

Integrating CML, FoX, Avogadro, NWChem, and EMSLHub to develop a computational chemistry knowledge and discovery base

Wibe A. de Jong, David M. Brown, Andrew Walker, Marcus D. Hanwell

Pacific Northwest

Proudly Operated by Battelle Since 1965

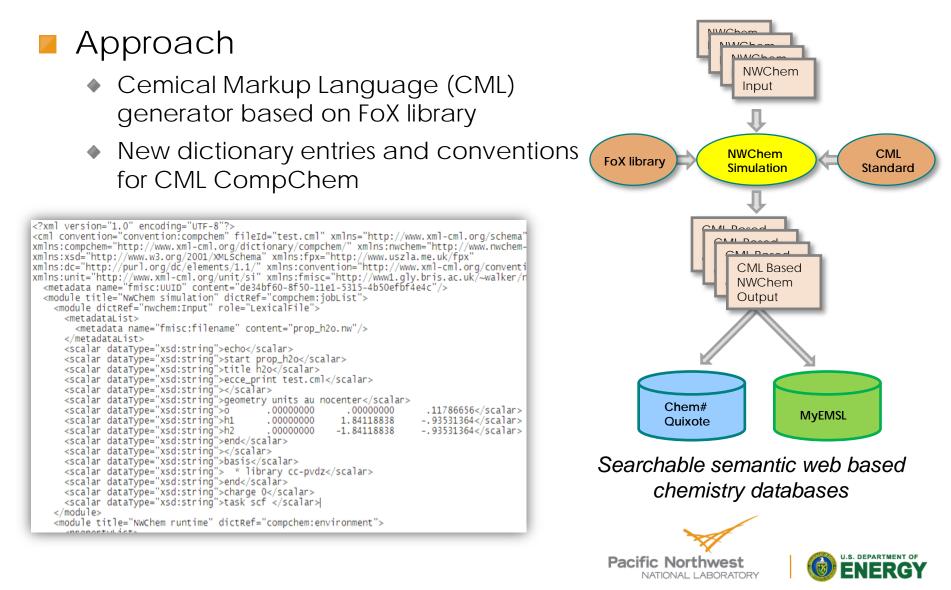
www.emsl.pnl.gov

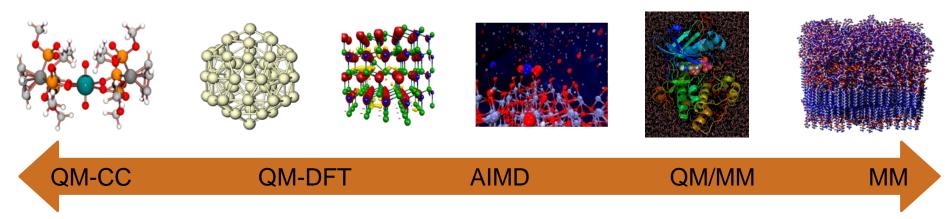
Data is key to scientific discovery

- Multidisciplinary integrated research requires the ability to couple the diverse semantically rich data sets from complex experiments and simulations
 - Or, how to enable a researcher to do Google-style chemistry and physics searches
- Semantic Physical Sciences Workshop Series
 - International collaboration centred around the Chemical Markup Language and tools

