is in a stable state. The reflectivity at different directions is evaluated by calculating 
the real and imaginary part of the dielectric constants. The result shows that the reflectivity of Ni 
doped ZrO2 crystal, with a Zr vacancy structure, varies from 59% to 80% at (001) ~ (111) 
directions respectively. In comparison, the reflectivity of pure ZrO2 is only 18% in the infrared 
wavelength range. The high reflectivity of 25% Ni doped ZrO2 structure, with a Zr vacancy, is 
caused by the unique doped crystal structure and the associated vacancy charge state in this 
configuration.  
 

I. INTRODUCTION 
 Zirconia (ZrO2) stabilized by rare earth elements like Y3+ is often used as thermal barrier 
coatings (TBC)1, 2 in gas turbines, and rocket engines,  due to its superior properties such as low 
thermal conductivity, chemically inert, and high corrosion resistance. Yttria-stabilized zirconia is 
also used as the solid electrolytes for solid oxide fuel cells. The stabilized ZrO2 has a cubic 
fluorite structure at room temperature. Zirconia based TBCs are transparent or translucent to 
radiation wavelength in the 0.3µm~5µm range 3. Because more than 90% of radiation is within 
this range at typical gas turbine temperatures of 1700~2000 ºK, to effectively reduce thermal 
radiation transport through TBC systems, thus to improve the thermal insulation function, 
researches have been carried out with emphasis to increase the photon scattering within the 
coating and to improve the coating’s reflectivity property. Increasing the density of scattering 
defects, such as micro-cracks and pores within the coating, has been reported as an efficient way 
of reducing thermal radiation 4.   
 In solid oxide fuel cell (SOFC) application, Ni is usually used as an effective electron 
transport channel, while in TBC application Ni is added with Cr, Al, and Y as a buffer layer to 
form good binding and match the coefficient of thermal expansion between substrate and the 
ceramic top layer, mainly ZrO2. An earlier theoretical simulation of carbon doped ZrO2 
containing interstitial or substitution carbon and zirconium vacancy was reported by Ivanovskii 
et al.5. Ab initio DFT method was successfully applied in ceramic elastic constant calculations 6, 
7, 8, including cubic6 and monoclinic ZrO2

8. However to the best of the authors’ knowledge, no 
experimental and theoretical study has been conducted on the stabilized high concentration Ni 
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doped ZrO2. In this report, we applied the stress-strain elastic constant calculation method, 
analyzed the three Ni doped ZrO2 systems and concluded that the structure of 25% Ni doped at 
substitute site with a Zr vacancy is in a most stable structure. We also implemented an effective 
reflectivity (reflection coefficient) calculation method to the above Ni doped ZrO2 system and 
our results show that at (111) of the doped ZrO2, the reflectivity in infrared range reaches 80%. 
 
II. COMPUTATIONAL METHODS 
 In this report, ab initio DFT with the projector augmented wave (PAW) plane-wave 
method 9, 10, relativistic effect was considered, was used to calculate the elastic constant and 
electronic properties of ZrO2 composites. The local density approximation (LDA) and Ceperley-
Alder potential (quantum Monte Carlo based) 11 was used in this study. For O atoms, the 2s and 
2p electrons were described as valence, for Zr the 4s, 4p, 4d, and 5s electrons were treated as 
valence, whereas for Ni the 3d and 4s electrons were treated as valence. The remaining electrons 
were kept in a frozen core. The calculated total energies converged to a value less than 1meV 
while using the plane wave energy cutoff of 450 eV. With this setting and a 12 x 12 x 12 k-space 
Monkhost grid, the lattice constant of ZrO2 crystal is found to be a = 5.062 Å, in excellent 
agreement with the value 5.07 Å published in JCPDS file 7-337 for cubic zirconia. All of our 
calculations are based on the same potential, energy cutoff, energy and residue force 
convergence criteria as those used in the lattice constant calculations. 
                   (a)                                                                     (b) 

                                                                   
               
 
Figure 1. (a). The Ni doped at a substitution site with a Zr vacancy;  and (b) pure  ZrO2 unit cell. 
The blue sphere stands for Ni atoms, the light green sphere represents the Zr atoms, and the red 
sphere stands for oxygen atoms.  

 
The unit cell models are shown in Fig. 1. In all of the electronic calculations presented in 

this report, the k-space sampling uses 12 x 12 x 12 Monkhost grid. The electronic energy 
convergence value was set to be 10-5 eV and the residue force was set to be 1meV/Å. The unit 
cell shape, size, and atomic coordinates of the systems were relaxed in the optimization process.  
To save computer time, symmetry was considered in all of the elastic constant calculations.  

There are two ab initio methods to calculate the elastic constants. One is the fitting 
method by fitting the total energies with respect to related strains near the ground state energy. 
The other is a straight forward method by analyze the stress-strain relations. This method can be 
traced back to the work of Nielson and Martin12. According to Hooks law, the stress component 
σi (i=1~6) is in linear dependency of the applied strain εj (j=1~6) under a small deformation: 

σi = Cij εj         (1) 

 The linear elastic constants Cij form a 6 × 6 symmetric matrix, having 27 different 
components. Due to symmetry, a cubic crystal has only three different symmetry elements (C11, 
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C12 and C44), each of which represents three equal elastic constants (C11=C22=C33; C12=C23=C31; 
C44=C55=C66)13. Properties such as the bulk modulus and shear modulus can be computed from 
the values of Cij. Methods to determine the elastic constants from first principles usually involve 
setting the strain to a finite value, re-optimizing any free parameters and calculating the stress. 
By carefully choosing the applied deformation, elastic constants can then be determined. The 
deformation value needs to be tested before final calculation is done. Too big deformation may 
cause nonlinear effect, while too small deformation could also induce large force error. In our Ni 
doped ZrO2 calculation, we limit our deformation maximum to be 0.01. The stress-strain elastic 
constant calculation method allows us to predict elastic constants for new materials, materials 
where experimental data do not exist, and to resolve discrepancies between contradictory 
experimental results. 

Under the same setting, after the structure optimization, the optical dielectric tensor was 
calculated by Fermi golden rule using PAW method. The imaginary part ( 2ε ) was calculated first, 
then the real part was deduced by Kramers-Kronig transform. The reflectivity R was calculated 
by 
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1
1

⎥⎦
⎤

⎢⎣
⎡
+
−

=
N
NR ,            (2) 

where N is the reflective index which can be evaluated by: 

21
2 εε iN += ,         (3) 

in which 1ε  and 2ε are the real and imaginary parts of the complex dielectric constant. The spin 
polarization was considered in all of the calculations. 

IIIa. RESULTS OF CALCULATED ELECTRONIC STRUCTURE 
 To validate the simulation software, the lattice constant and bulk modulus of pure ZrO2 
was calculated first. Excellent agreement was found between the predicted ZrO2 lattice constant 
and the corresponding experimental results. Based on the settings used in the validation lattice 
calculation, further calculations were performed on the elastic constants for pure ZrO2, Ni 
interstitial and substitution site doped ZrO2, and Ni substitution site doped with a Zr vacancy 
ZrO2 crystal. To have a stable cubic structure, the following conditions13 should be held for each 
test case, 

 C44>0, C11>|C12|, and C11+2C12>0      (4)  

 The calculation results show that the C44 of both Ni interstitial and substitution site doped 
structures are negative, i.e. they are meta-stable structures. Thus only pure and Ni substitution 
site doped with a Zr vacancy ZrO2 crystals (the term “Ni doped ZrO2” is used for this case 
hereafter) were reported in Table I for elastic constant values. 
 The optimized lattice constants of Ni doped ZrO2 are a=b=5.27 Å, c=4.20 Å, that are 4% 
larger and 17% smaller than that of the pure ZrO2 crystal value of 5.07 Å. The calculated total 
magnetic moment is very small (less than 0.005 μB). It can be seen from Table I that the Voigt 
bulk modulus of experiment is 212.33 GPa, which is close to our result of 226.89 GPa in the 
simulation. The C11, C33, and C44 of Ni doped ZrO2 decrease tremendously compared to their 
pure ZrO2 values, i.e. from 532.15, 532.15, and 55.70 GPa to 139.31, 128.26, and 0.23 GPa 
respectively.  While the C66 value only has a minor decrease, from 55.70 GPa to 38.03 GPa, 
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comparing to the above mentioned large variations. The calculated Bader charge14 results of both 
systems are listed in Table II. 
 
Table I. Elastic constants of pure and Ni doped ZrO2 (in GPa). Bv stands for Voigt bulk modulus, 
while Sv stands for Voigt shear modulus. Temperature unit is in K, Y2O3 is in mol% ratio. 
________________________________________________________________________ 
System        Temperature  Y2O3       C11 C12       C13      C33       C44       C66       Bv          Sv        Ref 
________________________________________________________________________ 
Experiment      300                 8%       413      112      112     413       61        61      212.33    96.80   (Ref. 15) 
           300                 8%       394      91         91      394       56        56    190              (Ref. 16) 
           300                18%      375      75         75      375        64        64                            (Ref. 17)         
           300                15%      475     144       144     475        61        61               (Ref. 18) 
           300                8.1%     402      95         95      402       56        56                                 (Ref. 19) 
Theory               0                   0%   500±100  90±20  90±20  500±100                (Ref. 6) 
                          0                   0%       222       61        61      222         54       54        115                   (Ref. 20) 
                                 0                   0%       455       64        64      455        63        63                                (Ref. 21)  
Pure ZrO2               0           0%   532.15  74.24  74.24   532.15   55.70  55.70   226.89  125.00 this work 
 
Ni doped ZrO2    0     0%      139.31 133.27  75.36  128.26    0.23   38.03  108.32   15.89   this work        
________________________________________________________________________ 
 
 
Table II. Bader charge of pure and Ni doped ZrO2. (in unit of electron charge |e|) 
________________________________________________________________________ 

System      Zr         O         Ni     
________________________________________________________________________ 

Pure ZrO2      2.64      -1.32   N/A     
      

Ni doped ZrO2    2.58  -0.81~-0.85     1.45         
________________________________________________________________________ 

   
Figure 2 shows the electron density of states (DOS) of s and p orbitals of Zr and O for 

pure and Ni doped ZrO2. The Fermi level is set at 0.0eV. The pz component of Zr in Fig. 2(a) and 
2(b) has shown a down-shift near -2eV. The py intensity near 2eV increases slightly. Comparing 
the pz DOS of O atoms in Fig. 2(c) and 2(d), it is clear that in pure ZrO2, pz extends from -6eV to 
-0.5 eV below Fermi level with two major peaks at -5.3 eV and -1.2eV, while in Zr doped ZrO2, 
pz state of O atom extends from about -7.2 eV up to 2eV above the Fermi level with a small peak 
at 1.3 eV. Similarly py and px also show band extension from below Fermi level to 1eV above 
and from -7 eV to -6 eV. In Fig. 3(a) and 3(b), the Zr dxy, dyz, and dxz are mainly located below 
the Fermi level in both pure and Ni doped ZrO2 with extension to +2eV and -7 eV. The Zr dz2 and 
dx2 of Ni doped ZrO2 are also more extended, comparing to the pure ZrO2 case with the peaks 
sitting at 3.5eV and 4 eV. Thus it is clear that the p orbitals of O are hybridized with p and dxy, 
dyz, and dxz orbitals of Zr with energy range extended to higher and lower energy scales.  

Fig. 3(c) shows that the symmetric nature of the spin up and down states of Ni d orbitals 
makes the total magnetic moment zero. The dz2 and dx2 orbitals of Ni atom are below Fermi level 
which is different from that of Zr dz2  and dx2 where both are above the Fermi level, while the dxy, 
dyz, and dxz orbitals are extended to both higher and lower energy scales similar to that in Zr.  
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Figure 2. The partial DOS of s and p states of Ni doped and pure ZrO2. The black square stands 
for s states with spin up, the red circle stands for s states with spin down; blue upward triangle 
for py electron with spin up, light green downward triangle for py down, pink leftward triangle 
for pz up, gold rightward triangle for pz down, cyan diamond for px up, while the brown pentagon 
for the px with a down spin.   
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Figure 3. The partial DOS of d states in Ni doped and pure ZrO2. The black square stands for dxy 
states with spin up, the red circle stands for dxy states with spin down; blue upward triangle for 
dyz with spin up, light green downward triangle for dyz down, pink leftward triangle for dz2 up, 
gold rightward triangle for dz2 down, cyan diamond for dxz up, brown pentagon for dxz down, 
light red hexagon for dx2 up, while green star for dx2 down. 
 
III b. OPTICAL PROPERTY RESULTS 
 The electromagnetic reflectivity properties of pure and Ni doped ZrO2 are shown in Fig. 
4(a) and 4(b). The reflectivity data of pure ZrO2 at (010) direction was ignored in Fig. 4(a) since 
it has the same curve as in (001) direction. From Fig. 4 (a) and (b), it can be seen that the 
reflectivity is increased from (001), (011), to (111) direction for both pure and Ni doped ZrO2 
crystals. It can also be seen from Fig. 4(a) and 4(b) that the reflectivity of Ni doped ZrO2 
increased by 3.4, 4.1, 2.6, and 2.3 times in comparison to  pure ZrO2 cases along the (001), (010), 
(011), and (111) polarization directions respectively.   
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Figure 4. (a). The reflectivity of pure ZrO2. (b). The reflectivity of 25% Ni doped ZrO2. The 
black squares stand for the reflectivity in (001) direction. The red circles stand for the reflectivity 
in (010) direction. The up blue triangles stand for the reflectivity in (011) direction. The down 
triangles (in dark cyan color) stand for the reflectivity in (111) direction. 
 
IV. DISCUSSION AND CONCLUSIONS 
 From Table I, we can see that most experimental elastic constant data of cubic ZrO2 were 
measured at near 8% Y doped and room or higher temperatures while our calculation for the 
cubic ZrO2 contains 0% Y at zero temperature, we would expect some differences between 
experimental data and our calculation results. Actually our calculated C12, C44 results are close to 
the data at Reference 16. The C11 is off the experimental data but is in the range of former ab 
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initio DFT calculation presented in Reference 6. From Table I we can also see that among the 
methods of  ab initio DFT, muffin-tin(MT) approximation with free electron gas pair potential, 
and lattice dynamics, the ab initio DFT method is the best one which gives good agreement with 
the corresponding experimental data. This is due to the two body pair potential approximation 
used in the MT method and the empirical data included in the lattice dynamics method, while in 
ab initio DFT method, no empirical data was used.  

From Fig. 3(c) and Fig. 2(d), it is clear that near the Fermi level, the Ni dz2 and dx2 orbitals 
hybridize with O py, and px orbitals, and thus form chemical σ bonding, as can be seen that these 
Ni  d and O p bands reach their DOS peaks in the energy region of -2.0 ev ~ -1.5 eV. The Ni dxy, 
dyz, and dxz orbitals, on the other hand, hybridized with O py, pz, and px orbitals at π bonded states 
in the energy range of both below and above Fermi level. As shown in Fig. 2 and 3, the p orbitals 
of O are hybridized with Zr p orbitals and dxy, dyz, and dxz orbitals. An important effect of the Ni 
doping is that, as can be seen from Fig. 2(d) and 3(c), both O and Ni atom form states above and 
close to the Fermi level. These states can effectively serve as recombination and scattering 
centers when electromagnetic waves enter the system. The total magnetic moment of Ni atom is 
zero due to the symmetric spin up and down DOS of Ni d orbital as discussed in the last section.  

Table II listed the Bader charge of Zr, O, and Ni in pure and Ni doped ZrO2. The Bader 
charge of Zr cation decreases slightly from 2.64|e| in pure ZrO2 to 2.58|e| (loses less than 0.1|e| 
charge) in Ni doped ZrO2 whereas O anion increased from -1.32|e| to -0.81~-0.85|e| with an 
average of 0.5|e| charge gain. The substitution Ni cation has a 1.45|e| which is about one electron 
charge less than Zr cation. O anion charges changed due to the less charge of Ni and the Zr 
vacancy formation. The larger charge difference of O is consistent with the large shift and 
extension of DOS shown in Fig. 2(c) and 2(d).  

The high Ni doping concentration and Zr vacancy cause the formation of large scale 
localized dipoles around vacancies. The local electric field is stronger at (111) direction than that 
of (011) and (001) directions as from the above Ni, Zr and O Bader charge analysis. In each unit 
cell there are two opposite dipoles pointing from the center of O-0.8 to the center of Ni+1.45 
(vacancy). The electromagnetic waves thus are interacted strongly with these high density 
localized dipoles.  

In summary, we implemented two ab initio DFT application methods to the ZrO2 ceramic 
calculation: (1) elastic constant calculation and application to the structure stability analysis; (2) 
the reflectivity along special directions of the related systems. They can be essential to the 
systems where experimental data is not available or cannot be acquired under current conditions. 
In the DFT based simulations on a Ni doped ZrO2 system, the lattice constant of pure ZrO2 is 
examined first, which compares very well with the experiment data. Then the elastic constants 
for a number of cases are calculated, which include the pure ZrO2, 25% Ni interstitial and 
substitution site doped cubic ZrO2 crystals, and 25% Ni substitute site doped cubic ZrO2 crystal 
with a Zr vacancy. The elastic constant results demonstrate that only pure ZrO2 and 25% Ni 
substitution site doped cubic ZrO2 crystal with a Zr vacancy are stable structures. Thus the 
reflectivity calculations are performed on these two systems only. The reflectivity calculations 
clearly show that the high concentration Ni doped ZrO2 increased the reflectivity values by 3.4, 
4.1, 2.6, and 2.3 times in (001), (010), (011), and (111) polarization directions respectively, with 
a maximal 80% reflectivity at (111) direction. This may have potential applications in high 
efficient TBC material design and synthesizing.  
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Pan-S replication patterns and chromosomal domains
defined by genome-tiling arrays of ENCODE
genomic areas
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In eukaryotes, accurate control of replication time is required for the efficient completion of S phase and
maintenance of genome stability. We present a high-resolution genome-tiling array-based profile of replication
timing for ∼1% of the human genome studied by The ENCODE Project Consortium. Twenty percent of the
investigated segments replicate asynchronously (pan-S). These areas are rich in genes and CpG islands, features they
share with early-replicating loci. Interphase FISH showed that pan-S replication is a consequence of interallelic
variation in replication time and is not an artifact derived from a specific cell cycle synchronization method or from
aneuploidy. The interallelic variation in replication time is likely due to interallelic variation in chromatin
environment, because while the early- or late-replicating areas were exclusively enriched in activating or repressing
histone modifications, respectively, the pan-S areas had both types of histone modification. The replication profile of
the chromosomes identified contiguous chromosomal segments of hundreds of kilobases separated by smaller
segments where the replication time underwent an acute transition. Close examination of one such segment
demonstrated that the delay of replication time was accompanied by a decrease in level of gene expression and
appearance of repressive chromatin marks, suggesting that the transition segments are boundary elements separating
chromosomal domains with different chromatin environments.

