October 31, 2008

Modeling of cell adhesion using a multiphase flow approach

Damir B. Khismatullin

Department of Biomedical Engineering Tulane University

> *E-mail: <u>damir@tulane.edu</u> Tel.: 504-247-1587*

- Multiphase systems, i.e., mixtures of disperse immiscible phases form our atmosphere and oceans, the Earth's crust, and the bodies of living beings.
- The mechanics of multiphase systems, often called multiphase flow, provides a more realistic description of natural and industrial processes than single-phase fluid mechanics.
- Since biological systems are characterized by a significant level of heterogeneity, it is natural to use a multiphase flow approach to model the mechanics of biological systems.

Goal 1: To develop a realistic computational model of leukocyte movement in inflammation

- Inflammation is the defense reaction of the body to tissue damage.
- The central stage of this process is recruitment of leukocytes (white blood cells) to the sites of infection or injury.

Atherosclerotic plaque. From <u>http://www.uvm.edu/~biology/Classes/255/</u>

- Leukocyte recruitment into inflamed tissues is beneficial for host defense but may also lead to various inflammatory disorders, such as asthma, autoimmune diseases, ischemia-reperfusion injury, and atherosclerosis.
- Atherosclerosis is a leading course of morbidity and mortality in developed countries, including the United States.

Compound viscoelastic drop model

The leukocyte consists of two phases: cytoplasm and nucleus.

- Both phases are viscoelastic.
- ❑ The plasma membrane and an underlying cortex are treated as an infinitesimally thin layer with cortical tension.
- The leukocyte surface is coated with **microvilli** modeled as **massless elastic rods** of circular cross section.
- Leukocyte interaction with the substrate is mediated by cell adhesion molecules located on tips of leukocyte microvilli and on the substrate.
- The leukocyte is located in a rectangular microchannel.
- Startup or fully developed flow.

- **Step 1**: Initialization (base flow, initial profile of the leukocyte, microvilli distribution)
 - Time Cycle:
 - Step 2: Piecewise-Linear Interface Calculation (PLIC): reconstruction of the interface
 - **Step 3**: Advection of microvilli and the interfaces: $C_1^{(n)} \rightarrow C_1^{(n+1)}, C_2^{(n)} \rightarrow C_2^{(n+1)}$
 - **Step 4:** Calculation of Continuous Surface Force (CSF)
 - Step 5: Calculation of the microvillus-bond force
 - **Step 6**: Calculation of an intermediate velocity using the semi-implicit factorized scheme for the Navier-Stokes equations: $\mathbf{u}^{(n)} \rightarrow \mathbf{u}^*$
 - **Step 7**: Solving the Poisson equation for the pressure by the multigrid method
 - **<u>Step 8</u>**: Correction of the intermediate velocity by the pressure term: $\mathbf{u}^* \rightarrow \mathbf{u}^{(n+1)}$
 - **Step 9**: Calculation of the extra stress tensor using the semi-implicit factorized scheme for the Giesekus constitutive equation: $T^{(n)} \rightarrow T^{(n+1)}$
 - End of Cycle

Comparison of computed shapes and in vitro images (right) of the adherent leukocyte. In vitro images show a neutrophil on a P-selectin-coated surface of the parallel-plate flow chamber at a wall shear rate of 150 s⁻¹ (provided by the Diamond Laboratory, Institute for Medicine and Engineering, University of Pennsylvania). The computed shapes correspond to Mono Mac 6 modeled as a compound Newtonian drop. The nucleus occupies 20% of the cell body volume. The cytoplasmic and nuclear viscosities are 1.0 P and 10.0 P, respectively. 252 microvilli of length 0.09 μ m are distributed uniformly. The wall shear stress is 4 Pa.

Effects of deformability: Newtonian model

Effects of deformability: viscoelastic model

Comparison of computed shapes and in vivo images (right) of the adherent leukocyte. In vivo images show a rolling neutrophil in a postcapillary venule of the rat mesentery (provided by Klaus Ley, Department of Biomedical Engineering, University of Virginia). The computed shapes correspond to Mono Mac 6 modeled as a compound viscoelastic drop. The cytoplasmic and nuclear viscosities are 35.3 P and 100.0 P, respectively. 252 microvilli of length 0.09 μ m are distributed uniformly. The wall shear stress is 4 Pa.

The case of low density of microvilli: 4.0 per μ m². The wall shear stress is 0.25 dyn/cm². The P-selectin density is 145 sites/ μ m²; 5 PSGL-1 molecules per microvillus. The nucleus-to-cytoplasm viscosity ratio is fixed at 2.5. The simulation time is 2.0 s.

A decrease in cytoplasmic viscosity leads to an increase in monocyte-to-substrate contact area and thus stabilizes the cell against detachment

Possible collaboration: Cell motility and mechanotransduction phenomena

QuickTime[™] and a Photo decompressor are needed to see this picture.

My main interest is to integrate a multiphase model of the cell with biochemical networks to develop a comprehensive whole cell model that will be able to simulate cell migration, chemotaxis, division and other acitve mechanical processes in the cell.

Migrating connective tissue cell. Image source: Cell Migration Gateway http://www.cellmigration.org/science/index.shtml

Possible collaboration: Leukocyte motility and transmigration

<u>Objective:</u> To develop and validate, through in vitro and in vivo experiments, a 3D computational model for leukocyte motility and transmigration. The proposed research will examine several mechanisms of **active force generation** in the leukocyte, including the polymerization force, Brownian ratchets, and molecular motor models.

Possible collaboration: Optimization of polymer drug delivery systems

FE-SEM images of PLA microparticles at 3000X. PLA functionalized with mPEG2000-DSPEand b-PEG3350-DSPE. Scale bar is 2 μ m. Provided by Joyce Wong (Boston U.)

The developed computational algorithm can be extended to simulate biodegradable polymer drug delivery systems targeted, for example, to inflamed endothelium

Goal 2: To develop a method for noncontact measurement of blood clot viscoelasticity through a combination of acoustic levitation experiments, analytical studies, and computational modeling. Collaboration with R. Glynn Holt (AME Dept., Boston U.).

D. B. Khismatullin and A. Nadim, "Shape oscillations of a viscoelastic drop," *Phys. Rev. E* **63**, 061508 (2001)

Acknowledgements

The work presented has been done with the invaluable help and support of my collaborators and students. I sincerely thank

Iskander Akhatov, Ph.D. (NDSU) Robert Nigmatulin, Ph.D. (Russian Academy of Sciences)

George Truskey, Ph.D. (Duke U.) Klaus Ley, M.D. (La Jolla Institute for Allergy & Immunology) Robert Hochmuth, Ph.D. (Duke U.) Michael Lawrence, Ph.D. (U. of Virginia) Edward Damiano, Ph.D. (U. of Virginia) Edward Damiano, Ph.D. (Boston U.) Cheng Dong, Ph.D. (Pennsylvania State U.) Roger Kamm, Ph.D. (M.I.T.) Geert Schmid-Schönbein, Ph.D. (UCSD) Scott Diamond, Ph.D. (U. of Pennsylvania) Ali Nadim, Ph.D. (U. of Pennsylvania) Ali Nadim, Ph.D. (Keck Graduate Institute) R. Glynn Holt, Ph.D. (Boston U.) Michael Renardy, Ph.D. (Virginia Tech) Joyce Wong, Ph.D. (Boston U.)

Tiri Chinyoka, Ph.D. Sundhar Ramalingam and Jason Leung (Duke U.) Bo Li (Boston U.)