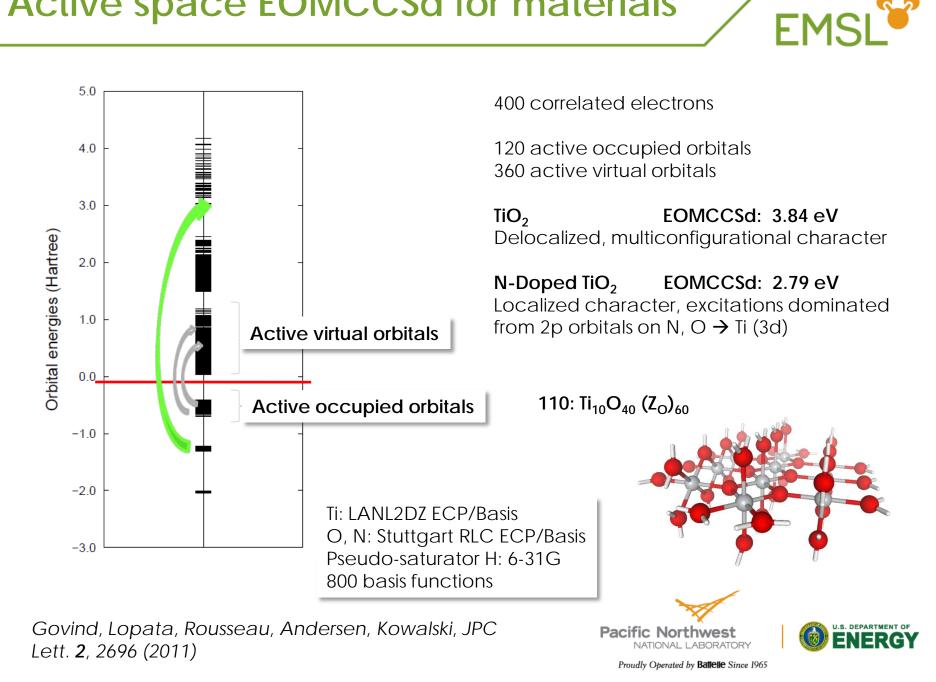
Pacific Northwest

NATIONAL LABORATORY Proudly Operated by **Battelle** Since 1965



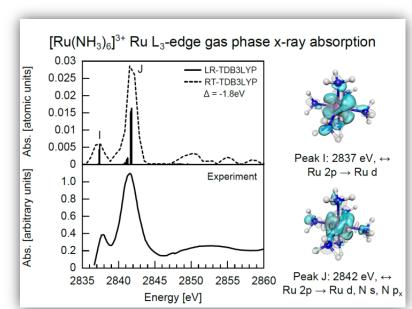

Generating semantic data with NWChem

NWChem is Open-Source



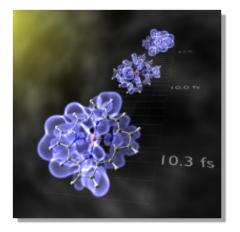
- NWChem consortium delivers capabilities and infrastructure for computational chemistry community to build upon
- License is Educational Community License (ECL 2.0)
 - Apache style license

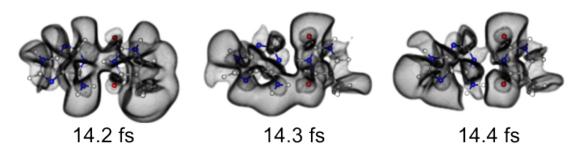
Active space EOMCCSd for materials



XANES experiments together with x-ray simulations in NWChem provides insight into oxidation states of ruthenium complexes

- Goal is to better understand role of charge transfer in ruthenium complexes in catalytic and solar energy conversion processes
- Calculations elucidated the observed XANES spectra and provided new understanding of the spectral content
- Excited-state calculations required NWChem's one-of-a-kind (real-time) time-dependent density functional theory


Lopata, Van Kuiken, Khalil, Govind, <u>J. Chem.</u> <u>Theory Comput.</u> **8**, 3284 (2012)

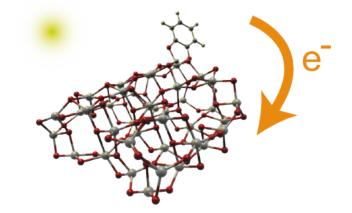


Ultrafast Electron Dynamics Real-time TDDFT

EMSL

Resonant excitation of zinc porphyrin

Charge transfer across adenine-thymine base pair using range-separated functional

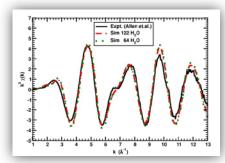


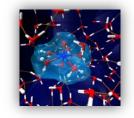
Ken Lopata

7

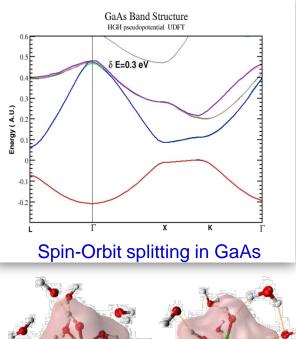
 $|\mathbf{f}| = \mathbf{k}\mathbf{x}$

Charge injection from molecule to TiO_2 in dye-sensitized solar cells takes ~10 fs