[Supplemental material is available online at www.genome.org.]

Although all the DNA in a eukaryotic cell replicates during the S
phase of cell cycle, there is a great variability in the actual point
in S phase when a given chromosomal segment replicates. Seg-
ments are known to reproducibly replicate early or late in S
phase, and it is generally believed that this is determined by the
time at which the origins in a segment fire. All origins of repli-
cation are licensed with MCM proteins by the time S phase be-
gins (Bell and Dutta 2002), and yet, once conditions in the cell
change to favor the firing of the origins, all origins do not fire at
the same time. In situ labeling techniques and other methods
have led to some general principles determining the time of rep-
lication of a segment in S phase (for review, see MacAlpine and
Bell 2005). Early-replicating segments are generally enriched in
euchromatin, while late-replicating segments are enriched in
heterochromatin. Some loci that are selectively expressed in spe-
cialized cells (e.g., immunoglobulin, beta-globin, or neural-
associated genes) show a change in time of replication from late-S
phase in undifferentiated, nonexpressing cells to early-S phase
after differentiation (Simon et al. 2001; Zhou et al. 2002; Perry et
al. 2004). The correspondence between the activation of chro-
matin at differentiation-induced genes with the advancement in
replication time also suggests that the chromatin environment
dictates time of replication (Bickmore and Carothers 1995; Roun-
tree et al. 2000; Demeret et al. 2001).

The completion of many genomic sequences and the advent
of genome-tiling microarrays provided an opportunity to corre-

late gene expression or chromatin structure with time of replica-
tion at a much finer resolution. DNA replicated at specific inter-
vals in S phase were hybridized to genome-tiling microarrays to
determine the exact time in S phase when specific genes repli-
cate. Early experiments in model organisms like Saccharomyces
cerevisiae and Drosophila melanogaster confirmed many of the
principles outlined above (Raghuraman et al. 2001; Schubeler et
al. 2002; MacAlpine et al. 2004).

Extending this method of analysis to human cells, specifi-
cally to Chromosomes 21 and 22, we confirmed that similar prin-
ciples dictate time of replication in human chromosomes (Jeon et
al. 2005). We made the surprising observation that almost 60% of
the chromosomal probes studied gave a replication signal at mul-
tiple times in S phase, described as a pan-S-phase pattern of rep-
lication. While asynchrony of replication between alleles of a
given gene would give rise to a pan-S-phase pattern of replica-
tion, it seemed highly unlikely to us that 60% of the human
chromosomes would show such asynchrony. In addition, it was
unclear whether the pan-S-phase replication was an artifact of
cells losing their synchrony of progression through the cell cycle,
of the thymidine-aphidicolin method of cell cycle synchroniza-
tion, or of the aneuploidy inherent in HeLa cells.

The ENCODE region encompasses 44 segments covering
∼1% of the human genome on which multiple groups are apply-
ing different techniques to find the best methods to annotate the
human genome (The ENCODE Project Consortium 2004). We
measured the replication time for this region and used the data to
improve our method of computing the replication profile of
chromosomal segments. The improvements in our algorithm de-
creased the pan-S replication pattern to ∼20% of the segments
interrogated. We confirmed the prediction of pan-S replication
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by an independent method of assessing replication time: inter-
phase FISH. The results demonstrate that pan-S-phase replication
is a real pattern of replication that cannot be explained by arti-
facts derived from microarray platform, methods of cell cycle
synchronization, or aneuploidy of cells. Instead, pan-S-phase
replication is a reflection of asynchrony of replication between
alleles in a given cell, suggesting that differences in the chroma-
tin environment of two alleles can be seen in up to 20% of the
human genome in some cells.

Finally, using the high-definition temporal profile of repli-
cation over the ENCODE areas, we identified adjoining chromo-
somal segments of a few hundred kilobases each with differing
times of replication. Hypothesizing that these areas are “replica-
tion domains,” we demonstrate for one such region that the ad-
joining domains have different levels of gene expression and
activating and repressing marks on histones. We believe that the
replication domains correspond to chromosomal domains sepa-
rated by boundary elements.

Results

Replication timing analyses of 1% genome using synchronized
HeLa cells

HeLa cells were synchronized at G1/S by thymidine-aphidicolin
block. After release from the block, cells were pulsed with bro-
modeoxyuridine (BrdU) at every 2-h interval of S-phase and ge-
nomic DNA isolated. In all, five time intervals (0–2, 2–4, 4–6, 6–8,
and 8–10 h) representing 10 h of the entire S phase were col-
lected. The BrdU-incorporated heavy/light (H/L) DNA was puri-
fied using a CsCl density gradient as described earlier (Jeon et al.
2005). Purified DNA from each time interval was hybridized to
the high-density genome-tiling Affymetrix array comprising
unique 25-mer oligonucleotides in the ENCODE-selected chro-
mosomal loci covering 1% of the human genome (∼30 Mb) (see
Methods for details of the ENCODE regions).

Segregation of chromosomal regions into temporally specific
and pan-S replicating segments

Probes that replicated in a discrete interval in S phase were called
temporally specific, while probes that replicated at multiple in-
tervals in S phase were called temporally nonspecific. The Meth-
ods and Supplemental Table 1 contain examples of the specificity
classification. For the Affymetrix ENCODE array, 26.115% of the
probes were temporally nonspecific.

In order to classify chromosomal segments as temporally
specific or asynchronously replicating (pan-S), a 10-kb sliding
window was passed along the chromosome and each window
defined as replicating in a pan-S manner if >60% of the probes in
that window are temporally nonspecific (see Methods for de-
tails). Thus, by ensuring that the majority of contiguous probes
in a given segment replicate in a temporally nonspecific manner,
we eliminate artifacts from cross-hybridization or from poor
probe hybridization. Since the estimated average speed of a rep-
lication fork is ∼1 kb/min, isolated segments <10 kb (<10 min)
that appeared to replicate in a nonspecific manner were signifi-
cantly below the resolution of the 2-h sampling method. Such
segments (<0.2% of the ENCODE region) were therefore elimi-
nated from our calculations. After these corrections, ∼20% of the
ENCODE area replicated in a pan-S-phase pattern as determined
by a base-pair count (Fig. 1A), while the remaining 80% shows a
temporally distinct profile. Individual chromosomal segments
showing these patterns are presented below.

Continuous TR50 profile along the length of a chromosomal
segment

The time at which a temporally specific probe replicates to 50%
(TR50) is calculated by summing the replication signal over the
five time points and linearly interpolating the time when 50% of
the total signal was reached. Supplemental Table 1 gives ex-
amples of TR50 calculation for several probes. Plotting the TR50
values for specific probes against the linear coordinate of the
probe on the chromosome gives a view of the replication profile
of the chromosome. Because the raw TR50 data are noisy, Lowess
smoothing for all temporally specific probes in a 60-kb window
was performed to ascertain the trends in the replication pattern
along the length of the chromosome. Figure 1B shows the raw
TR50 data and a smoothed TR50 curve for a 1.9-Mb segment of
Chromosome 7 (ENm001). By averaging over relatively long seg-
ments of DNA, the smoothed curve corrects for scatter created by

Figure 1. Temporal profile of replication of chromosomal segments.
(A) Temporally specific versus pan-S distribution of replication for 1% of
the human genome investigated in this study. (B) Raw TR50 data with a
smoothed TR50 curve overlaid from the 1.9-Mb region on Chromosome
7. According to the ENCODE Consortium nomenclature, this chromo-
somal segment is referred to as ENm001 (http://hgwdev.cse.ucsc.edu/
ENCODE/encode.hg17.html). (C) Smoothed TR50 data from the 1-Mb
beta-globin locus (ENm009) on Chromosome 11. The lowest point in
each valley indicates a site that is replicated before its adjoining segments
and thus is likely to contain origins of replication. The gaps in the TR50
plots indicate the presence of repeats. In order to minimize cross-
hybridization of oligonucleotides, repeat regions of the genome are not
spotted on the tiling arrays. The triangle on the X-axis indicates the
position of the known beta-globin origin.
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differences in probe hybridization effi-
ciency or from cross-hybridization of a
few errant probes and is very useful for
comparing the time of replication of ad-
joining segments of DNA. Figure 1C
shows another example of a smoothed
TR50 plot from a 1-Mb region of Chro-
mosome 11 containing the beta-globin
locus. The late replication of this seg-
ment in HeLa cells agrees with previ-
ous findings that the beta-globin locus
replicates late in S phase in nonery-
throid cells (Epner et al. 1988; Dhar et al.
1989). The TR50 profiles for all the 43
chromosomal loci can be viewed using
the UVa DNA Rep TR50 track at the
http://hgwdev.cse.ucsc.edu/ENCODE/
encode.hg17.html site. Temporal pro-
files from 12 of these regions are shown
in Supplemental Figure 1.

Local minima of the TR50 curve
show areas that replicate earlier than the
flanking regions and thus are likely to
contain origins of replication, as has
been shown previously in S. cerevisiae
(Raghuraman et al. 2001). Only one pre-
viously validated origin of replication
lies in the ENCODE area near the large
stretch of repeat sequences (chr11:
5124929–5193780) within the beta-
globin locus (Kitsberg et al. 1993; Alad-
jem et al. 1998; Wang et al. 2004). The
repeat sequences near the beta-globin
gene were not represented on the micro-
array, causing a gap in the TR50 profile
(Fig. 1C). However, the TR50 profile of
the regions immediately adjoining these
repeats clearly suggests that a minimum
in the TR50 profile is located somewhere
at or near these repeats, indicating the
presence of an origin of replication at
this site. Thus, the hundreds of minima
in the TR50 profile are likely to be at or
near origins of replication.

Segregation of temporally specific regions into early-, mid-,
and late-S replicating regions

The smoothed TR50 profile suffers from a compression of the
Y-axis values due to the smoothing operation; thus we do not get
an accurate estimate of the time of replication of a given segment
from the profile. We therefore processed the TR50 data to define
discrete segments with early-, mid-, and late-S-phase replication
in addition to the pan-S-phase replication patterns described
above. A temporally specific region is classified into early, mid, or
late replication based on the average TR50 of the temporally spe-
cific probes within a 10-kb window. TR50 cutoffs of 3.4 h (for
early- to mid-S transition) and 3.9 h (for mid- to late-S transition)
are used.

The top panel of Figure 2A shows the segregation of
ENm001 after these analyses. Tracks representing segments that
replicate in early-, mid-, late-, or pan-S-phase, respectively, are

indicated. Since ENm001 is an early-replicating region, only a
very small region shows up in the late-replication track. The gen-
eral trend of the right portion of the region replicating later can
be seen in the transition from a solid early-replication track into
mid-replicating regions as we move left to right. The tracks are
nonoverlapping at the base-pair level, and the apparent overlap
in certain places is due to the low resolution of the UCSC Browser
snapshot required to fit the whole region into a figure.

The second and third panels of Figure 2A show similar seg-
mentation of 500-kb chromosomal regions from Chromosomes
16 (ENr313) and 13 (ENr132), respectively. ENr313 replicates
late, while ENr132 shows a pan-S pattern of replication. TR50
segmentation profiles for 12 regions are shown in Supplemental
Figure 1. Profiles for all the 43 regions can be viewed in the UVa
DNA Rep Seg track at http://hgwdev.cse.ucsc.edu/ENCODE/
encode.hg17.html site. Eighty percent of the ENCODE area rep-
licates in a temporally specific interval (Fig. 1A). Within the spe-

Figure 2. Segregation of chromosomal segments with temporally specific and temporally nonspe-
cific pattern of replication. (A) On the basis of TR50, temporally specific regions are further segregated
and displayed as three tracks (UCSC Genome Browser), early-, mid-, or late-replicating, while chro-
mosomal regions undergoing temporally nonspecific replication are highlighted under the pan-S track.
The three panels in this figure show segregation of replication timing for three chromosomal segments.
(Top panel) The 1.9-Mb region (ENm001) of Chromosome 7; (middle and bottom panels) examples of
two 500-kb chromosomal segments from Chromosomes 16 (ENr313) and 13 (ENr132) that under-
went late and pan-S replication, respectively. The FISH track in all the three panels refers to the
chromosomal positions of BAC clones selected for the interphase FISH experiment shown in Figures 3
and 4. (B) Percent of temporally specific chromosomal segments replicating in early-, middle-, or late-S
phase.
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cific regions, 31% segregates into early-, 34% into mid-, and 35%
into late-S-phase replicating patterns (Fig. 2B).

Validation of replication time by interphase FISH

To check the temporal profile of replication generated by the
microarray data, we used interphase FISH as an independent
method for determining replication time. Although labor-
intensive, this method has the additional advantage in that the
large sizes of the probes reduce errors from poor signal strength
and cross-hybridization. Ten BAC clones of 48–187 kb each (de-
tails in Supplemental Table 2) were selected to validate the mi-
croarray data for 10 segments from nine ENCODE areas: three
each with early and pan-S-phase and four with late-S-phase pat-
terns of replication. The positions of BAC clones used in Figure 3

and Figure 4 are highlighted in Figure 2A. HeLa cells were syn-
chronized and harvested at 2-h intervals during S phase, and BAC
clones were labeled and hybridized to denatured interphase nu-
clei. A single hybridization signal (visible as a dot under the mi-
croscope) indicates one copy of the targeted DNA. ENm001
showed 2 dots/cell in G1 (0 h) and 4 dots/cell in G2, while the
remaining eight regions had 3 dots/cell in G1 and 6 dots/cell in
G2 because of the aneuploidy of HeLa cells. The percent replica-
tion of a probed segment in each time interval in S phase was
determined by counting the increments in dots/cell during that
interval, where 100% replication means that the number of dots/
cell is twice the G1 value.

The RP11-51M22 probe shows that this region of ENm001
replicates early with the complete doubling of all signal in the
first 2 h of S phase (Fig. 3A). For a late-replicating region, RP11-
3I14 from ENr313, the increase in dot number was maximum in
the last 4 h of S phase (Fig. 3B). RP11-88E10 from the ENr132
region indicated that significant replication occurred in multiple
time intervals (Fig. 3C), consistent with the pan-S replication
detected in the microarrays (Fig. 2A). All the 10 segments tested
by FISH reproduced the microarray data for time of replication
(see Supplemental Table 2 for details).

Pan-S replication is due to interallelic variation in time
of replication

To ascertain whether the pan-S-phase pattern of replication was
due to intercellular or interallelic variation in replication time,
we calculated the percent nuclei in mid-replication. The Mid-
Score for a time point is defined as the percentage of cells in
mid-replication, having replicated one, but not all alleles, for a
given probe. Thus cells in mid-replication will have 3 dots/cell for
ENm001, and 4 or 5 dots/cell for ENr313 or ENr132. Segments
that replicate synchronously in a narrow interval of S phase are
expected to have a very narrow temporal window with a high
Mid-Score (a more detailed explanation is in Supplemental Fig.
2). ENm001 (early replicating) had no time point with a high
Mid-Score, while ENr313 (late replicating) had only two time
points with a Mid-Score of 5.6% and 7.9%, indicating that all the
alleles replicated in a narrow time window (Fig. 3D).

If pan-S-phase replication is due to intercellular variation in
time of replication of the chromosomal segment, the two alleles
in a cell will still replicate simultaneously so that the window of
time when a cell is caught in mid-replication will remain short.
Mid-Scores would be low or elevated for only a tightly restricted
time interval (Supplemental Fig. 2). However, the ENr132 region
(pan-S-phase replication) showed four time points with high
Mid-Scores (i.e., 12.1, 11.4, 30.7, and 24.5) (Fig. 3D), suggesting
that there was significant asynchrony in the time of replication
of the alleles in a given cell. Thus the asynchrony in replication
seen in the pan-S-phase pattern of replication is due to interal-
lelic variation in replication time.

Pan-S-phase pattern of replication is not due
to thymidine-aphidicolin block

We next investigated whether pan-S-phase replication was
caused by the prolonged arrest in S phase that is inherent to the
thymidine-aphidicolin double-block method of synchronization
of cells in the cell cycle. HeLa cells were synchronized in mitosis
using nocodazole and released. The time of replication was de-
termined by interphase FISH for five regions (Fig. 4B): three that
were temporally monophasic and two that had a pan-S-phase

Figure 3. Interphase FISH for validating replication timing in HeLa.
(A–C) Synchronously progressing HeLa cells were hybridized to fluores-
cence-labeled probes of BAC clone DNA RP11-51M22, RP11-3I14 (for
early- and late-replicating areas, respectively) and RP11-88E10 (for pan-S
pattern of replication). The chromosomal locations of these BACs are
highlighted in Figure 2A. The percent replication at each interval of S
phase is plotted against time in S phase. (D) The interallelic variation in
replication for FISH data observed for each of the BAC clones mentioned
above was determined by calculating the Mid-Score (detailed in Results
and Supplemental Material).
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pattern of replication. The temporally specific segments still
replicated in the expected time frames despite the different
method of synchronization (Fig. 4B; Supplemental Table 2).
Most important, both the pan-S-phase regions continued to
replicate at multiple times in S phase (Fig. 4B; Supplemental
Table 2), suggesting that pan-S-phase replication was not an ar-
tifact of the synchronization method. The observed asynchrony
in replication was due to interallelic variation as determined by
the wide time interval when the cells displayed high Mid-Scores
(Fig. 4C).

Pan-S pattern of replication is not restricted to aneuploid
HeLa cells

We wanted to rule out the possibility that the pan-S-phase pat-
tern of replication is seen only in aneuploid cancer cells like
HeLa. To address this, we repeated the interphase FISH experi-
ments with MCF10A, a breast epithelial cell line derived from
fibrocystic breast disease that is near diploid and nonmalignant
(Fig. 4D). The area covered by probe RP11-88E10 (a region with
pan-S-phase replication in HeLa cells) replicated at two time in-
tervals (Fig. 4E). The first peak at 4 h corresponded with the time
interval during which the Mid-Score increased (Fig. 4F). The Mid-
Score remained high until the 10-h time interval, when the sec-
ond peak of replication was observed, indicating a significant
time lapse in the replication of two alleles. Therefore, pan-S-
phase replication is also seen in MCF10A cells and is not unique

to HeLa cells. Replication of RP11-51M22 (early) and RP11-3I14
(late) was also consistent with that seen in HeLa cells. FISH analy-
ses for two more regions in MCF10A are detailed in Supplemental
Table 2.