Proudly Operated by Battelle Since 1965


K. Lopata and N. Govind, JCTC 7, 1344 (2011)

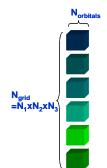
Plane wave DFT and dynamics for solution, surfaces, and materials



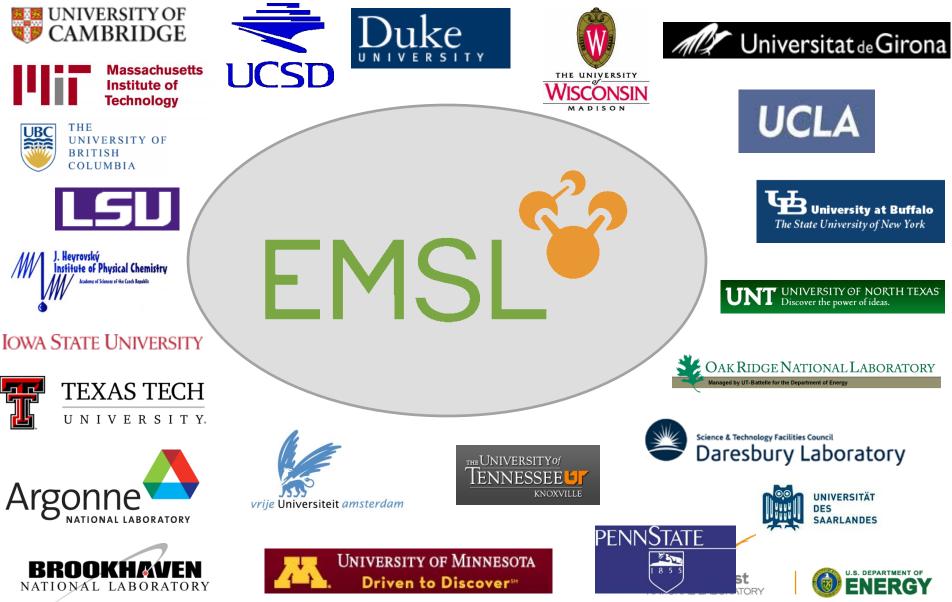
- Plane wave density functional theory
- Extensive dynamics functionality with Car-Parrinello
- AIMD QM/MM molecular dynamics, e.g. SPC/E,CLAYFF solid state MD
- Various exchange-correlation functionals
 - Exact exchange is very efficient
- SIC and OEP for localization
- NMR with spin-orbit ZORA
- Soon full set of PAW libraries (like VASP)

AIMD accurately models EXAFS of uranyl in water

(cospective)


AIMD provides evidence for fivecoordinate $AI(H_2O)_4OH^{2+}$ Swaddle et al, **Science**, **2005**