Correlation of TR50 profile with genome sequence features

The replication timing for the 43 ENCODE regions were corre-
lated against genome sequence features such as AT content, CpG
islands, and gene density. AT content was computed using a 10-
kb sliding window and plotted against the smoothed TR50 curve.
A transition from low to high AT content is evident for early- to
late-replicating regions (Fig. 5A). The Spearman rank correlation
coefficient calculated from the plot was 0.257, suggesting a mod-
erate positive correlation. The Pearson correlation coefficient was
0.252, also indicating a moderate positive correlation. Computa-
tion of AT content at a window size of 1 kb gave a lower corre-
lation coefficient (0.19).

DNA methylation is an important epigenetic marker (Jones
and Takai 2001), with differential DNA methylation between al-
leles leading to monoallelic gene expression, interallelic differ-
ences in the chromatin, and asynchronous replication (Simon et
al. 1999; Rountree et al. 2001; Fournier et al. 2002; Jiang et al.
2004; Fuks 2005). Since the Mid-Score calculations above sug-
gested that the pan-S areas demonstrated interallelic differences
in replication, we wondered whether the pan-S replicating seg-
ments were enriched in CpG islands and thus potentially suscep-

Figure 4. Pan-S replication pattern is independent of cell synchronization method and aneuploidy. (A) HeLa cells blocked (by nocodazole) and
released from mitosis followed by FACS for DNA content. (B,C) Interphase FISH was performed with HeLa cells synchronized with nocodazole and
released. The X-axis represents time in S phase such that 0 h = 12 h post-release from the nocodazole block. The rest is as in Figure 3. (D) MCF10A cells
released from a G1/S block with thymidine/aphidicolin followed by FACS for DNA content. (E,F) Interphase FISH with MCF10A cells synchronously
progressing through S phase to determine the replication profile and Mid-Score with the chromosomal segments mentioned in Figure 3.
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tible to regulation by differential DNA methylation. Indeed, the
pan-S-phase regions showed the maximum enrichment (1.86) of
CpG islands (Fig. 5B).

We next compared the replication time of a segment with its
gene density. In the chromosomal areas where replication was
temporally specific, a threefold higher enrichment of genes was
found in regions replicating early compared to those replicating
late (Fig. 5C). Interestingly, the pan-S-phase regions had gene
content (enrichment = 1.42) (Fig. 5C), comparable to early-
replicating chromosomal segments (enrichment = 1.41), consis-
tent with the idea that these regions could have replicated early
if not for interallelic variation in chromatin structure that re-
sulted in a subset of the alleles replicating late and producing a
pan-S-phase pattern of replication.

Early-replicating regions are highly transcribed

Active transcription of genes is associated with euchromatin
and may be expected to correlate with early replication. Total
RNA was prepared from logarithmically growing HeLa cells
and hybridized to an Affymetrix HG-U133 Plus 2.0 array to mea-
sure the level of expression of genes in different chromosomal
segments. Early-replicating segments have 5.34-fold higher
transcription over the late-replicating regions (Fig. 5D). The
pan-S regions had an intermediate level of gene expression, con-
sistent with the idea that all alleles of the genes in these segments
are not in favorable chromatin and are not uniformly well ex-
pressed.

TR50 profile on one chromosomal segment defines
chromosomal domains

The global correlations described above are consistent with the
hypothesis that early-replicating regions are usually gene dense
and contain actively transcribed genes. The fine resolution of
replication profile possible with the genome-tiling arrays allowed
us to closely examine how such correlations hold up across con-
tiguous stretches of chromosomes. Intriguingly, the TR50 profile
of some regions revealed the presence of neighboring chromo-
somal segments with acute transitions in replication time. For
example, in ENm005, an ∼366-kb (Chr21: 33119705–33486048)
late-replicating stretch was bracketed by two early-replicating ar-
eas (Fig. 6A). Dual color interphase FISH was performed to con-
firm the transition in replication time from early to late in two
neighboring segments of ENm005 (Fig. 6B). BAC clones (sepa-
rated by ∼355 kb) from the early (RP11-54F16) and late (RP11-
79D9) replicating areas confirmed that the two DNA seg-
ments, indeed, replicated in two different intervals of S phase
(Fig. 6B).

The replication dissimilarities between the adjoining do-
mains correlated with dissimilarities in gene expression and gene
density (Fig. 6C). The late-replicating island was both gene-poor
and transcriptionally less active compared to the adjoining early-
replicating chromosomal segments.

These observations suggested the existence of two chro-
matin environments in a contiguous stretch of a chromo-
some separated by some type of boundary element. Since histone
modifications distinguish euchromatin from heterochroma-
tin, we decided to confirm the existence of two chromatin
environments in this locus in HeLa cells by performing a
chromatin immunoprecipitation (ChIP) assay for the active
and inactive chromatin marks. H3 Lys4 methylation is spe-
cific for active chromatin at active promoters (Bernstein
et al. 2005). We therefore selected nine genes, two in the late-
replicating region (OLIG1 and OLIG2) and seven in the adjoining
early-replicating chromosomal segments (C21orf119, SYNJ1,
C21orf66, IFNAR1, GART, ITSN1, and ATP5O) and designed prim-
ers to amplify unique 100–300-bp fragments from the
2-kb sequences upstream of the genes (see details for primers
in Supplemental Table 3). Chromatin immunoprecipitation
(ChIP) and amplification of these promoters revealed that
all seven genes in the early-replicating segments were positive
for H3 lysine 4 (H3K4) methylation, while the two embedded in
the late-replicating environment (005HM4 and 005HM5) lacked
this modification (Fig. 6D). Conversely, ChIP for markers of re-
pressed chromatin, H3 lysine 9 (H3K9) dimethylation and asso-
ciation of HP1�, showed that the two promoters in the late-
replicating domain were in repressed chromatin. Five out of the

Figure 5. Correlation between replication time and genomic features.
(A) Plot of smoothed TR50 against AT content in a 10-kb sliding window.
Lowess smoothed curve done at f = 0.3 (fraction of the data included in
the running local fit) is overlaid in black to show the general trend. (B–D)
Histograms showing distribution of (B) CpG islands, (C) gene density, and
(D) transcripts (HeLa cells) against temporal segregation of replication.
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seven promoters in the early-replicating segments were negative
for markers of repressed chromatin, while the other two were
positive (Fig. 6E,F).

Therefore, the island of late-replicating DNA represents a
specific chromosomal domain with all the features of hetero-
chromatin: low gene density, low gene expression, lack of acti-
vating chromatin marks, and presence of repressive chromatin
marks. The rapid transition of the features of heterochromatin in
this late-replicating island to those of euchromatin in the flank-
ing areas suggests that the chromosome may be divided into
discrete domains with different chromatin features. In addition,
the existence of such discrete adjoining domains with different
chromatin structure suggests the presence of boundary elements

that prevent the spread of euchromatin from the neighboring
areas to this island of heterochromatin.

Pan-S segments contain markers for both active and repressed
chromatin

The interallelic variation in replication time observed in pan-S
replicating segments predicts that one allele will be in active
chromatin and another in repressed chromatin, leading us to test
whether pan-S replicating segments are enriched in both types of
marks. ENr132 contained extensive stretches with the pan-S rep-
lication pattern with a few interspersed segments that were ex-
clusively late replicating. The two promoters in the pan-S repli-

Figure 6. Replication profile demarcates chromosomal domains. (A) UCSC Genome Browser display of a 1.7-Mb region from Chromosome 21
(ENm005). This Browser picture highlights four tracks (I–IV): (I) FISH: chromosomal location of BAC clones (RP11-54F16 and RP11-79D9, from left to
right) selected for the interphase FISH experiment shown in B; (II) Primers: chromosomal locations of the primers (005HM1–9, left to right) selected for
ChIP assay to ascertain the histone modifications and HP1�-binding sites shown in D–F; (III) RefSeq: positions of all the genes in this chromosomal
segment; and (IV) the contiguous TR50 profile. (B) Dual color FISH was performed with HeLa cells synchronously progressing through S phase.
RP11-54F16 (from early-replicating area on left) was labeled with spectrum red dUTP, while RP11-79D9 (from late-replicating area) was labeled with
spectrum green dUTP. Dual color FISH with these two BAC clones ascertained the replication time of the two regions of Chromosome 21 set 355 kb
apart. (C) Plot of smoothed TR50 (Y-axis on left, gray) against level of transcription of genes (Y-axis on right, black). The two asterisk marks represent
transcripts whose transcription levels exceeded the Y-axis limit (i.e., 2346 and 10,010 for left and right asterisks, respectively). (D–F) ChIP-PCR assay
across ENm005 region (see Supplemental Table 3 for primers). PCR was performed on DNA chromatin immunoprecipitated with antibodies against
methylated histones (H3 Lys4 and H3 Lys9) and HP1�. (Input) DNA control before immunoprecipitation; (IgG) ChIP with rabbit IgG was negative control
for nonspecific precipitation. Forty cycles of PCR were performed for H3 Lys4 and HP1� and 30 cycles for H3 K9 di-Me. The asterisks refer to primer pairs
that gave positive ChIP signal for the indicated antibodies relative to the IgG negative control. 005HM4 and 005HM5 were from the late-replicating
island in ENm005.
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cating area, 132HM1 and 132HM2, were positive by ChIP for
both the activating histone modification (H3K4 methylation)
and repressive histone modification (H3K9 dimethylation) and a
marker for heterochromatin (HP1) (Fig. 7). In contrast, 132HM3,
from a late-S replicating segment only carried the repressed chro-
matin marks and not the activating histone modification. There-
fore, combining the data in Figure 6 and Figure 7, three out of
three late-replicating promoters were exclusively in repressed
chromatin, and five out of seven early-replicating promoters
were exclusively in activated chromatin. In contrast, the pro-
moter from the pan-S replicating segment carried marks of both
active and repressed chromatin, consistent with the pan-S repli-
cation pattern arising from interallelic variation in the chroma-
tin environment.

Discussion

Since the ENCODE project specifically selected the target 1% of
the genome to be broadly representative of the whole genome
based on criteria like gene density and sequence conservation, we
expect that the lessons learned from these high-resolution repli-
cation time profiles can be extended to the entire genome. The
pan-S-phase pattern of replication; the correlation of replication
time with chromatin modifications, gene expression, and AT

content; and the significance of chromosomal domains and
boundary elements revealed by our studies are discussed here.

We still identify regions that replicate in multiple times in S
phase in mammalian cell lines (pan-S replication pattern). Since
the genome-based studies of replication in S. cerevisiae were ex-
ecuted only in haploid strains, they were not expected to identify
regions with interallelic difference in time of replication
(Raghuraman et al. 2001). Genome-based studies of replication in
diploid organisms were also unsuitable to identify this pattern
because of the study design (MacAlpine et al. 2004; Woodfine et
al. 2004). In those studies, the time of replication was assessed by
determining the ratio of DNA content for a locus in late-S (or G2)
cells compared to G1 cells. In such experiments, segments show-
ing replication in both early- and late-S phase would appear to
replicate in mid-S phase, and the pan-S pattern would be missed.
In contrast, the sampling of cells in multiple intervals in S phase
and the use of a more sensitive method of detecting replication
dependent on a positive selection for BrdU-labeled DNA enabled
us to identify chromosomal segments that replicate in multiple
intervals in S phase.

In this study, 20% of the studied genome appeared to rep-
licate asynchronously, a value that is one-third that of our pre-
vious analysis on Chromosomes 21 and 22 (Jeon et al. 2005). This
difference is due to an important refinement in the method of

analysis in the present study. In the pre-
vious work, the hybridization data from
genome-tiling arrays was analyzed by
the standard Affymetrix GTRANS soft-
ware to generate a track that showed
when the replication signal from a given
time point was significantly enriched
over signal obtained from DNA repli-
cated for the entire duration of S phase.
Although this method provided an in-
tuitive belief for replication timing, not
surprisingly, replication signal was not
only seen in the time period when the
locus replicated but lower levels of signal
were seen in adjoining time intervals.
The presence of a signal in multiple time
tracks led us to overestimate that nearly
60% of sequences showed a pan-S repli-
cation pattern (Supplemental Figure 3,
ENm001). In contrast, in this study, we
segregate probes into those that are tem-
porally synchronous versus temporally
asynchronous by quantitative criteria
that take into account the spillage of
replication signal into adjoining time
points. In addition, only large contigu-
ous DNA segments (�10 kb) containing
>60% of probes with asynchronous rep-
lication signals are classified as pan-S.
This prevents mis-calling as pan-S short
stretches where low signal strength or
cross-hybridization from isolated probes
give an apparent replication signal in
multiple intervals in S phase. As is evi-
dent from the comparison of the two
methods in one segment (Supplemental
Fig. 3), the present method gives a more
conservative estimate of segments that

Figure 7. Both active and repressive chromatin marks are present in a pan-S segment. (A) UCSC
Genome Browser display of a 500-kb region from Chromosome 13 (ENr132). This Browser picture
highlights three tracks: (I) Primers: ChIP-PCR primers (132HM1–3, left to right) to study histone modi-
fications and HP1�-binding sites; (II) RefSeq: positions of all the genes in this chromosomal segment;
and (III) the temporal segregation of replication data. (B,C) ChIP-PCR assay across ENr132 region (see
Supplemental Table 3 for primers) against methylated histones (H3 Lys4 and H3 Lys9) and HP1� (as
indicated).
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replicate at multiple times in S phase. Because microarray-based
profiling of replication is a relatively new approach, we also vali-
dated the time and pattern of replication for some of the seg-
ments by a completely independent method, interphase FISH.
The confirmation of all three pan-S regions as replicating asyn-
chronously adds to the confidence that ∼20% of the chromo-
somal segments in HeLa cells, indeed, show this unexpected pat-
tern of replication.

All 10 regions tested by interphase FISH (including the tem-
porally specific regions) reproduced the time of replication esti-
mated by the microarray-based replication profile. In addition,
the time of replication for five of five tested chromosomal re-
gions remained unaltered when a different cell cycle block
method was used in HeLa cells. Interphase FISH allowed us to
check the time of replication of the same five regions in another
cell line, MCF10A, where we found replication times of 3/5 chro-
mosomal segments to match that of HeLa. The differences at the
other two loci are likely due to differences in the chromatin en-
vironment of these loci in the two cell lines. Since MCF10A cells
are near-diploid and untransformed, the detection of pan-S-
phase replication in these cells indicates that pan-S replication is
not an artifact arising exclusively from the aneuploidy or the
transformed state of HeLa cells. It is, of course, entirely possible
that aneuploidy or cell transformation increases the fraction of
the genome that shows pan-S replication.

Since FISH-based methods analyze replication in the context
of individual nuclei, the Mid-Scores showed that the asynchrony
in replication time was due to interallelic difference in replica-
tion. Homologous alleles usually replicate synchronously in S
phase, but there are some notable exceptions to this general rule.
In humans, examples of such exceptions include monoallelically
expressed genes such as those imprinted depending on parent of
origin (Simon et al. 1999), genes encoding olfactory receptors
(Chess et al. 1994), genes on the female X-chromosome (Avner
and Heard 2001; Boumil and Lee 2001), and immunoglobulin
and T-cell receptor genes (Mostoslavsky et al. 2001). We will test
in the future whether all the pan-S segments express all their
genes monoallelically. The interallelic asynchrony in replication
in the pan-S segments suggests that one allele is in euchromatin
and the other in heterochromatin. Consistent with this, pan-S
areas are unique in being enriched in both activating and repres-
sive marks (Fig. 7), with the different marks residing presumably
in the two different alleles.

Since the HeLa cell line is of female origin (XX), the inacti-
vation of one of the X-chromosomes predicts that segments from
the X-chromosome should replicate in a pan-S manner, unless
the long passage and aneuploidy of these cells have disrupted
such inactivation. There are two regions from the X-chromosome
included under ENCODE (Supplemental Fig. 4). The 1.2-Mb
ENm006 region had three areas of pan-S replication (126 kb, 62
kb, and 10 kb), one of which contained the Glucose-6-phosphate
dehydrogenase (G6PD) gene, which is known to be transcription-
ally repressed on the inactivated X-chromosome and delayed in
replication compared to its active counterpart (Hansen et al.
1996). The second region, ENr324 (ChrX: 122,507,850–
123,007,849), contained no pan-S replicating segments. Thus the
survey of the X-chromosome fragments for pan-S replication
gave mixed results. The lack of pan-S replication over the entire
stretch of X-chromosome in HeLa cells could not only be due to
transformation and long-term culture affecting inactivation, but
also because ENm006 and ENr324 contain blocks of genes that
normally escape X-chromosome inactivation, similar to many

reported X-linked genes (Chang et al. 1990; Disteche 1995; Miller
et al. 1995; Carrel et al. 1996; Vermeesch et al. 1997).

Correlation of gene expression with time of replication in
eukaryotes has produced contradictory results. In S. cerevisiae, the
expression of genes did not correlate with their time of replica-
tion in S phase. In contrast, in cultured Drosophila cells, there was
a positive correlation between early replication and gene tran-
scription (MacAlpine et al. 2004). In mammalian cells, house-
keeping genes like Hprt, histones, beta-tubulin, actin, and rDNA
are ubiquitously expressed and replicated in the first half of S
phase. On the other hand, tissue-specific genes such as those
coding for Factor IX, fibronectin, and myosin heavy chain rep-
licate late in the cell lines not expressing them (Holmquist et al.
1982; Iqbal et al. 1984; Goldman 1988). The previous study from
our laboratory on human Chromosomes 21 and 22 also showed
a positive correlation between early replication and gene expres-
sion, but the results could have been improperly skewed because
of atypical features of the two small chromosomes. The positive
correlation between early replication and gene expression in this
study is likely to be generally true throughout the genome, be-
cause it was obtained with a distributed set of segments that
together are representative of the entire genome.

The association of early replication with gene expression
suggests that there are consistent differences in chromatin envi-
ronment between the early- and late-replicating segments. Cyto-
logical studies have shown spatial differences in nuclear staining
for both activating and silencing histone modification marks,
and these spatial differences in histone modification are corre-
lated with differences in replication time (Wu et al. 2005). ChIP
for histone modification marks reported here strengthens the
correlation at a finer resolution: early replication and gene ex-
pression correlate with euchromatin, and conversely, late repli-
cation correlates with low gene expression and heterochromatin.
These results are confirmed in a wider study that correlates our
replication time data with ChIP-on-chip data for histone modi-
fications done by the ENCODE Consortium (The ENCODE
Project Consortium 2007).