Strong petaflop scaling of plane waves



NWChem already established a large developers community

Generating CML data

- Experimental version of NWChem generates semantic data
 - Completed CML generator based on FoX library
 - CML information based on prior ECCE data generator
 - Completely revamped this to align with CML structure
 - Gaussian basis function based quantum methods only for now

```
<?xml version="1.0" encoding="UTF-8"?>
  <cml convention="convention:compchem" fileId="test.cml" xmlns="http://www.xml-cml.org/schema"</pre>
<cml convention= convention:compchem "fileId= test.cml xmlns= http://www.xml-cml.org/schema
xmlns:compchem="http://www.xml-cml.org/dictionary/compchem/" xmlns:nwchem="http://www.nwchem-
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:fpx="http://www.uszla.me.uk/fpx"
xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:convention="http://www.xml-cml.org/conventi
xmlns:unit="http://www.xml-cml.org/unit/si" xmlns:fmisc="http://www.sml-cml.org/conventi
xmlns:enter="http://www.xml-cml.org/unit/si" xmlns:ffisc="http://www.sml-cml.org/conventi
xmlns:unit="http://www.xml-cml.org/unit/si" xmlns:fmisc="http://www.gly.bris.ac.uk/~walker/n
<metadata name="fmisc:UUID" content="de34bf60-8f50-11e1-5315-4b50efbf4e4c"/>
<module title="Nwchem simulation" dictRef="compchem:jobList">
<module title="nwchem:input" role="LexicalFile">
</module title="nwchem:input" role="LexicalFile">
</module title="nwchem:input" role="LexicalFile">

                         <metadataList>
                                  <metadata name="fmisc:filename" content="prop_h2o.nw"/>
                         </metadataList>
                         <scalar dataType="xsd:string">echo</scalar>
                         <scalar dataType="xsd:string">start prop_h2o</scalar>
                         <scalar dataType="xsd:string">title h2o</scalar>
                         <scalar dataType="xsd:string">ecce_print test.cml</scalar>
                         <scalar dataType="xsd:string"></scalar>
                         <scalar dataType="xsd:string">geometry units au nocenter</scalar>
                         <scalar dataType="xsd:string">0
                                                                                                                                                                                  .00000000
                                                                                                                                                                                                                                             .00000000
                                                                                                                                                                                                                                                                                                          .11786656</scalar>
                       <scalar dataType="xsd:string >o .00000000 1.84118
<scalar dataType="xsd:string">h1 .00000000 1.84118
<scalar dataType="xsd:string">h2 .0000000 -1.84118
<scalar dataType="xsd:string">end</scalar>
<scalar dataType="xsd:string">sd:string">>c/scalar>
<scalar dataType="xsd:string">*/scalar>
<scalar dataType="xsd:string">*/scalar>
<scalar dataType="xsd:string">* library cc-pvdz</scalar>
<scalar dataType="xsd:string">>end</scalar>
<scalar dataType="xsd:string">></scalar>
<scalar dataType="xsd:string">* library cc-pvdz</scalar>
<scalar dataType="xsd:string"><scalar>
<scalar dataType="xsd:string"><scalar></scalar>
<scalar dataType="xsd:string"><scalar></scalar>
<scalar dataType="xsd:string"><scalar></scalar></scalar></scalar></scalar></scalar dataType="xsd:string"><scalar</scalar></scalar></scalar dataType="xsd:string"><scalar</scalar></scalar></scalar dataType="xsd:string"><scalar</scalar></scalar></scalar dataType="xsd:string"><scalar</scalar></scalar></scalar dataType="xsd:string"><scalar</scalar></scalar></scalar dataType="xsd:string"><scalar</scalar></scalar></scalar dataType="xsd:string"><scalar</scalar></scalar dataType="xsd:string"><scalar</scalar></scalar></scalar dataType="xsd:string"><scalar</scalar></scalar></scalar dataType="xsd:string"><scalar</scalar></scalar></scalar dataType="xsd:string"><scalar</scalar></scalar dataType="xsd:string"><scalar</scalar></scalar</scalar></scalar dataType="xsd:string"><scalar</scalar></scalar</scalar></scalar dataType="xsd:string"><scalar</scalar></scalar</scalar></scalar</scalar></scalar</scalar></scalar</scalar></scalar</scalar></scalar</scalar></scalar</scalar></scalar</scalar></scalar</scalar</scalar></scalar</scalar></scalar</scalar</scalar</scalar></scalar</scalar</scalar</scalar</scalar></scalar</scalar</scalar></scalar</scalar</scal
                                                                                                                                                                                                                                         1.84118838
                                                                                                                                                                                                                                                                                                      -.93531364</scalar>
                                                                                                                                                                                                                                       -1.84118838
                                                                                                                                                                                                                                                                                                       -.93531364</scalar>
                          <scalar dataType="xsd:string">task scf </scalar>|
                  </module>
                   <module title="NwChem runtime" dictRef="compchem:environment">
                              propertyd ict
```


Pacific Northwest NATIONAL LABORATORY

Expanding the FoX library

EMSL

- New functionality includes
 - Representation of lexical input files
 - Molecular orbitals
 - Adding reference IDs to atoms in molecule block
 - Minor modifications to Gaussian basis set module
- New release available at

http://www1.gly.bris.ac.uk/~walker/FoX/

Note, NWChem not the first to utilize the FoX library
 SIESTA, GULP, and most recently TURBOMOLE