Interestingly, the finer resolution offered by genome-tiling
microarrays identified chromosomal segments with acute transi-
tions in replication timing. For one particular segment (ENm005)
(Fig. 6), the replication time transition was confirmed by inter-
phase FISH and appeared to correlate with transitions in both
gene expression and chromatin modifications: a late-replicating
island of 355 kb had repressive chromatin marks and low gene
expression. The genes OLIG1 and OLIG2 in this island are known
to be expressed during development of oligodendrocyte (OL) lin-
eage (Jakovcevski and Zecevic 2005), and thus the island is ex-
pected to become early replicating in oligodendrocytes.

Identification of transition zones separating chromosomal
domains is an interesting outcome from the replication profiles.
Thirty-one genes of biomedical significance (including 10 onco-
genes/tumor suppressor genes on 11q and 21q) reside in or near
replication-timing transition regions (Watanabe et al. 2002). The
mechanism by which a boundary is maintained between euchro-
matin and heterochromatin around these transition zones is not
understood. At the major histocompatibility complex (MHC),
loci replication timing switches precisely where there is a transi-
tion in the GC% content and is associated with nuclear scaffold
attachment regions (Tenzen et al. 1997). A similar transition in
GC content in the neurofibromatosis 1 (NF1) gene demarcates
early replicating from late-replicating chromatin, and a stalled
replication fork was observed in this transition region (Schmeg-
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ner et al. 2005). The sites of replication time switch identified by
our method will likely lead to the identification of more such
transition zones, and we are interested in determining in the
future whether such zones cause replication forks to slow down
or stall, whether they contain nuclear scaffold attachment re-
gions, and whether they act as boundary elements responsible
for keeping adjoining chromatin domains separate from each
other.

In humans, the R and G chromosomal bands have been
linked to both gene density and AT/GC content. G bands are
AT-rich, while the R bands are more GC-rich. GC-rich regions are
not only enriched in genes but specifically in expressed genes
(Saccone et al. 1993; Caron et al. 2001; Lander et al. 2001; Ver-
steeg et al. 2003). The moderately positive correlation between
AT content and TR50 (0.26 at 10-kb, 0.19 at 1-kb resolution)
suggests a trend favoring an increase in AT content as we move
from early- to late-replicating chromosomal segments. This ob-
servation is also in concordance with our previous study on
Chromosomes 21 and 22 (Jeon et al. 2005). The correlation in-
creases as the computation is done at larger scales, suggesting
that the influence of AT content on TR50 occurs at scales greater
than tens of kilobases. Consistent with this, replication-timing
studies done at 1-Mb resolution show an even stronger positive
correlation with AT content (Woodfine et al. 2004).

Finally, the smoothed TR50 profile suggests locations of ori-
gins of replication at local minima and positions of replication
fork termination at local maxima. Replication speed can also be
estimated based on the slope of the smoothed TR50 profile at a
given locus. These possibilities will be explored in our future
work.

Methods

Cell culture, synchronization, and FACS analysis
HeLa and MCF10A cells were cultured as per standard growth
conditions. For synchronous progression through S phase, HeLa
and MCF10A cell lines were arrested by thymidine-aphidicolin
block and released as described earlier (Jeon et al. 2005). For
nocodazole block, HeLa cells at 60% confluency were treated
with 40 ng/mL nocodazole for 10 h. This was followed by selec-
tion of cells blocked in mitosis by mitotic shake-off. These cells
were washed three times with PBS and released into fresh
medium for 12 h to reach the 0-h point when they enter S
phase. Cells harvested at indicated time points of S phase were
either used for FISH or fixed in 70% ethanol and stained with
propidium iodide (PI) for FACS by standard methods.

Newly replicated DNA (H/L DNA) purification
Synchronously released cells were labeled with 100 µM BrdU for
the indicated time interval; 10 ∼ 30 150-mm plates of cells were
used to purify H/L DNA from each time point as described earlier
(Jeon et al. 2005).

Microarray hybridization
To generate replication time profiles, ENCODE01-Forward (P/N
900543; Affymetrix) tiling arrays were used. These arrays are de-
signed to study the pilot ENCODE regions of DNA, comprised of
30 Mb of DNA, or ∼1% of the human genome. These pilot regions
were selected by a committee of the National Human Genome
Research Institute (NHGRI). Half of the content on the
ENCODE01 Array was manually selected by the NHGRI commit-
tee, while the remaining 50% was randomly selected (The
ENCODE Project Consortium 2004). A total of 14.82 Mb of se-

quence constituted the manually selected regions and included
14 targets ranging in size from 500 kb to 2 Mb. The randomly
selected content includes 30 500-kb regions selected based on
gene density and level of nonexonic conservation.

Nonrepetitive, 25-mer oligonucleotide probe pairs (Perfect
Match, PM; Mis-Match control, MM) spaced at intervals of ∼22
bp as measured from the central nucleotide were spotted on ar-
rays. Heavy/light DNA from each time point was fragmented to
50–100 bp by DNase I digestion, end-labeled with biotin-ddATP
using terminal transferase, and hybridized to the arrays as per the
manufacturer’s protocol (Affymetrix). Each microarray was
scanned and analyzed for signal intensities using a GeneChIP
Scanner 3000 and GeneChIP Operating Software (GCOS; Af-
fymetrix). Two biological and one technical replicates were hy-
bridized to ascertain the reproducibility of array hybridizations.
The primary data in the form of .cel files can be accessed at
http://www.cs.virginia.edu/∼cmt5n/Rawtimepoints/. All the pri-
mary and processed data have been generated using the hg17
(NCBI Build 35, May 2004) build of the Human genome assem-
bly.

The replication signal for each probe was calculated as
PM � MM. If the difference was negative, then the signal was
assigned a value of 0. For a given probe on the array, we have five
replication signals, one from each time point. Each probe is clas-
sified to be replicating either in a temporally specific or nonspe-
cific (asynchronous) manner as follows. Probes were temporally
specific if the signal in any one time point was at least twice the
signal of each of the other four time points. To accommodate the
possibility that a temporally specific replication signal could
span two adjacent time points, probes were also called specific if
the sum of any two adjacent time points was at least three times
the signal of each of the other three time points. Probes that do
not satisfy either of the criteria above are designated as tempo-
rally nonspecific. Supplemental Table 1 gives some examples of
the specificity classification. For the Affymetrix ENCODE array,
we classified 26.115% of the probes as temporally nonspecific in
their pattern of replication.

For studying gene expression, RNA was extracted from loga-
rithmically growing HeLa cells by using an RNeasy Kit (QIAGEN)
and hybridized to the Human HG-U133 Plus 2.0 array (contain-
ing ∼38,500 genes) as described in the Affymetrix GeneChIP pro-
tocol (Affymetrix). Each microarray was scanned, visualized, and
analyzed for the level of each individual transcript using a Ge-
neChIP Scanner 3000 and GeneChIP Operating Software (GCOS;
Affymetrix). Transcript signal was mapped against the chromo-
some coordinates (probe-by-probe basis) using the HG-U133A_2
Annotations, CSV provided by the manufacturer (Affymetrix).

Segregation of temporally specific and pan-S replicating
segments
To segregate broad regions of replication, a sliding window of 10
kb was passed along each chromosomal segment, calculating the
percentage of temporally nonspecific probes within the window.
A pan-S region is begun when the percentage exceeds 60% and
continues until it drops below the 60% threshold minus a given
tolerance (e.g., 10% for our analysis). The tolerance is introduced
in order to avoid thrashing between nonspecific and specific re-
gions. Once the percentage drops below “threshold tolerance”
(e.g., 50% for our settings of threshold and tolerance), the current
pan-S region ends and a temporally specific region is started. The
temporally specific region is continued until the percentage
again rises above the threshold. In this manner, moving along
the chromosome, broad regions of replication are segregated into
temporally specific or pan-S classes.

Karnani et al.

874 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on May 15, 2008 - Published by www.genome.orgDownloaded from 

http://www.genome.org
http://www.cshlpress.com


The tolerance parameter, which helps us avoid thrashing
between the two classes, introduces a directional bias into the
segregation algorithm. As we move from lower chromosomal po-
sitions to higher chromosomal positions, the percentage must
exceed 60% in order to begin a pan-S region. But the pan-S region
does not end until the percentage drops below 50%. In order to
correct for this directional bias, we perform two passes of the
algorithm. One pass moves the window toward higher chromo-
somal positions, while the other pass moves the window toward
lower chromosomal positions. Then we merge the two passes
into a single segregation, which no longer suffers from a direc-
tional bias.

Interphase fluorescence in situ hybridization
Cells in S phase were harvested at indicated time points and
incubated in pre-warmed 75 mM KCl solution for 15 min at 37°C
to prepare nuclei. These nuclei were fixed in 3:1 (v/v) methanol/
glacial acetic acid and mounted on a slide. A nick translation kit
and SpectrumGreen dUTP/Spectrum Red dUTP (Vysis Inc.) were
used for labeling the probe. Hybridization was carried out in a
humidified chamber for 16 h at 37°C as described in the Vysis
FISH protocol (Vysis Inc.). Slides were washed with 0.4� SSC/
0.3% NP-40 for 2 min at 73°C and again with 2� SSC/0.1%
NP-40 solution for 1 min at room temperature. Chromosomal
DNA was counterstained with DAPI (VECTASHIELD Mounting
Medium; Vector Labratories) and visualized with a Nikon Micro-
phot.SA fluorescent microscope equipped with a DAPI filter,
FITC, and a TRITC cube set (for Spectrum Green and Spectrum
red fluors, respectively). Images were digitally obtained with a
Nikon UFX-DX camera and Spot version 3.5.4 software. All the
BAC clones were purchased from Children’s Hospital Oakland
Research Institute.

The number of dots was visually counted in ∼100 cells at
each time interval, and the number of dots/cell was calculated;
100% replication (in G2 cells) was when the increase in the num-
ber of dots/cell equaled the number of dots/cell observed in G1.
After determining the dots/cell at 0, 2, 4, 6, 8, and 10 h of S phase,
for each interval (e.g., 0–2 h, 2–4 h, etc.), we calculated the in-
crease in dots/cell during that interval and converted it to the
percent of replication.

Correlation of TR50 with genome features
CpG island annotations were obtained from the UCSC Ge-
nome Browser Web site (http://genome.ucsc.edu/cgi-bin/
hgTrackUi?hgsid=64765488&c=chr16&g=cpgIsland). The den-
sity of CpG islands was calculated for all the chromosomal re-
gions in each of the replication segments, that is, early-, mid-,
late-, and pan-S. For the CpG islands that overlapped two tem-
poral segments, the number of bases in the CpG island were
counted and a 60% cutoff was used to assign it a specific temporal
classification.

For determining gene density, we used the annotated
genes under the Refseq database from the UCSC Genome
Browser (http://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=
64796361&c=chr16&g=refGene).

Enrichment in each of the replication segments (early-,
mid-, late-, and pan-S) within a given data set (CpG islands, gene
density, and transcripts) was calculated as follows. The number
of elements from the data set whose majority base count fell into
early segments was calculated. This was divided by the total num-
ber of elements in the data set to get a ratio of early-replicating
elements. This ratio was divided by the ratio of early segments to
all segments to give the enrichment ratio. Hence, a value of 1.0
would indicate that the data set was distributed in early segments

as was expected by chance, while a value of 2.0 would indicate
twice as many as expected by chance. Enrichment of the mid-,
late-, and pan-S replicating regions was calculated similarly.

Chromatin immunoprecipitation
A chromatin immunoprecipitation assay was performed as per
the protocol described at http://www.upstate.com with a varia-
tion in the sonication step. Samples were sonicated using a Bran-
son microtip (3.2 mm) and Fisher Model 500 Sonic Dismembra-
tor. Eight cycles of 15-sec pulse at 50% amplitude and 45 sec of
cooling on ice were done to disrupt the cells. The antibodies used
for ChIP were for identifying sites of histone 3 Lys 4 mono-, di-,
and trimethylation (H3K4 Me), histone 3 Lys9 dimethylation
(H3K9 di-Me), and HP1�. These antibodies were purchased from
Upstate (Anti-H3K4 Me; 05-791 and H3K9 Anti-Me; 07-441) and
Abcam (Anti- HP1�; ab9057). To determine the ChIP signal for
H3K9 di-Me, 4 µL of ChIP DNA were first amplified in a linear
range (14 cycles) using the WGA2 kit from Sigma-Aldrich and
cleaned up by the QIAGEN PCR clean-up kit. Two microliters of
this purified DNA was used as template for ChIP assay with prim-
ers. To rule out any amplification bias, three independent am-
plifications were performed and PCR with primers repeated with
each of these template preparations. As a negative control, ChIP
DNA from an IgG sample was amplified in a similar way. The
details on primers used for ENm005 and ENr132 regions are pro-
vided in Supplemental Table 3.
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Abstract—The problem of haplotype reconstruction based
on aligned single nucleotide polymorphism (SNP) fragments is
formulated as decoding over a discrete memoryless channel. An
information theoretic view point is used to illustrate the deficiency
of parsimonious models such as minimum error correction
model. A new computational model with genotype information
is proposed and a low complexity reconstruction algorithm for
this model is shown to guarantee the desired reconstruction
rate by increasing the number of SNP fragments sequentially.
The advantage of using genotype information is quantified by
exploiting a simplified statistical model for haplotype sequences.

Index Terms: Haplotype inference, error correction, sequen-
tial test, genotype.

I. INTRODUCTION

Single nucleotide polymorphism (SNP) is a locus in the
DNA sequence where an alternation of the nucleotide from
other members of the same species occurs at a considerable
frequency. Alleles of a set of linked genetic markers located
on a single DNA sequence is called a haplotype. For diploid
organisms, such as human, haplotypes come in pairs, where the
two haplotypes in the pair are not necessarily identical. Each
pair of haplotypes can also be combined to form a genotype.
When a pair of alleles at an SNP site is made of identical
type (either being both wild, denoted by 0, or both mutant,
denoted by 1), the site is called homozygous site. Otherwise,
it is called heterozygous site. It is generally believed that while
haplotypes contain more crucial information than the individ-
ual SNPs in disease association studies, it is substantially more
difficult to determine haplotypes than to determine genotypes
or individual SNPs through experiments. Owing to its potential
in genomic study, haplotype inference has drawn significant
attention from both statistical and computational societies.

Computational methods for haplotype inference can be
largely treated in two different categories. One concerns with
obtaining compatible haplotypes from the genotype samples
in a population [7]. The pioneering work by Clark [2]
demonstrated effective haplotype inference from genotypes
by a parsimony based method. Later, various statistical and
Bayesian methods have been proposed [9], [1], [13], [5] for
large genotype data sets as well as large number of subjects un-
der different assumptions on the underlying biology systems.
The other uses short gnome fragments with SNPs coming

from DNA shotgun sequencing or some other resequencing
procedure to reconstruct the haplotypes directly. A particular
problem called single individual haplotyping is to reconstruct
a pair of long haplotype sequences from short fragments of
SNPs. If SNP fragments are well aligned, then the problem
becomes how to partition these SNP fragments into two sets
and use each set to determine a haplotype sequence. Suppose
that there are m SNP fragments from a pair of chromosomes
and the length of the corresponding haplotypes is n. Define
an m × n SNP matrix M whose entry mij has value 0, 1 or
–. The symbol – means a missing or skipped base, which is
called a gap. Let h be a haplotype sequence whose entry can
be either 0 or 1. Let Θ = (M1,M2) be a partition of of M that
divides the rows of M into two disjoint sets. The haplotype
reconstruction problem can be written in terms of maximum
likelihood estimation

(ĥ1, ĥ2, Θ̂) = arg max
h1,h2,Θ

Λ(M1|h1)Λ(M2|h2).

Alternatively, one can entail minimum error correction [11],
minimal entropy [4], minimum fragment removal, minimum
snip removal or longest haplotype reconstruction [12] as the
optimality criterion in reconstructing the pair of haplotype
sequences without the need of likelihood function model Λ(·).
Most of these criteria are inherently based on parsimony
and combinatorial in nature — finding exact optimal solution
is often an NP hard problem [6]. This paper provides a
different viewpoint on the haplotype reconstruction from M .
The problem is treated as decoding with noisy observations
over a discrete memoryless channel. It is shown that parsimony
based criterion, albeit computationally demanding, does not
necessarily yield the best reconstruction rate. There exists a
significant gap between the error correction capability with
SNP fragments and the theoretical limit given by the channel
capacity. To improve the error correction rate, we propose a
new computational model with genotype information available
for haplotype reconstruction. The resulting algorithm has low
complexity and is shown to guarantee the desired error rate
by increasing the number of SNP fragments sequentially.
The advantage of using genotype information is quantified
by exploiting a simplified statistical model for haplotype
sequences.
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The rest of the paper is organized as follows. Section II
formulates the haplotype reconstruction problem from infor-
mation theoretic perspective. Section III introduces a low
complexity sequential algorithm using genotype information.
Section IV compares the reconstruction rate between the
cases without and with genotype information and quantifies
performance gain. Concluding remarks are in Section V.

II. HAPLOTYPE RECONSTRUCTION AS A DECODING

PROBLEM

For x, y ∈ {0, 1,−}, we define the distance

d(x, y) =
{

1 if x �= y, x �= −, y �= −
0 otherwise

which is an extension of Hamming distance defined for x, y ∈
{0, 1}. Similarly, we can define

d(h1,h2) =
n∑

i=1

d(h1i, h2i).

The dissimilarity between h1 and h2 is measured by

β = d(h1,h2)/n.

We assume that for any given bit of a haplotype h, each
symbol of the corresponding column of the SNP matrix
is generated according to a probability distribution P (y|x).
Specifically, we can write P (y|x) as a transition probability
matrix given by

P (y|x) x = 0 x = 1
y = 0 1 − α01 − α02 α10

y = 1 α01 1 − α10 − α12

y = − α02 α12

If we further assume that α01 = α10 = e1 and α02 = α12 =
e2, then the SNP fragments can be viewed as a haplotype se-
quence being transmitted repetitively over a binary symmetric
erasure channel [8]. Clearly, e1 is the probability of bit flip
and e2 is the probability of bit erasure.
Claim 1: Assume that the SNP matrix M is obtained by
transmitting m1 times on each bit of h1 and m2 times on
each bit of h2 through the binary symmetric erasure channel
(m1+m2 = m). If β > 4e1, then P (Θ̂ = Θ) → 1 as n → ∞.
Proof Sketch: Denote by yi the i-th row of M1 generated
from h1 and zj the j-th row of M2 generated from h2.
Asymptotically, we have

d(yi,h1)/n ∼ N (e1, e1(1 − e1)/n),

d(zj ,h2)/n ∼ N (e1, e1(1 − e1)/n)

for i = 1, ...,m1, j = 1, ...,m2. Thus

d(yi,yj)
n

≤ d(yi,h1)
n

+
d(yj ,h1)

n
∼ N

(
2e1,

2e1(1 − e1)
n

)
.

On the other hand, we have

d(yi, zj)
n

≥ d(h1,h2)
n

−
[
d(yi,h1)

n
+

d(zj ,h2)
n

]

∼ N
(

β − 2e1,
2e1(1 − e1)

n

)
.

As n → ∞, it is clear that

P

(
d(yi,yj)

n
≤ 2e1,

d(yi, zk)
n

≥ 2e1

)
→ 1.

Note that ∀i �= j and ∀k, the condition for equality to hold
has zero probability measure.
Claim 2: If e1 > 0, then for any finite m1, the maximum
likelihood estimate of the haplotype sequence yields P (ĥ1 �=
h1) > 0 and P (ĥ1 �= h1) → 1 as n → ∞.
Proof Sketch: Without loss of generality, we assume that the
haplotype sequence is independent and identically distributed
so that we can focus on the decoding of each bit of the
haplotype sequence based on the corresponding column of M1.
Assume that k1 0s and k2 1s are observed with m1 − k1 − k2

erasures in a particular column of M1. The log-posterior ratio
is

log
(

P (x = 0|k1, k2)
P (x = 1|k1, k2)

)
=

log
(

P (x = 0)
P (x = 1)

)
+ (k1 − k2) log

(
1 − e1 − e2

e1

)
.

Assume equal prior probability and 1 − e2 > 2e1, then the
decision rule becomes declaring x = 0 when k1 − k2 > 0,
i.e., k1 > k2 and x = 1 when k1 < k2. The probability of
decision error is given by

P (x̂ �= x) =∑
k1<k2

m1!
k1!k2!(m1 − k1 − k2)!

(q)k1ek2
1

em1−k1−k2
2

> 0

where q = 1 − e1 − e2. Thus the probability of correctly
decoding an n-bit haplotype is

P (ĥ1 = h1) = (1 − P (x̂ �= x))n → 0

as n → ∞.
Claim 3: If C = log

2
3 − H(e1, e2, 1 − e1 − e2) > 0 and

m1 > n/C, then for large enough n, there exists a procedure
to generate the SNP matrix such that P (ĥ1 �= h1) can be
made arbitrarily small.
Proof Sketch: If we assume that a haplotype is an independent
identically distributed stochastic sequence with each bit having
a distribution P (x), then for large n, there are about 2nH(x)

typical sequences. For each row of M , there are about 2nH(y)

typical sequences. Since there are only 2nH(x,y) jointly typical
sequences, we can see that not all pairs of typical haplotype
and typical fragment sequence are jointly typical. For the
discrete memoryless channel P (y|x), the probability that any
randomly chosen pair is jointly typical is about 2−nC where
the channel capacity is [3]

C = I(x; y) = log
2
3 − H(e1, e2, 1 − e1 − e2).

Hence for a fixed fragment sequence, we can consider about
2nC such pairs before we are likely to come across a jointly
typical pair. This suggests that there are about 2nC distin-
guishable haplotypes we can handle with M1. From Shan-
non’s channel coding theorem [3], if the communication rate



n/m1 < C, then there exists a code book that by examining
the joint typicality, the decoding error can be made arbitrarily
small.

In summary, finding the correct partition Θ has overwhelm-
ingly large probability asymptotically if the two haplotype
sequences are dissimilar enough. However, since the standard
SNP matrix M is constructed by repetition code which has
zero rate asymptotically [8], there exists a significant gap
between the information content conveyed by M and the actual
information needed to make the decoding error probability
arbitrarily small.

III. EFFICIENT HAPLOTYPE RECONSTRUCTION WITH

GENOTYPE INFORMATION

Consider a long haplotype sequence of length n being
measured by L aligned SNP fragments each of which has
length s = n/L. For each SNP block with s columns,
we assume that the genotype information is available. For a
genotype g = [g1 g2 ... gs] without reading error, when the i-th
SNP site is wild type homozygous, gi = 0; when it is mutant
type homozygous, gi = 1; when it is heterozygous, gi = 2.
Clearly, a pair of identical haplotypes can not yield a genotype
sequence with any site being 2 unless it is a reading error. If
we screen each SNP block and observe 2 on certain sites, the
information will be very useful to infer Θ. Thus we can view
the genotype information as some form of the parity check
[8].

With the help of genotype information, we can design an
efficient haplotype reconstruction algorithm that controls the
decoding error of each site by sequentially taking an additional
SNP block. The algorithm runs in two stages.
Given initial SNP matrix M = [B1 B2 ... Bs] with known bit
flip probability e1, erasure probability e2, and the correspond-
ing genotype sequence {g1, ...,gs}.
Output a pair of haplotypes h1 and h2 with error probability
for each site below a desired level e.
Algorithm

• Partition: Start with an arbitrary initial partition Θ = (M1, M2).
Identify all sites where gi = 2 and set h∗

1i = 0, h∗
2i = 1 if there

are more 0s in the i-th column of M1 than 1s in the i-th column
of M2. Otherwise, set h∗

1i = 1, h∗
2i = 0.

For the remaining sites, set h∗
1j = h∗

2j = gj . Use majority vote
by the corresponding column vector in M1 to decide h∗

1j and
the corresponding column vector in M2 to decide h∗

2j when gj

is a gap.
Cluster M into two groups with initial centers given by h∗

1

and h∗
2 and generalized Hamming distance defined over each

pair of row vectors in M . Standard k-means algorithm [8] will
converge in less than 10 iterations in practice.

• Decoding: For each column l in Bi (i = 1, ..., s), do the
following.
If gil = 0, then count the number of 0s k1 and the number
of 1s k2 in the whole column l. Declare hil1 = hil2 = 0 if
k1 − k2 > c0; declare hil1 = hil2 = 1 if k2 − k1 > c0;
and request one more piece of SNP block appending to Bi if
|k1 − k2| ≤ c0.
If gil = 1, then count the number of 0s k2 and the number
of 1s k1 in the whole column l. Declare hil1 = hil2 = 1 if
k1 − k2 > c0; declare hil1 = hil2 = 0 if k2 − k1 > c0;

and request one more piece of SNP block appending to Bi if
|k1 − k2| ≤ c0.
If gil = 2, then count the number of 0s k11 and the number of 1s
k12 in the column l belonging to group 1 and count the number
of 0s k21 and the number of 1s k22 in the column l belonging
to group 2. Declare hil1 = 0, hil2 = 1 if k11 − k12 > c1 or
k22 − k21 > c1; declare hil1 = 1, hil2 = 0 if k12 − k11 > c1

or k22 − k21 > c1; otherwise, request one more piece of SNP
block appending to Bi.
If gil is a gap, then count the number of 0s k11 and the number
of 1s k12 in the column l belonging to group 1 and count the
number of 0s k21 and the number of 1s k22 in the column l
belonging to group 2. Declare hil1 = 0 if k11 − k12 > c1;
declare hil2 = 1 if k22 − k21 > c1; declare hil1 = 1 if k12 −
k11 > c1; hil2 = 0 if k21 − k22 > c1; otherwise, request one
more piece of SNP block appending to Bi.

Note that the above algorithm is applicable to the case
without genotype information by setting gil to be a gap ∀l, i.
Claim 4: Denote by p the probability that the genotype reading
of an SNP site is correct. If β > 4e1 or β > 2(1 − p) and

c0 =

⎡
⎢⎢⎢

log
(

e(1−p)

(1−e)p

)

log
(

(1−e1−e2)

e1

)
⎤
⎥⎥⎥ , c1 =

⎡
⎢⎢⎢

log
(

e
1−e

)

log
(

(1−e1−e2)

e1

)
⎤
⎥⎥⎥ ,

then P (ĥjl �= hjl) < e, for j = 1, 2 and l = 1, ..., n, as
n → ∞.
Proof Sketch: Similar to the distance argument in the proof
of Claim 1, we can show that P (Θ̂ = Θ) → 1 as n → ∞. As-
suming conditional independence between M and {g1, ...,gs},
the decoding rule for each haplotype sequence is sequential
probability ratio test (SPRT) with the upper and lower limit
given by Wald’s fundamental approximation [10]. Since the
test statistic (k1 − k2) is discrete, we have to increase the
threshold to the nearest integer which in principle reduces the
decoding error, i.e., P (ĥilj �= hilj) < e with strict inequality
∀i, l, j. However, the expected number of samples to reach a
decision will not be minimized with the exact error constraint
e as the original SPRT, which requires randomized decision
rule switching between the threshold c and c − 1 [10].

IV. EXPERIMENT ON SIMULATION DATA

We consider one chromosome data set used in [11] for
haplotype reconstruction by minimum error correction (MEC)
criterion. It contains a pair of haplotypes of length 95 after
removing 8 missing sites. For the SNP matrix with fixed
sample size m = 40, we generate random fragments with
gap rate of fragments being 0.75. Among non-gap elements
in the SNP matrix, the error rate is 0.3. The reconstruction
rate given by

1 − min{r11 + r22, r12 + r21}
2n

where rij = d(hi, ĥj), i = 1, 2 and j = 1, 2, is used
to evaluate algorithm performance. The expected number of
errors needs to be corrected is 285 while the MEC method
using branch and bound algorithm in [11] only needs to correct
215 errors to make the reconstructed haplotypes compatible
with the SNP matrix. The reported reconstruction rate is 0.705



[11] while the expected decoding error rate is 0.188. Thus the
MEC method does not provide the best reconstruction rate.
To apply the proposed sequential haplotype reconstruction
algorithm, we set L = 5 thus s = 19. The initial sample size is
10 and we set c = 2. The expected number of SNP fragments
used for reconstruction is 32.7 in 10 Monte Carlo runs. Ideally,
the Wald’s SPRT only needs 30 samples on average to reach a
decision, which is smaller than the hypothesis test with fixed
sample size m = 40. On the other hand, the reconstruction
rate is 0.806, which is significantly higher than that by MEC
method. It is also close to the expected decoding error rate
even in this non-asymptotic regime.

Next, we consider that a genotype is associated with the
SNP fragments with each SNP site having gap probability
0.25. For a non-gap genotype reading, the error probability is
0.1 (p = 0.9). We want to have e < 0.01 and end up with c = 2
as in the case without genotype information. In 10 Monte
Carlo runs, the reconstruction rate becomes 0.998, which is
higher than the desired rate. This is due to the conservative
design of the SPRT procedure where the actual bit error rate
is lower than the desired level. If one seeks minimum number
of error corrections to make the reconstructed haplotype to be
compatible with the modified genotype, then the reconstruction
rate reduces to 0.924. Clearly, genotype information helps
improve the reconstruction rate. However, correcting minimum
number of errors does not lead to the optimal decoding due
to the fact that typical errors will be unlikely minimal ones
when n and e1 are large enough [8]. Similar observations
have also been confirmed using other parsimony based criteria.
We conclude that parsimony based methods, being attractive
mainly due to their general applicability without knowing
the error rate of the underlying channel model, can be quite
suboptimal compared with the best achievable reconstruction
rate with the knowledge on the statistical model of the SNP
fragments.

To quantify the improvement by using genotype informa-
tion, we consider an idealized scenario where p → 1 and
every SNP site in the genotype is heterozygous. In this case,
one can not infer any site of each haplotype purely from the
genotype.
Claim 5: Assume that the decoding error rate using the
proposed sequential algorithm is e for large n without geno-
type information. Then with genotype information under the
idealized scenario, the decoding error rate is O(e2).
Proof Sketch: We assume that under both cases the inference
on Θ is perfect. Without loss of generality, consider decoding
the j-th site of the haplotypes where h1j = 0 and h2j = 1.
Let k11 be the number of 0s of the j-th column in M1 and
k12 the number of 1s of the j-th column in M1. Similarly,
let k21 and k22 be the corresponding number of 0s and 1s in
M2, respectively. Without haplotype information, an error will
occur either when k11 − k12 < −c or when k22 − k21 < −c.
Both events have been designed to have probability smaller
than e. With haplotype information, an error will occur when
both k11 − k12 < −c and k22 − k21 ≤ c are true or both
k11 − k12 ≤ c and k22 − k21 < −c are true. Since under the

same sample size, k22 − k21 > c implies the correct decoding
probability being at least 1 − e, the event that k22 − k21 ≤ c
is true prior to the stop time when k11 −k12 < −c occurs has
probability at most O(e). Thus the overall decoding error rate
is at most O(e2).

V. CONCLUSIONS

We have shown that haplotype reconstruction based on
aligned SNP fragments can be treated as decoding over a
discrete memoryless channel. There exists a nontrivial gap
between the error correction capability by parsimony based
methods and that given by the channel capacity. The parsimony
based methods may not achieve the best error correction
rate under such as channel model. In addition, we have
shown how the genotype information can be useful to im-
prove the haplotype reconstruction rate. A new sequential
haplotype reconstruction algorithm with genotype information
was proposed that guarantees the desired reconstruction rate
with smaller expected number of SNP fragments than what
is needed using fixed sample size. The advantage of using
genotype information is quantified by exploiting a simplified
statistical model with nearly perfect genotype information.
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Abstract

We develop a new algorithm for finding similar pro-
tein structures in the protein databank. Our new
algorithm is implemented to run in a single ma-
chine and it can return a set of protein structures
that are similar to the given protein structure in
a few minutes. In order to compare the perfor-
mance with other web-servers, we develop a a sym-
metric difference model between the two sets of pro-
tein structures which are outputted by two differ-
ent softwares when the same protein structure is
given as input. It is compared with the similar
tool of Secondary Structure Matching (SSM) at ad-
dress http://www.ebi.ac.uk/msd-srv/ssm/ and shows
competitive performance with SSM. Our algorithm
has been implemented as a web-server at address:
http://fpsa.cs.panam.edu/ for public access.

1 Introduction

Protein 3-D structures are widely believed to be re-
lated to their biological functions. It is particu-
larly important to find out the structural similarity
between different proteins. The number of protein
structures is becoming larger and larger in the protein
databank (PDB). As the current protein databank
has more than 48,000 proteins and 100,000 chains,
it is crucial to develop efficient computer algorithms

and softwares to find similar protein structures from
the protein databank.

A widely accepted idea of protein 3-D structure
comparison is to align the Cα atoms in the pro-
tein backbones. A protein molecule is made up of
one or more polypeptide backbones with specific side
chains attached to them. The backbone of a protein
is also known as a main chain which has a constant
structure. The carbon atoms in the main chain that
the side chains are attached to are known as alpha-
carbons (Cα). A protein backbone is usually repre-
sented by one chain of Cα atoms with their 3-D co-
ordinates. With this representation, the problem of
protein 3-D structure alignment can be solved by find-
ing out first the longest common sub chains between
different protein backbone chains, then a proper rigid
body transformation which translates and rotates one
protein backbone chain so as to align it as close as
possible to the other one. In recent years, various
approaches on protein 3-D structure alignment have
been presented (e.g. [5, 9, 11, 15, 14, 3, 6, 8, 17, 16]).

Protein query problem is to find the proteins with
similar 3D structures in the protein databank, given
a protein structure as the input. The input may be
a protein structure, which is described in certain for-
mat (e.x. the PDB format), or a protein code in
the protein databank. Algorithms for searching pro-
tein in the database for similar structures have been
developed by multiple research groups [1, 7, 11, 12,
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13, 15, 2, 4]. In particular, the methods developed
in [1, 7, 11, 12, 13, 15, 2] belong to the hierarchical
method.

It is easy to see that the algorithm for the pair-wise
protein alignment in Cα atom level can be applied to
find similar proteins from the protein database. This
kind of algorithms is usually not fast enough to com-
pare the input protein with all proteins in the data-
bank. A natural approach is to exclude proteins that
have greatly different structures from the input struc-
ture by using some simple method, and then apply
more complicated algorithms to check the similarity
with small number of proteins left.

In the hierarchical algorithm VAST [11], it builds a
bipartite graph. Each node in one side of the graph is
a pair of SSEs from the input protein, and each node
in the other side of the graph is a pair of SSEs from
the target protein. Connect two nodes between two
sides if they can be aligned well. Their SSE alignment
algorithm finds the maximal clique in the bipartite
graph and extend it to Cα-atom level alignment by
Gibbs sampling.

In this paper, we develop a practical algorithm for
the protein query problem. Our main technical con-
tribution is that we apply a new method to check the
similarity for the secondary structures between two
proteins. Our method for grouping the secondary
structures is different from other protein secondary
structure alignment algorithms like [11]. Our ap-
proach is based on finding the star which has a center
of two pairs aligned secondary structures between two
proteins. Add other pairs of secondary structures to
the star if there exists a common rigid body transfor-
mation between the center and the new pair. Prune
the star until it has a satisfactory RMSD. Finding a
maximal star, which can be computed in linear time,
is easier than a maximal clique. This method based
on star was first used in our recent Cα-atom level
alignment [18] and shows improvement over the ex-
isting alignment algorithms.

We found an efficient way to combine the sec-
ondary structure level alignment with the Cα-atom
level alignment. The combination of two alignments
are embedded into our protein query system so that
it can find similar proteins in the protein databank of
more than 100, 000 chains in a short time, and avoid
missing similar structures.

The quality of protein query system is determined
by how similar the list of output proteins to the input
protein is . In order to compare the performance with
other web-servers, we develop a model based on the
symmetric difference between the two sets of protein
structures which are outputted by two different soft-
wares when the input is the same protein structure.

It is compared with the similar tool of SSM and shows
improved performance. It has been implemented as a
web-server at address: http://fpsa.cs.panam.edu/.

2 Overview of Our Methods

Our algorithm has a series of filters. Given a pro-
tein 3D structure as input, the algorithm first exclude
those proteins that have big difference in the number
of Cα atoms in the protein backbone, the average
distance from all Cα atoms of backbone to the center
of protein backbone, or the statistics about the sec-
ondary structures. The second layer filter does the
second structure sequence alignment. The third layer
filter aligns the secondary 3D structures. The fourth
layer filter uses a simplified version of our pair-wise
protein 3D structure alignment algorithm developed
by us recently [18], and does the protein 3D structure
alignment.

3 Description of Algorithm

A straightforward method to find the similar struc-
tures in the protein databank is to apply a pairwise
protein alignment software to check all of the pro-
tein structures saved in the database. Since the pro-
tein databank has a large number of protein struc-
tures, it would be very slow to check each structure
carefully. Our algorithm has multiple phases to fil-
ter those structures that have weak similarity with
the input protein structure in the early stage. When
there are small number of candidate structures left,
a more complicated pairwise algorithm is used in se-
lecting the most similar protein structures.