Writing CML with FoX: Starting a CML file

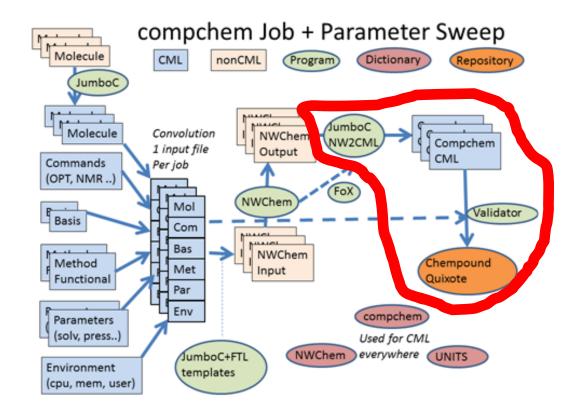
use FoX_wxml use FoX_wcml use FoX_common

call cmlBeginFile(xf, filename='myCMLfile.cml', unit=31) call cmlAddNamespace(xf, prefix='compchem

- & URI='http://www.xml-cml.org/dictionary/compchem/') call cmlAddNamespace(xf, prefix='nwchem',
- & URI='http://www.nwchem-sw.org/dictionary/nwchem/') call cmlStartCml(xf, convention='convention:compchem', validate=.true.)

Writing CML with FoX: Writing to a CML file

call cmlAddMolecule(xf,natoms=nat, elements=elsym, coords=coord, atomIds=tags ,style='cartesian', id=trim(name))


call cmlAddProperty(xf, units='unit:none', nrows=3, ncols=3,
 value=efgArray, dictRef='nwchem:efgtensor')

call cmlEndCml(xf) call cmlFinishFile(xf) F۱

&

Getting old output files into a semantic form

JumboConverter to convert old NWChem output files into CML

NERG

Converters or integration of CML writing in computational chemistry tools

- Output compatibility of converters
 - Change of output, addition of new data breaks converters
 - One converter per software per version needed
- FoX library provides common interfaces
 - For new conventions, dictionaries, concepts
 - Flexibility for developers to adopt new interfaces

Advancing CML language

- Expanding dictionary and adding conventions
 - Molecular orbital representation
 - Various properties utilizing linked property lists
 - Expanding conventions with id and ref connecting linking data
- Keeping large data blocks out of XML/CML
 - Molecular orbital vectors
 - Time stamped trajectories
- Building community advocacy
 - Generate full draft dictionaries and conventions
 - Work towards broader adoption through community workshops

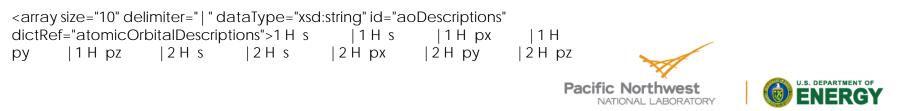
CML dictionary and conventions for Gaussian based molecular orbitals

- Relatively easy as basis sets are well standardized
 - CML CompChem similar to XML in Basis Set Exchange