3.1 Checking Off-line Information

We first reject those protein structures that have
greatly different number of Cα atoms in the back-
bone, the structures that has large difference for the
average distance from the Cα-atoms to the center of
Cα-backbone, and the structures that have big dif-
ference in ratio of α-helix among all secondary struc-
tures entities (SSEs). The number of Cα atoms for
all protein structures can be easily computed off-line.
So are the average distance to the center, and the
ratio of α-helix. This stage is very fast since those
offline information is ready during the query and the
decision can be made very quickly.

Let S0 be the input protein structure. We often use
the parameter Structure-list to represent a list of pro-
tein structures which will be selected by checking sim-
ilar properties with input protein structure S0. For
protein structure S, define C(S) to be the Cα-chain

2



of the backbone of S. Function Check-protein-size()
checks if a target protein has a similar number of Cα

atoms with the input protein S0.

Check-protein-size(S0, S)
Input: S0 is the input protein structure, and S is

another protein structure.
Output: true or false.
Begin

Let n0 be the number of Cα atoms in C(S0).
Let n be the number of Cα atoms in C(S).
If (|n0 − n| ≤ empirical value·max(n0, n) )

then true.
return false.

End (of Check-protein-size)

For a list of points p1, · · · , pn in 3D space, its center

is computed by
∑n

i=1
pi

n . We have the function Check-
average-distance-to-center() to check if the average
distance from all Cα atoms to the center of Cα(S) is
similar to that of Cα(S0). If two structures are similar
their average distances to center are also close.

Check-average-distance-to-center(S0, S)
Input: S0 is the input protein structure, and S is

another protein structure.
Output: true or false.
Begin

Let c0 be the center of C(S0).
Let d0 be the average distance from the Cα

atoms of C(S0) to c0.
Let c be the center of C(S).
Let d be the average distance from the Cα

atoms of C(S) to c.
If (|d0 − d| ≤ empirical value·max(d0, d) )
Then true
Else return false.

End (of Check-average-distance-to-center)

The function Check-
secondary-structure-statistics() is used to check the
statistics information about the secondary structures
such as the number of α-helixes and β sheets.

Check-secondary-structure-statistics(S0, S)
Input: S0 is the input protein structure, and S is

another protein structure.
Output: true or false.
Begin

Let a0 be the number of α-helixes in C(S0).
Let b0 be the number of β-sheets in C(S0).
Let a be the number of α-helixes in C(S).
Let b be the number of β-sheets in C(S).
If (|a0 − a| ≤ empirical value·max(a0, a) and

|b0 − b| ≤ empirical value·max(b0, b) )
Then Return true.
Return false.

End (of Check-secondary-structure-statistics)

The function Select-via-offline-information() filters
protein by the offline information. If the Structure-
list is the list of proteins in the protein databank,
there will be less than 20% proteins left after calling
this function.

Select-via-offline-information(S0,
Structure-list)

Input: S0 is the input protein structure, and
Structure-list is the list of structures to be searched
for similar proteins.

Output: a sublist of protein structures that each
has similar average distance to the it center.

Begin
Let L = ∅.
For each protein structure S in L
Begin

If (Check-protein-size(S0, S) and
Check-average-distance-to-center(S0,
S) and
Check-secondary-structure-statistics
(S0, S))

Then put S into L (L = L ∪ {S}).
End (of For)
Return L.

End (of Select-via-offline-information)

3.2 Secondary Sequence Alignment

It has been observed that if two structures are sim-
ilar, their secondary structure sequences can be well
aligned at sequence level, where each secondary struc-
ture can be represented by either α for α helix or β
for a β sheet. Using the α-β sequence alignment can
reduce a large number of unrelated structures and
greatly speed up the searching in the database.

The second structure sequences of all protein struc-
tures in the databank are extracted. For each pro-
tein, its secondary structure sequence has format
s1s2 · · · sk such that each si contains the following
information:

• α-β type.

• Number of Cα atoms in the secondary structure.
Define cα(si) be the number of Cα atoms in si.

• Two crucial points of the secondary structure.

Define the weight function such that w1(a, b) =
max(cα(a),cα(b))

cα(a)+cα(b) if the α-β type of a and b are different

or one of them is a space, and w1(a, b) = |cα(a)−cα(b)|
cα(a)+cα(b)

if the α-β type of a and b are the same.
An alignment of two sequences a1 · · · an and

b1 · · · bm of secondary structures is to add some
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spaces, which is marked by ‘-’, into both of them.
The first sequence become a′1 · · · a′k and the second
sequence becomes b′1 · · · b′k, and for each 1 ≤ i ≤ k, at
least one of ai and bi is not a space. The total cost
for the alignment that is from a′1 · · · a′k and a′1 · · · a′k is
measured by

∑k
i=1 w(a′i, b

′
i). The optimal alignment

is to find the one with the least cost by the function
w().

Define D(i, j) be the cost of an optimal alignment
between a1 · · · ai and b1 · · · bj . We have the following
recursion, which implies D(n,m) can be computed in
O(mn) time by dynamic programming method.

D(i, j) = min





D(i− 1, j − 1) + w(ai, aj)
D(i− 1, j) + w(ai,−),
D(i, j − 1) + w(−, bj)

(1)

Secondary-structure-sequence-alignment(S,
S′)

Input: S is the first protein structure, and S′ is the
second protein structure.

Output: an alignment for the secondary structure
sequences between S and S′.

Begin
Let s1s2 · · · sk be the sequence of the first

protein S.
Let s′1s

′
2 · · · s′k′ be the sequence of the second

protein S′.
Apply the dynamic programming with weight

function w().
Output the alignment with the best score.

End (of Secondary-structure-sequence-alignment)

We use function Select-via-secondary-structure-
sequence() to select those proteins that have the sec-
ondary structure sequence to be well aligned with
that of input protein structure S0.

Select-via-secondary-structure-sequence(S0,
Structure-list)

Input: S0 is the input protein structure, Structure-
list is the list of structures to be searched for similar
proteins.

Output: a sublist of protein structures that can be
well aligned with S0 according the secondary struc-
ture sequence alignment.

Begin
Let L = ∅.
For each protein structure S in the Structure-
list
Begin

A =Secondary-structure-sequence-
alignment(S0, S).

If (alignment A is good enough ) then put

S into L.
End (of For)
return L.

End (of Select-via-secondary-structure-sequence)

3.3 3D Alignment for Secondary
Structures

In this phase, we select those protein structures that
have good geometric alignment by secondary struc-
tures. This phase is also fast since each protein has
about 30 secondary structures in average. We just
use two points to represent a secondary structure.

Build-Star((s1, s
′
1), (s2, s

′
2), S, S′)

Input: S and S′ are two protein structures, s1 and
s2 are secondary structures in S, s′1 and s′2 are sec-
ondary structures in S′, and there exists an rigid body
alignment for (s1, s

′
1) and (s2, s

′
2).

Output: a star with center at (s1, s
′
1), (s2, s

′
2).

Begin
Let Center={(s1, s

′
1), (s2, s

′
2)}.

Let Star=Center.
For each pair secondary structure (s, s′)
between S and S′.
begin

If (there exists a rigid body
transformation for center and (s, s′))
Then Let Star=Star ∪{(s, s′)}.

end (For)
Return Star.

End (of Build-Star)

The function Prune-star() deletes some pairs in a
star until there exists an alignment with RMSD less
than a threshold r.

Prune-star(Star, r)
Input: Star is a star of secondary structures, and r

is a threshold.
Output: a new star of secondary structures that

has rigid body alignment with RMSD no more than
r.

Begin
While (RMSD(Star)> r)

Remove the pair (s, s′) of Star that has
the largest distance dist(s, s′).

End (of Prune-star)

The function Secondary-structure-3D-alignment()
align the 3D secondary structures between two pro-
tein structures S and S′. The method is based on
building stars and pruning stars.

Secondary-structure-3D-alignment(S, S′)
Input: S is a protein structure, S′ is a protein struc-

ture.
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Output: a 3D alignment between the secondary
structures of S and S′.

Begin
L =Secondary-structure-sequence-alignment
(S, S′).
Best-star= ∅.
For each pair (s1, s2) of neighbor secondary
structures in L
Begin

Star=Build-Star(s1, s2).
Star=Prune-star(Star, r)
if (size(best-star)< size(Star))
Then Best-star=Star.

End (of For)
Return best-star as an alignment.

End (of Secondary-structure-3D-alignment)

The function Select-via-secondary-structure-3D-
alignment() selects those proteins that can be well
aligned with S0 by the Secondary-structure-3D-
alignment function.

Select-via-secondary-structure-3D-
alignment(S0, Structure-list)

Input: S0 is the input protein structure, and
Structure-list is the list of structures to be searched
for similar proteins.

Output: a sublist of protein structures that can be
aligned with S0 well.

Begin
Let L = ∅.
For each protein structure S in the Structure-
list
Begin

A =Secondary-structure-3D-alignment
(S0, S).
If (alignment A is good enough )
Then Put S into L.

End (of For)
Return L.

End (of Select-via-secondary-structure-3D- align-
ment)

3.4 Cα-Atom Level Pair-wise Protein
Alignment

In the bottom of our implementation, we find a suit-
able protein pairwise alignment algorithm which is
first developed in our earlier work [18]. In this layer,
the protein alignment algorithm should balance the
speed and accuracy.

Pair-wise-alignment(S, S′)
Input: S is the first protein structure, and S′ is the

second protein structure.

Output: an alignment between the Cα atoms in S
and S′.

Begin
Let C be the Cα-atom chains S.
Let C ′ be the Cα-atom chains S′.
Find the similar local regions between two Cα-
chains.
Let each local alignment be a node of a graph.
Add an edge between two nodes if they can
share a common global rigid body
transformation.
For each star in the graph
Begin

Prune those Cα-pairs until the RMSD is
small enough.

End (of For)
Output the alignment with the largest number
of Cα pairs.

End (of Pair-wise-alignment)

The function Select-via-atom-level-alignment() se-
lects those proteins that can be well aligned with S0

in the Cα atoms level.
Select-via-atom-level-alignment(S0,

Structure-list)
Input: S0 is the input protein structure, and

Structure-list is the list of structures to be searched
for similar proteins.

Output: a sublist L of protein structures from
Structure-list such that each protein structure in L
has good Cα-atom alignment with S0.

Begin
Let L = ∅.
For each protein structure S in the Structure-
list
Begin

A =Pair-wise-alignment(S0, S).
If (alignment A is good enough )

Then Put S into L.
End (of For)
Return L.

End (of Select-via-atom-level-alignment)

3.5 Combining Them Together

Now we put all of those layers of the algorithm to-
gether to form the entire algorithm. The first filter
is based on the offline information, the second filter
is based on the secondary structure sequence (α-β
sequence) alignment, the third filter is based on the
secondary structure 3D alignment, and the fourth fil-
ter is based on the Cα atoms alignment.

Search-proteins(S0, Structure-list)
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Input: S0 is the input protein structure, and
Structure-list is the list of structures to be searched
for similar proteins.

Output: a list of proteins structures that are simi-
lar to S0.

Begin
L1 =Select-via-offline-information(S0,
Structure-list).
L2 =Select-via-secondary-structure-sequence
(S0, L2).
L3 =Select-via-secondary-structure-3D-
alignment(S0, L3).
L4 =Select-via-atom-level-alignment(S0, L3).
Output L4 as the list of proteins similar to S0.

End (of Search-proteins)

4 Comparison with SSM

Our algorithm has been fully implemented and
tested. It is available for public access at
http://fpsa.cs.panam.edu/. It is running at a sin-
gle machine, and will be supported by a cluster of
machines soon.

4.1 Speed and Performance

We observed that given a protein structure as input
for our software, it can output a list of protein struc-
tures that are similar to it among those available pro-
teins in the protein databank.

The total number of protein chains is about
100, 000. After the top filter, which check the number
of Cα atoms, the average distance to the center of Cα

chain, and the ratio of SSEs, there are about 20, 000
structures left.

The second level filter aligns the secondary struc-
ture sequences and can filter 80% 90% structures from
the output from the top layer. We often see that there
are less than 2000 structures left after the second level
filter.

The third level filter narrow down the number of
structures to several hundreds in average. It depends
on how many proteins are really similar to the in-
put protein. The atom level alignment tool developed
in [18] is efficient enough to align the input structures
with those protein structures in several minutes.

4.2 Model of Comparison

Each web server outputs a list of proteins that are
expected to have the maximal similarity with the
input protein. When comparing with another web-
server, we output the same number of results and
check their symmetric difference. Assume that W1

represents our software and W2 represents another
web-server. Given a protein structure p, W1(p) is the
list of proteins similar to p by the server W1. W2(p)
is the list of proteins similar to p by the server W2.

Let W1(p)−W2(p) be the list of proteins that be-
long to W1(p) but not W2(p) and W2(p) − W1(p)
be the list of proteins that belong to W2(p) but not
W1(p). The two lists are of the same length since we
let W1(p) and W2(p) be of the same length.

According to [8], we use Q-score to measure the
quality of alignment between two protein struc-
tures. The Q-score is defined by the formula below:

Q(p1, p2) =
N2

align

(1+(RMSD/R0)2)N1N2
, where Nalign is the

number of pairs of aligned Cα atoms, N1 is the num-
ber of Cα-atoms in the protein p1, N2 is the number
of Cα-atoms in the protein p2, and R0 is an empirical
value (chosen at 3).

We select 88 proteins that are listed in [10] and be-
long to different categories such as α, β, α/β, and α+
β. Two Figures gives the comparison between SSM
and our software based on the maximum and aver-
age Q-scores, respectively. The horizontal axis is the
index of 80 protein and the vertical axis is the max-
imum Q-score value and average Q-score in two fig-
ures, respectively. Those proteins have the following
names: 1cseI, 1dhr , 1etu , 1fx1 , 1paz 1pfkA, 1q21 ,
1s01 , 1sbp , 1sbt , 1timA, 1treA, 1ula , 1wayB,
2had , 2liv , 3gbp , 5cpa , 5p21 , 8abp , 8atcA, 1ctf ,
1dnkA, 1eaf , 1hsbA, 1ltsA, 1ltsD, 1ovb , 1poc ,
1ppn , 1rnd , 1snc , 1tfg , 1tgsI, 2achA, 2bpa1, 2act ,
2sns , 3il8 , 3rubS, 3sgbI, 3sicI, 4blmA, 4tms , 9rnt ,
9rsaA. In our experiments, the eight proteins 1avhA,
1dnkA, 1ltsA, 1ovb , 1pkfA, 1poc , 2bpa1, and 3sicI
have the same output between our software and SSM.
Therefore, their are excluded in the results in Figure
1 and Figure 2.

Define MaxQ1(p) = max{Q(p, p′)|p′ ∈ W1(p) −
W2(p)}. Define MaxQ2(p) = max{Q(p, p′)|p′ ∈
W2(p) −W1(p)}. The curve in the first figure is the
function MaxQ1(p) (assume that a protein p and its
index are the same). Each point (p, q) in the cure
has the relationship q = MaxQ1(p). On the other
hand, a point (p′, q′) for a dot in the first figure has
the relationship q′ = MaxQ2(p′). Figure 1 shows
the comparison between the missing in two softwares.
Since most of the dots are below the curves, it indi-
cates that SSM query tool has more serious missing
problem than ours based on the maximum Q-score
measure.

Define AveQ1(p) =
∑

p′∈W1(p)−W2(p)
Q(p,p′)

|W1(p)−W2(p)| , where
|W1(p) − W2(p)| is the number of items in
the set W1(p) − W2(p). Define AveQ2(p) =∑

p′∈W2(p)−W1(p)
Q(p,p′)

|W2(p)−W1(p)| . The curve in the second fig-
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ure is the function AveQ1(p) (assume that a protein
p and its index are the same). Each point (p, q) in
the cure has the relationship q = AveQ1(p). On the
other hand, a point (p′, q′) for a dot in the second
figure has the relationship q′ = AveQ2(p′). Figure 2
shows the comparison between the average missing in
two softwares. Since most of the dots are below the
curve, it indicates that SSM query tool has more seri-
ous missing problem than ours based on the average
Q-score measure also.

5 Future Work

The algorithm only runs in a single machine. We are
building a cluster of machine to support the protein
query system. It will be ready soon. Our current Cα-
atom level alignment algorithm is not fast enough.
We try use a load balance way to speed up the server
in a cluster of PCs.
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tems. The algorithm has been fully implemented and is accessible online at the address
http://fpsa.cs.panam.edu/, which is supported by a cluster of computers.

Keywords: protein search; protein structure alignment.

1. Introduction

Searching for similarities between proteins has an important role in many biolog-
ical and biomedical applications, such as disease diagnosis and drug design. It raises
the need for tools that perform protein similarity searching to clarify the similarities
between related or similar proteins. BLAST 2 (Eugene Myers., Stephen Altschul.,
1990) is a classical sequence similarity search algorithm, and it has been widely
used for searching proteins with similar amino acid sequences. In 1997, Altschul up-
graded it to PSI-BLAST 3, which combines all closely related proteins into a general
“profile” sequence as the query sequence for a search, and its accuracy performance
has been improved. Unlike PSI-BLAST, most of the existing protein query tools
search protein structures rather than protein amino acid sequences. It is because
protein 3D structures are widely believed to be related to their biological functions,
and in many cases, we cannot detect the similarity of two remotely homologous
proteins by amino acid sequence comparison. Furthermore, during the evolution,
protein 3D structures are more conserved than their amino acid sequences. The
protein structure query problem is, given a protein structure as an input, to search
for proteins with similar 3D structures in a protein structure database, such as the
PDB 36 (Berman., 2000). The input may be a protein description file of a certain
format (e.g. the PDB format) or a protein index in a certain database.

The major difficulty of searching for protein structure similarities is that the
sizes of protein structure databases are growing rapidly while protein structure
comparison algorithms are relatively slow. A widely accepted idea about the pro-
tein 3D structure comparison is to align the alpha-carbon (Cα) atoms in the protein
backbones. In recent years, various approaches on the protein 3D structure align-
ment have been presented (e.g. 5, 7, 11, 13, 15, 20, 27, 28, 30, 31, 34). However, the existing
protein alignment algorithms are too computationally expensive for doing against-
all alignments in a large protein structure database such as PDB. As of September
2008, there have been over 53,000 proteins, including more than 120,000 chains in
the PDB. There can be multiple chains in a protein molecule and a protein chain
is a basic unit for the protein structure comparison.

In the past, algorithms for searching similar protein structures have been devel-
oped by multiple research groups 1−4, 6, 8, 11, 14, 16, 18−21, 25, 27−29. As we know, DALI
11 (Holm. and Sander., 1993) and CE 27 (Shindyalov. and Bourne., 1998) are two
classical pairwise comparison methods. This kind of methods can provide us struc-
ture alignment results of high quality. However, their protein search programs have
very slow response (or: very high response time) based on our experience and the
evaluation in 4 and 18. To improve the search speed, many methods have been de-
signed to reduce the query time. Baker and Dauter (2004) developed SSM 5 which
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uses Secondary Structure Match for the pairwise structure comparison; it reduces
the comparison time a lot. In Addition, linear encoding has been applied to pro-
tein structural database searches recently. For instance, 3D-BLAST 29 developed by
Yang and Tung (2006), can improve the comparison speed thousands times as the
speed of CE and DALI. Similar methods include ProtDex2 4, Sarst 18, and TopScan
16. These methods improve the time performance greatly, and also have acceptable
performance in accuracy. Due to the large size of the database and the high com-
plexity of pair-wise protein structure alignment algorithms, a natural approach is to
use some simple methods to exclude proteins that have greatly different structures
with the input structure, and then apply more complicated algorithms to check the
similarities with a small number of proteins left. Moreover, in our knowledge, a great
number of proteins in the PDB are structurally similar. Therefore, driven by the
need of a fast and accurate searching approach, we choose to first classify proteins
into groups and select only one representative from each group of similar proteins.
At present, several classification methods (e.g. 9, 12, 22−24, 26) have been proposed,
and their classified databases are available on the internet. They classify protein
chains based on sequential, structural or functional similarities and aid the under-
standing of evolutionary relationships among them. However, the above classified
databases cannot be used directly in a 3D structural similarities search system, be-
cause the proteins in the same group of those databases are not structurally similar
enough and this will affect the query accuracy. Furthermore, the number of protein
structures in the PDB increases rapidly while the above databases only issue their
new version annually or even longer.

In this paper, we propose a practical approach for the protein structure query
problem. In the approach, we first classify all proteins in the PDB into different
groups such that each group only contains proteins with similar structures. Then,
when a protein chain is specified, we combine geometric feature extraction, sequence
alignment and structure alignment algorithms to search over the classified database,
where each group has one structure to serve as a representative. In addition, our web
tool has been implemented in a cluster of computers in order to increase its time
performance, and is accessible at address http://fpsa.cs.panam.edu/ by the public.
It can find similar proteins in the PDB (of more than 120,000 protein chains) in
a short time (always less than one minute), and avoid missing similar structures.
In our experiments, some exciting results have been observed when comparing our
query tool with other well known protein search engines including PSI-BLAST, 3D-
BLAST and SSM. The experimental results show that our tool is more accurate
than other systems in finding proteins that are structurally similar to the query
protein, and its speed is also competitive with them.

Our paper is organized as follows: Section 2 describes an outline of our protein
search algorithm; aiming at accelerating the search process, Section 3 presents an
offline classification for all the structures in the PDB; Section 4 further describes a
geometric filter that consists of a series of layers to do geometric comparison between
the candidate proteins and the query protein; Section 5 focuses on a sequence filter
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Fig. 1. System Process Diagram

based on the BLAST, a classical sequence similarity search method, to discover
those proteins that have similar sequences and have been excluded by the geometric
filter; Section 6 gives a brief introduction to our 3D structure comparison algorithm;
Section 7 shows our distributed computer implementation; Section 8 discusses a
score that is used for ranking the proteins to be sent to the output list; Section
9 proposes an evaluation model for the search performance with our experimental
results, and compares our tool with other well known systems.

2. Outline of Our Approach

Our method is a combination of sequence alignment and geometric alignment.
Its speed is improved by grouping proteins with similar structures and using one
representative structure for each group. A brief overview about our method is as
follows:

1. An offline phase partitions the protein 3D structures in the database into
groups so that each group contains those proteins with similar structures. One
representative structure is selected from each group.

2. When an input protein is given, use the BLAST algorithm to search proteins
with similar amino acid sequences and put them into list L1.



April 1, 2009 9:35 WSPC/INSTRUCTION FILE ProteinSearch

Search Similar Protein Structures 5

3.Use several layers of geometric filters to check all the representative proteins
among the classified protein database and exclude dissimilar proteins. Put all those
similar representative proteins into list L2.

4. Put all the representative proteins whose groups are related to proteins in L1

into L3, and let list L4 = L3 − L2 (which is the proteins in L3, but not in L2).
5. Use a simplified version of our pair-wise 3D structure alignment algorithm

to check structural similarities between the input protein 3D structure and each
structure in L2 and L4. Output those groups whose representatives are structurally
similar to the input protein. This is the most time consuming part; therefore, it is
implemented in a cluster of computers.

The first filter, called “sequence filter”, is based on the sequence alignment of
BLAST, and the second filter, called “geometric filter”, is based on some simple
geometric comparisons. A system process flow is shown in Figure 1.

3. An Offline Classification

As the protein structure database now contains more than 120,000 protein
chains, and this number is increasing quickly, it is very time-consuming to do the
all-against-all pair-wise alignment for the classification. So we first use our geometric
filter to divide the entire protein database into small groups based on protein sizes,
α-helix/SSE (secondary structure entity) ratios, and secondary structure sequence
similarities, since it is easier to do the partition based on all-against-all pair-wise
alignment in a smaller collection of proteins.

Two basic measures are often used for comparing the protein structural simi-
larity, the alignment length and the RMSD value. The Q-score, proposed in 5 for
measuring the similarity between two protein chains, and is defined by the formula

: Q(p1, p2) = N2
align

(1+(RMSD/R0)2)N1N2
, where Nalign is the number of pairs of aligned

Cα atoms, N1 is the number of Cα-atoms in the protein p1, N2 is the number
of Cα-atoms in the protein p2, and R0 is an empirical value (chosen at 3). It was
found that different servers agree reasonably well on this score. Here, we believe that
the proteins with Q-score higher than 0.8 are very similar, and use our algorithm
proposed in 32, 33, to calculate the Q-score between the related proteins.

1. Partition the PDB roughly: In order to reduce the computational time, we
first use the geometric filter to roughly partition the protein structures in the PDB
into a small number of groups such that each group contains hundreds or thousands
of structures.

2. Partition the groups: Use our pair-wise alignment algorithm 33 and an earlier
version of this search engine 19 to check the structural similarity among the protein
chains in each group generated in step one. If all the protein chains are similar, we
just keep this group; otherwise, the group is partitioned into several new groups so
that each group only contains proteins with similar structures.

3. Select the representatives: For each group, one protein chain is elected as the
representative. In order to get the center of each group, we align each protein with
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all other proteins in that group and calculate the sum of the Q-scores. A protein
structure with the highest sum of the Q-score is selected as the representative.

4. Merge the groups: Check the similarities among those representatives and
merge the groups into a new group if their representatives are very similar. Repeat
step 3 for the new group.

5. Put in new proteins: For new structures, each of them is added to an existing
classification group if our search engine can find such a group that contains similar
structures with the new protein. Otherwise, a new group is created for it.

Our database synchronizes itself with the PDB and currently all the protein
structures are partitioned into about 20,000 groups. This is much less than the
number of structures in the PDB and can greatly reduce the number of structure
comparisons.

4. Geometric Filter

Our geometric filter algorithm has multiple phases to reject protein structures
that are dissimilar to the input protein structure. When there is a small number
of candidate structures left, those candidates are assigned into multiple computers
through a network and a relatively complicated pair-wise 3D structure alignment
algorithm runs on those computers simultaneously to check the candidate proteins
for structural similarity in a more accurate sense.

First, we reject those protein structures that have greatly different numbers of
Cα atoms in their backbones, structures that have greatly different radii (for each
protein we define a radius as an average distance from its Cα-atoms to the centroid
of its backbone), and structures that have greatly different α-helix/SSE (secondary
structure entity) ratios.

Second, it has been observed that, if two structures are similar, their secondary
structure sequences can be well aligned at the sequence level. Therefore, we have
designed an efficient sequence alignment algorithm based on dynamic programming
to check secondary structure sequence similarities and reject protein structures with
dissimilar sequences.

In the third layer, we select those protein structures that have good secondary
structure alignments in the geometric sense. Therefore, some geometric alignments
at the secondary structure level are designed and performed based on the steps
below:

1. Let s1s2 · · · sk be the secondary structure sequence of the first protein S. 2.
Let s′1s

′
2 · · · s′k′ be the secondary structure sequence of the second protein S′. 3. Do

the sequence alignment between s1s2 · · · sk and s′1s
′
2 · · · s′k′ , put each matched pair

(si, s
′
j) into L. 4. Use the algorithm Build-Star, which was designed in our earlier

work 19, to build a Star for each pair (si, s
′
j) in L. 5. Find the best Star as the

secondary structure 3D alignment result of protein structures S and S′.
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5. Sequence Filter

Our geometric filter is efficient in keeping those structures globally similar to the
input protein and it speeds up the query greatly. But it also decreases the sensitivity
of the search. For example, structures with remarkably different sizes (compared to
the query structure) will be removed by the geometric filter. As we have observed,
the geometric filter misses some good matches in the following two cases, especially
when the searching is performed in multiple protein domains.

1. The first layer of the geometric filter misses a protein structure that is similar
to a substructure in the input structure or contains a substructure similar to the
input. Figure 2 is an example, where the first protein is much bigger than the second,
but they partially match well.

2. Because our second and third layers of the geometric filter check the secondary
structure similarities, the accuracy of secondary structure information is important
for the final result. We use the Dictionary of Protein Secondary Structure (DSSP 35)
to extract secondary structure information. It works well in most cases; however,
occasionally it brings us trouble. For instance, both proteins 132l:A and 1e8l:A have
129 Cα atoms. We used our alignment algorithm to compare their structures and
found that 128 Cα atom pairs match well with RMSD=1.52. Thus, proteins 132l:A
and 1e8l:A are structurally similar, but their secondary structures (as defined by
DSSP) are ααββαα and ααααα respectively. So, it is possible that the second layer
of the geometric filter, which checks the secondary structure sequence similarity,
or the third layer of the geometric filter, which does the secondary structure 3D
alignment, rejects this kind of proteins, and introduces missing problems.

To avoid the above missing problems, relaxing the threshold of the filters may
be a possible solution, but it will increase the use of the pair-wise alignment al-
gorithm and make query time much longer. The proteins with similar amino acid
sequences often have common 3D structures, and some well known sequence align-
ment algorithms are very fast. We use BLAST, one of the widely used sequence
search algorithms, to find proteins for amino acid sequence similarities to compen-
sate our geometric filter. Since proteins with weak sequential similarity may have
strong structural similarity, we keep the proteins found by BLAST with E-value
less than 1.0 for the pair-wise 3D alignment in the next phase.

In our experiment, BLAST often gives us hundreds of proteins with similar
amino acid sequences immediately, and some of them (always less than 10) are not in
the candidate list generated by the geometric filter. We often see that the sequence
filter does find some protein structures that are missed by the geometric filter.
For example, when doing query for protein 1hil:C, protein 1a14:L in Figure 2 was
rejected by the geometric filter due to diameter and size comparisons. Its E-value
calculated by BLAST is 1e−54, which shows that amino acid sequences between the
two proteins 1hil:C and 1a14:L are very similar. Therefore protein 1a14:L, which
is previously missed by the geometric filter, is found by the sequence filter. They
are indeed structurally similar based on our structure alignment algorithm. As a



April 1, 2009 9:35 WSPC/INSTRUCTION FILE ProteinSearch

8 Lu, Zhao, Garcia, Krishnaswamy, and Fu

second example, when querying protein 132l:A, protein 1e8l:A was rejected by the
geometric filter because of its different secondary structure sequence. However, its
sequence is almost the same as that of protein 132l:A, and this is discovered by
the sequence filter. Therefore, we believe that the geometric filter and the sequence
filter well compensate each other. Our experiments show that combining the two
filters reduces the missing problem without spending much time.

6. 3D Structure Comparison

In the bottom of our implementation, we use a suitable protein pair-wise struc-
ture comparison algorithm to check the surviving structures carefully and select
proteins with similar structures. Our comparison algorithm, a simplified version of
the method 33, first searches for a set of local alignments. Each local alignment
consists of a series of consecutive Cα atom pairs in the backbones of two proteins.
It then organizes the local alignments into a graph with each local alignment being
a vertex. The connectivity between vertices is determined by the consistency rela-
tionship between local alignments. Two local alignments are said to be consistent
if they share a common rigid body transformation. With this graph representation,
a global alignment is an optimal group of local alignments sharing a common rigid
body transformation. However, grouping mutually consistent local alignments is
equivalent to finding cliques in a graph, which is an NP-complete problem. We have
simplified the problem as looking for “stars” rather than cliques in a graph. A star
is a set of vertices including a center and all other vertices that are connected to
the center vertex. Since any clique must be included in some star, it reduces the
computational complexity to O(n2), where n is the number of vertices in the graph.
The next sub-phase works on those stars one by one. For each star, combine all of
the pairs of matched points in each local alignment and look for an alignment to
align as many as possible matched points. Delete the pair that has the worst viola-
tion (largest distance between its two matched points from two backbones), repeat
the deletion unit until we obtain a global transformation with sufficient accuracy
(small RMSD).

7. Distributed Computing

In the last step of implementation we assign the surviving proteins to multiple
computers to perform the pair-wise structure alignments simultaneously. However,
if not scheduled properly, a distributed system can decrease the overall reliability
of computations because the unavailability of a node can result in disruption of
other nodes. Instead of just evenly assigning proteins to the nodes of our cluster, at
the beginning, the front node assigns a small number of proteins to each available
machine of the cluster, then whenever a machine is free (i.e. it has completed its
task), the front node will calculate the speed of that machine and send a certain
number of proteins to it. This procedure is repeated until all the computation tasks
have been completed.
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Fig. 2. 3D Structures of Protein 1hil:C and 1a14:L

1hil:C (the big one) has 217 Cα atoms, and 1a14:L (the small one) has 104 Cα atoms only, but it can

be well superimposed with the left part of 1hil:C and their RMSD is only 0.8.

8. Structure Similarity Score

How to rank output proteins as of strong to weak similarities is also an important
factor of the protein query performance; it is better to generate a list of proteins
ordered by similarity scores rather than to just output the results, and many scores
have been proposed to rank results for a protein search system. Example scores
include Z-score, P-score and E-value. Because the search engine of our web tool is
aimed for finding proteins with similar structures, we want to use a protein structure
related score to do the ranking. As mentioned previously, Q-score, which takes both
RMSD and alignment length into account, is a good score for measuring the overall
similarity between two proteins. In other words, if the Q-score is high, two proteins
can be superimposed well. However, based on our observations, when a protein is
partially similar to another one, as shown in Figure 2, Q-score does not work well
enough to reflect this kind of similarity. Therefore, we use a modified Q-score: N-
score = alignmentLengh

[1+( RMSD
3.5 )2]×min(backboneLength1,backboneLength2)

as a criterion to rank the
proteins. This score shows good performance in our experiment.

9. Experiments and Comparisons with Other Systems

In this section, we show the experimental results for our system implementation
and its comparisons with other similar systems which are accessible online. The
quality evaluation of protein search is based on its accuracy, miss ratio, and speed.

9.1. Evaluation of accuracy

We know that the quality of a protein query system is determined by how similar
the list of output proteins is to the input protein, how to rank the output proteins
and how many similar proteins are missing. In order to compare our performance
with that of other web-servers, we select the newest version of SCOP 23 (1.73) as
the target database and 87 query proteins, which were selected by Liu et. all 17 to
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Fig. 3. Precision Curves of Multiple Methods

The left curves are the precisions of multiple methods at the SCOP domain level. The middle curves are

the precisions of them at family level. The right curves are the precisions of them at super family level.

do their folding structural classification experiment. There are 25 all-α proteins, 22
all-β proteins, 24 α/β proteins, and 28 α+β proteins, totally 99 proteins in their
test set, but only 87 of them are still present in the current PDB. We use these
different categories of proteins to do the queries on our search engine and also on
3D-BLAST 29, PSI-BLAST 3, and SSM 5. As we know the ProtDex2 4, Sarst 18,
and TopScan 16 are also efficient protein search systems, however they have not
updated their database for a long time.

In the SCOP database, proteins in the same domain are the most similar pro-
teins, and then are the proteins that belong to the same family and super-family.
People also classify structurally similar proteins into the same fold. Therefore, we
develop the following model to check the qualities of an output list:

1. A protein is regarded as “relevant” if it belongs to the same SCOP classifi-
cation unit (domain, family, super family or fold) as the query protein does. 2. Let
N be the total number of relevant proteins. 3. Let n1 be the number of relevant
proteins in the top N proteins of the output list. 4. Let n2 be the number of rel-
evant proteins in all the output proteins. 5. Precision-Score = n1

N . 6. Missing-Rate
= N−n2

N .
Therefore, the Precision-Score is between 0 and 1, and the quality of a ranked

output list is directly based on it. The Missing-Rate is also between 0 and 1, and
the missing problem of a search engine is in relation to it.

According to the 87 query results, our structural similarity search method shows
better performance both in finding similar proteins at the SCOP domain and family
levels and in finding remote homologies. The precision curves of four methods look
highly similar at SCOP domain level. It is reasonable because experts prefer to use
strong sequence similarities to classify the SCOP domains and proteins with similar
sequences always have very similar structures. At family level, our method is the
most accurate one. 3D-BLAST which is based on linear encoding algorithm is the
second. Nevertheless, all the similarity search methods including ours have problem
detecting related proteins at super family level; a super family in SCOP is much
larger than a family or a domain and experts classify proteins into the same super
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Table 1. Statistics on the experimental results

3D-BLAST PSI-BLAST SSM Our Method
Number of valid cases 87 87 87 87
average precision-domain level 79.07% 83.74% 80.01% 87.69%
average precision-family level 67.65% 59.90% 61.42% 81.56%
average precision-superfamily level 49.69% 43.56% 48.04% 63.81%
average missing rate-domain level 13.56% 14.31% 15.85% 3.02%
average missing rate-family level 31.12% 39.75% 38.21% 17.15%
average missing rate-superfamily level 49.24% 56.29% 51.83% 35.33%
serious missing problem-domain level 8(9.1%) 10(11.4%) 11(12.6%) 0(0.0%)
serious missing problem-family level 26(29.8%) 36(41.3%) 31(35.6%) 8(9.1%)
serious missing problem-superfamily level 50(57.4%) 52(59.7%) 42(48.2%) 32(36.7%)
100% precision-domain level 34(39.0%) 33(37.9%) 26(29.8%) 37(42.5%)
100% precision-family level 21(24.1%) 15(17.2%) 8(9.2%) 22(25.2%)
100% precision-superfamily level 11(12.6%) 10(11.4%) 6(6.9%) 14(16.1%)
0% missing rate-domain level 54(62.0%) 44(50.5%) 35(40.2%) 75(86.2%)
0% missing rate-family level 25(28.7%) 17(19.5%) 9(10.3%) 28(32.1%)
0% missing rate-superfamily level 15(17.2%) 11(12.6%) 6(6.8%) 17(19.5%)

family based on remote homologies; therefore, it is more complicated, and hence,
the precisions of all four methods are not high: about 36 percent of our query results
have serious missing problems (missing rate greater than 50%), and other methods
have more serious missing problems than ours at this level.

9.2. Performance of N-score

In order to assess the reliability of N-score, we do the statistics of two common
metrics, precision and recall, for various N-scores at superfamily and family levels.
Precision is defined as n/N and recall is defined as n/T , where n is the number of
true proteins (from the same family or superfamily) in the result list, N is the total
number of proteins in the result list, and T is the total number of proteins in the
family or superfamily of the input protein. According to the data in Table 2, when
N-score is higher than 0.5, the average precision is greater than 90% for both levels,
and their recalls are higher than 67.88% and 49.29% respectively.

Table 2. Statistics on the Reliability of scores

N-Score 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2
avg.recall(%)-family 19.82 24.82 38.17 50.21 67.88 78.99 89.67 93.47
avg.precision(%)-family 99.78 98.82 97.86 95.21 91.55 81.75 64.15 43.63
avg.recall(%)-superfamily 14.33 18.23 28.04 36.85 49.29 62.24 73.86 82.42
avg.precision(%)-superfamily 99.91 99.47 99.30 99.14 97.75 94.05.15 80.70 58.29

9.3. Experiment on incomplete structures

Due to some unexpected reasons, sometimes experts cannot get all the coordi-
nates of residues for a protein, therefore about 23 percent of proteins in the PDB are
incomplete (based on our statistics, more than 25, 000 protein chains in the current
PDB have missing residues). It is difficult to do the structural similarities search
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Fig. 4. Average Missing Rate of General Proteins and Incomplete Proteins.

For the four methods, the left columns of each method are the average missing rates for general protein

queries and the right columns are the average missing rates for incomplete protein queries.

for a protein with lots of missing residues. To test the performance on incomplete
structures, we have repeated the same experiment by using proteins whose back-
bones have a large number of missing residues. There are 38 protein chains in the
PDB with missing residues ratio higher than 5 percent, and 20 have been selected
by us as the query proteins because the other 18 of the 38 proteins are not in the
current SCOP (1.73) database. As the result shown in Figure 4, our method has a
lower missing rate than others for incomplete proteins, and in contrast to the result
of the previous experiment, PSI-BLAST is affected less than others because it does
not care the missing coordinates of residues. The tool 3D-BLAST, which uses liner
encoding method, and SSM, which is based on pair-wise alignment, do have weak
performance for queries with incomplete proteins.

9.4. Improvement with classification

In this paper, the goal of classification technologies is not only to advance the
query speed, but also to obtain better results. Classification technologies have been
widely used in many database search and management tools to speed up the search;
however, because the protein query problem is more complex and difficult than a
general search, we hold that a good classification database can improve the result
accuracy. We have attempted to use our classification procedure to refine the results
of 3D-BLAST, PSI-BLAST and SSM, and it does have improved their results. The
refinement was performed in the following steps: 1. Let list L1 be a pre-refined
output list (it can be the protein list outputted by PSI-BLAST, 3D-BLAST or
SSM). 2. Put all the proteins whose groups are related to the proteins in L1 into
L2 (a protein and a group is “related” if the protein is in the group). 3. Use our
protein structural similarity scoring method to rank proteins in L2 and output
the ranked proteins as the refined result list. 4. Let S1 and S2 be the Precision-
Score and Missing-Rate of the pre-refined result list separately, and S′1 and S′2
be the Precision-Score and Missing-Rate of the refined result list. 5. The precision
increment = S′1 - S1 and the missing rate decrement = S2 - S′2. As shown in Table 3,
at family level, 45, 46, and 64 queries in the 87 cases of 3D-BLAST, PSI-BLAST, and
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SSM, respectively, are improved by using our classification refinement procedure;
the percentages are 51.72%, 52.87%, and 73.56%, respectively. The average precision
increment is around 10% for all the three methods, with the maximum increment
being more than 50%. Additionally, the data in Table 1 show that 3D-BLAST has
21 queries with 100% precision at family level, PSI-BLAST has 15 and SSM has
8. Since it is impossible to improve the results of those cases, without considering
those queries, only few results are unimproved in our experiment. Therefore, the
experiment shows that classification technologies help obtain better results.

Table 3. Statistics on the refinement results

3D-BLAST PSI-BLAST SSM
number of cases 87 87 87
cases with higher precision-family level 45(51.72%) 46(52.87%) 64(73.56%)
cases with lower missing rate-family level 42(48.28%) 47(54.02%) 64(73.56%)
maximum precision increment-family level 55.12% 62.95% 82.60%
maximum missing rate decrement-family level 64.28% 62.95% 82.61%
average precision increment-family level 8.82% 8.67% 11.84%
average missing rate decrement-family level 9.92% 8.54% 11.89%

9.5. Evaluation of speed

We have used the web servers of 3D-BLAST, PSI-BLAST and SSM to do the
87 queries on the entire PDB database and following is a list of the query times.
The web servers PSI-BLAST, SSM, 3D-BLAST, and our web server have average
query time of 21, 26, 49, and 32 seconds respectively. In addition, our results con-
tain an alignment length and an RMSD value for every output protein. Although
PSI-BLAST and 3D-BLAST do not have these data, they are the most important
measures for comparing protein structural similarities. The web-server 3D-BLAST
is the slowest one with an average query time of 49 seconds. In our knowledge,
other search engines such as CE 27 and DALI 10 which are based on one-against-all
pair-wise alignment algorithms need hours to days to complete the queries.

10. Conclusions

We have developed an efficient protein structural similarity search tool by a
combination of sequence alignment, geometric alignment and structure classifica-
tion. The sequence filter and geometric filter can compensate well in excluding
dissimilar protein structures and the classified database does make the query much
faster. The tool can return a list of similar proteins with the input protein in a short
time. Our experiment result shows that it is more accurate than other well known
systems in finding proteins that are structurally similar. However, the experiment
result also shows that all the methods, including ours, have weakness in finding
remote homologies. An interesting research in the future is to develop an efficient
filter technology to detect proteins with weak structural similarities.
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Pressed bulk samples of C60 doped with P, Co, Al, and Bi have been investigated
for their thermoelectric properties. These samples show extremely low thermal
conductivity, typically in the range of 0.1–0.3 W /Km at room temperature. The
Seebeck coefficients of Co, Al, and Bi doped C60 solids are in the tens of �V /K;
however, for P doped C60 samples, a very large Seebeck coefficient in the order of
103 �V /K was observed. The value of the Seebeck coefficient seems to depend
sensitively on the P concentration and changes sign upon annealing at 100 °C. Ab
initio density functional theory calculations show that the calculated electronic
structures and the activation energies strongly depend on the dopants in C60 solids.
The high Seebeck coefficient in studied P doped C60 is due to the system’s unique
dopant and concentration. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3106303�

. INTRODUCTION

Advanced thermoelectric materials will play an important role in energy harvesting from
aste heat, geothermal energy, as well as solar energy. Solar energy can be converted into elec-

ricity in a standalone thermoelectric generator or in devices that combine with solar cells. High
eebeck coefficient and electrical conductivity and low thermal conductivity are required for
dvanced thermoelectric materials for power generation.1–3 C60 semiconductors possess one of the
owest known thermal conductivities of all materials,4 and yet the electronic properties can be
uned by appropriate doping.5 The super-low thermal conductivity of C60 semiconductors is
ainly attributed to its low Debye temperature �70 K�. The formation of C60 is due to the weak

an der Waals interaction. All the atomic bonds in C60 fullerenes are fully saturated and exist in all
hree dimensions. This novel feature of C60 fullerenes leads to a low Debye temperature in solids.
he unique properties of C60 fullerenes provide opportunities to develop novel thermoelectric
omposite materials. We have explored the methods in the preparation of doped C60 bulk samples
nd investigated their thermoelectric properties both experimentally and via ab initio density
unctional theory �DFT� calculations.6 In this paper, we report a greatly enhanced Seebeck coef-
cient in phosphorus �P� doped C60, yet its thermal conductivity remains extremely low. We also
iscuss the results obtained on C60 samples doped with Co, Al, and Bi.

I. SAMPLE PREPARATION

Bulk C60 samples doped with P, Co, Al, and Bi were prepared by mixing powders of P, Co, Al,
i, and C60 at appropriate atomic ratios and pressing them into pellets. The pellets were sealed in
uartz tubes and heated just below 600 °C for several days. X-ray diffraction patterns of the

�
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amples show single phase C60 in face-centered cubic �fcc� structure. The thermoelectric proper-
ies, including Seebeck coefficient, thermal conductivity, and electrical resistivity of the samples,
ere measured with a Quantum Design PPMS system from low temperature up to 400 K.

II. EXPERIMENTAL RESULTS ON THE THERMAL TRANSPORT PROPERTIES OF Bi, Al,
o, AND BiP CO-DOPED C60

Figure 1 shows the thermal conductivity of bismuth and phosphorus co-doped C60 bulk semi-
onductor samples �BiPC60�. The thermal conductivity of the bulk samples was less than
.075 W /Km at 70 K and about 0.3 W /Km at 300 K. Such a room temperature thermal conduc-
ivity is an order of magnitude lower than those of the typical thermoelectric materials in current
ommercial applications and is similar to that of insulating bricks. Measurements on Co, Al, Bi,
nd P doped C60 semiconducting samples all showed extremely low thermal conductivity even
hen their electrical resistivity can be significantly reduced from that of the undoped and nearly

nsulating C60. Figure 2 shows the resistivity � of Bi and P co-doped BiPC60 sample over the
emperature range from 50 to 300 K on a logarithmic scale. The resistivity decreases with increas-
ng temperature and shows a tendency of decreasing further above the room temperature. At
00 K, the resistivity is only 0.06 � m, which demonstrates that the resistivity of the doped C60

emiconductors is highly tunable.
The Seebeck coefficient S varies with the selection of dopants �see Fig. 3�. At room tempera-

ure, S is about 0.6, 14, 14, and 22 �V /K for Bi /P �co-doping�, Al, Co, and Bi doping, respec-
ively. The atomic ratio of the dopant to carbon atoms of C60 is fixed at 1:60 for the samples
hown. Bi doped C60 appears to exhibit higher Seebeck coefficient than other cases. S is positive
t room temperature and decreases with decreasing temperature. At 100 K, the Seebeck coefficient
or BiPC60 becomes negative as shown in Fig. 4, indicating a dominant role played by electrons at
ow temperatures for this sample.

V. THERMAL TRANSPORT PROPERTIES OF P DOPED C60

For P doped C60 samples, very interesting behaviors were observed. Figure 5 shows the
hermal conductivity, Seebeck coefficient, electrical resistivity, and the figure of merit of a P doped
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FIG. 1. Thermal conductivity of Bi and P co-doped C60, BiPC60.
ample �PC60�. Data are shown over the temperature range between 300 and 400 K. Below 300 K,
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he resistance of the sample is too large to obtain reliable data on it and on the Seebeck coefficient.
very large Seebeck coefficient was observed. S reaches 1740 �V /K at 390 K and shows a

endency to increase further with increasing temperature. In order to confirm the observation, we
ave separately prepared a second sample. Similar increment in the Seebeck coefficient over the
ame temperature range was observed although the magnitude of the increase was not as large �S
70 �V /K�. The electrical resistivity of this second sample was lower than the first. The differ-
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nces between the two samples are most likely due to the difference in the actual P concentration
n the samples. Such a drastically increased Seebeck coefficient should have great implications on
he potential application of this material. The thermal conductivity of the PC60 samples is about
.06 W /Km at 50 K and about 0.1 W /Km at 300 K. Because the electrical resistivity of the P
oped samples is quite high ��=101–103 � m at room temperature�, its ZT is rather small �10−5�.
he greatest potential impact of the large Seebeck coefficient found in P doped C60, we believe,

ies in using it in C60 containing nanocomposites.
The concentration of phosphorous in C60 appears to be unstable at moderately high tempera-

ure. It is observed that the Seebeck coefficient changes with time when the sample is kept at about
00 °C in vacuum. It gradually decreases and finally becomes negative. The negative value of the
eebeck coefficient is consistent with that reported for undoped C60 films,5 suggesting that the P

s being pushed out of the C60 lattice under such conditions. However, any effect due to the
xygen absorbed in C60, if any, cannot be ruled out.5,7

When the doping concentration is increased, sample P4C60 �nominal composition� shows a
uch reduced Seebeck coefficient of 3 �V /K at 300 K �data not shown�. The Seebeck coefficient

emains positive down to 50 K for the P4C60 sample, although it decreases with decreasing
emperature.

A property important to application is that all doped C60 semiconductor samples studied here
re chemically stable in air at room temperature, unlike alkali-metal doped C60.

. ELECTRONIC STRUCTURE OF DOPED C60

In order to facilitate the search of high performance thermoelectric materials in experiments,
e performed first-principles density functional theory calculations for the electronic structure of
oped C60. In an earlier report,6 we presented the results for the electronic structure of C60

emiconductors under controlled doping with B, N, and Co atoms. We found that boron and cobalt
oped, face-centered cubic C60 have the electronic structures of n-type semiconductors. Nitrogen
oped fcc C60 solid has an electronic structure similar to those of a p-type semiconductor, with
hallow impurity energy levels near the top of the valence bands of the host material.
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IG. 4. Seebeck coefficient of BiPC60 that shows a change from positive to negative values as the temperature decreases.
We further calculated the electronic structure of Bi and P doped C60 that we studied experi-
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entally. We used Vienna ab initio simulation package �VASP�8 to perform the calculations. Our
rst-principle density functional calculations used the projector augmented wave �PAW� method
nd included the relativistic effects in the calculations.9 We used the exchange-correlation poten-
ial in the generalized gradient approximation �GGA� and compared with those of the local density
pproximation �LDA� calculations. The 1s, 2s, and 2p electron states of P atom were treated as the
ore states as those of free atom in a frozen core approximation. The 3s and 3p electron states of
atom were included as the valence states. For Bi atom, 5d, 6s, and 6p electron states were

ncluded as the valence states and other deeper energy states were treated as the core states. We
sed a super-cell approach that included 60 carbon atoms and 1 doping atom �1:60 doping con-
entration� as well as 240 carbon atoms and 1 doping atom �1:240 doping concentration� in the
omparative calculations. We implemented spin polarized electron density calculations. All the
tomic coordinates and unit-cell volumes were relaxed in the ab initio DFT calculations. With the
lane-wave energy cutoff at 450 eV, the calculated total energies converged to the order of about
.01 meV. The residue forces on atoms were set at a value of 10 meV /Å. In the super-cell
ethod, we used a 4�4�4 and 1�1�1 Monkhost grids in the k space sampling for the 1:60

nd 1:240 doping concentrations, respectively. The Bader charges10 were calculated for both the
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The partial and total electron density of states �DOS� of P and Bi doped C60 semiconductors
ere presented in Figs. 6 and 7, respectively. In all of the doped C60 semiconductors considered,

he total energy is lower for the dopant atoms at the tetrahedral site than for other sites such as the
ctahedral sites. Consequently, in this article, we report the results of the dopant Bi and P atoms
t the tetrahedral sites of C60 host material. We carefully tested both GGA and LDA calculations
nd found that the results are consistent, so we report the GGA results in this article, unless
xplicitly stated. One of the significant issues in the semiconductor research is the selection of
uitable shallow impurity energy levels and activation energies for a desired working temperature.
he activation energy also depends on the doping concentration, since the doping impurity energy

evel is no longer discrete in high doping concentration region but forms into an impurity band.
ollowing the general theory in semiconductor physics, the carrier concentrations of an n-type
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FIG. 6. The partial and total density of states of P doped C60�1:60�. The Fermi level is at 0.0 eV.
emiconductor can be described by the following equation,
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n2

Nd − n
=

Nc

2
exp�−

�c − �d

kT
� ,

here n is the n-type carrier concentration; Nd and �d are the density of donors and the donor
mpurity energy level, respectively; Nc and �c are the effective density of conduction-band states
nd conduction-band edge energy, respectively; �c−�d is the activation energy; and kT is the
hermal energy. From the calculated results of the electronic structure of the doped C60 semicon-
uctors, we found that the phosphorus p-states form the shallow impurity electron states that are
ocated below the conduction band edge of host C60 solid around the Fermi level �see Fig. 6�. The
mpurity electron states in Bi doped C60 semiconductor �Fig. 7� merged with the conduction band
dge of the host C60 solid. Consequently, the carrier activation energy in Bi doped C60 solid are
ery low �nearly zero� and would not have a large thermoelectric effect. Phosphorus doped FCC

60 semiconductor may have the carrier activation energies that are comparable to the room
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emperature thermal energy and may present a high thermoelectric effect around room tempera-



t
p
s
r
T
s
B
w
r
r
s
i

V

C
m
r
o

A

a
E

1

1

T
p
o
�

D

P
B

023104-8 Wang et al. J. Renewable Sustainable Energy 1, 023104 �2009�
ure, as demonstrated in our experiments. We also used a second computation package �a LCAO
ackage adapted from the Ames Laboratory of Department of Energy� to perform the electronic
tructure calculations and confirmed the results from the VASP package. Some of the calculated
esults of P and Bi doped C60 semiconductors with 1:60 concentrations are also summarized in
able I. The calculated electronic structure of P and Bi doped C60 solids is similar to n-type
emiconductors, consistent with the observed negative Seebeck coefficient at low temperatures in
iPC60. Unfortunately, low temperature data on the Seebeck coefficient of PC60 are unreliable and
ere not taken for BiC60 to make a comparison. There is a small expansion of +0.27% and a

elatively large expansion +2.19% of the unit cell volumes in the P and Bi doped FCC C60 solids,
espectively. The calculated charge transfers for these two cases indicate that P and Bi atoms lose
ome electrons to C60 at about +0.033 and +0.30, respectively. There is no net magnetic moment
n both P and Bi doped C60 solids.

I. CONCLUSIONS

By carefully tuning the dopants, concentrations, and sample processing parameters of doped

60, we can efficiently improve the thermoelectric performance of this new type of thermoelectric
aterial. The thermal conductivity of the doped C60 is extremely small, about 0.1–0.3 W /Km at

oom temperature. For P doped C60, we have observed a very large Seebeck coefficient in the
rder of 103 �V /K.
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