https://bse.pnl.gov/bse/portal	, ク マ 🔒 🗟 ヴ 🗙 🏉 EMSL Basis Set Exchange 🛛 🗙	ー 回 <u>-</u> 命 ☆ 節			
EMSL Office of Science	BASIS SET ECHANGE	Username: Password: Login Become a Contributor			
Basis Set Exchange: v1.2.2 Feedback About ReleaseNotes Help					
All 3-21++6 3-216 3-216 3-216 3-216 3-216 3-2126 3-2128 4-2285P 4-2285P 4-2285P 4-316 6-31+46 6-31+46 6-31+46 6-31+46 6-31+46 6-31+46 6-31+46 6-31+46 6-31+46 6-31+46 5-3	Total: 451 published basis sets H Li Be Na Mg X Ca Sc Ti V Ce Mg All Si P Sc Si Bb Sc Na Mg K Ca Sc Si Bb Sc Sc Sc Sc Sc Fr Ra Ac Rf Db Sg Bh Hs Mg Ti Fr Ra Ac Rf Db Sg Hs Mt U Np Fu An Ce Pr Md Pa Th Pa U Np Format: NWChem W Optimized General Contractions Get Basis Set	1 Ar x Kr : Ka t Rm a Uuo			
"3-21++G" Basis Set Information					
Summary: Primary Developer: Last Modified:					
When publishing results obtained from use of the Basis Set Exchange (BSE) software and the EMSL Basis Set Library, please cite:					
	The Role of Databases in Support of Computational Chemistry Calculations Feller, D., J. Comp. Chem., 17(13), 1571-1586, 1996.				
Basis Set Exchange: A Community Database for Computational Sciences Schuchardt, K.L., Didier, B.T., Elsethagen, T., Sun, L., Gurumoorthi, V., Chase, J., Li, J., and Windus, T.L. J. Chem. Inf. Model., 47(3), 1045-1052, 2007, doi:10.1021/ci600510j. Security and Privacy Disclaimer.					

http://bse.pnl.gov/bse/portal

Drafts for new CML dictionary and conventions: Gaussian based MOs


- Draft for Gaussian based molecular orbitals
 - CML writer for orbitals added to FoX library
 - Complete set of information should allow other codes to read in and reuse the data

```
dictRef="molecularOrbitals" id="nmrrun.movecs">
<array size="10" delimiter=" | " dataType="xsd:string" id="aoDescriptions"
dictRef="atomicOrbitalDescriptions">1 H s
                                    |1H s
                                               |1H px
                                                            1H py
                                                                       1H pz
          |2H s
                2H px 2H py 2H pz
 2 H s
 </array>
 dictRef="molecularOrbital" id="molecularOrbital1">
  <scalar dataType="xsd:double" dictRef="orbitalEnergy">-4.371860531460e-1</scalar>
  <scalar dataType="xsd:string" dictRef="orbitalSymmetry">a</scalar>
  <array size="10" dataType="xsd:double" dictRef="aoVector">3.306455447679e-1
3.187524188824e-1 2.591476635736e-18 9.610825759597e-18 -2.104953907844e-2 3.306455447679e-1
3.187524188824e-1 3.164500292222e-18 7.783890197431e-18 2.104953907844e-2
  </array>
 </list>
</list>
```

CML dictionary and conventions for plane wave molecular orbitals

- General plane wave and Gaussian molecular orbital structure would be pretty similar, however
 - Plane wave pseudopotentials are not standard
 - Pseudopotentials can be proprietary
 - Different definitions are used across software landscape
 - No CML convention has been developed
 - Important differences
 - Data tends to be much larger than Gaussian basis sets
 - Can be reduced if definitions of pseudopotentials and wave functions get standardized
 - Need to develop convention for atomicOrbitalDescriptions

CML Conventions and Dictionaries on the web

Fi	refox 🔻	CML Dictionary - Computational Chemi +		
(⇐) ֎ www.xml-cml.org/dictionary/compchem/				
😻 Actions* 💼 Tools* 🗹 Validation* 🖉 Styles* ⇔ Transformations* 🗊 Views* ∑ Stats* 🍾 S.O.A.* 🗋 Authoring* 🔞 Help*				

Computational Chemistry - Core Concepts

Namespace

The namespace of this dictionary is: http://www.xml-cml.org/dictionary/compchem/

Default Prefix

The default prefix for this dictionary is: compchem

Description

Toplevel dictionary for computational chemistry

Concepts in this dictionary are general throughout computational chemistry and are used extensively in the CompChem convention to describe the structure

Table of Contents

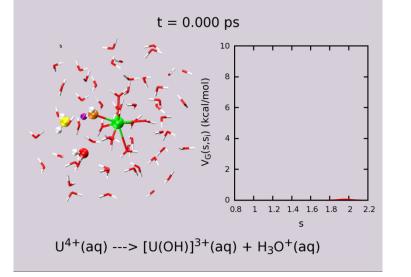
- calculation
- environment
- <u>finalization</u>
- initialization

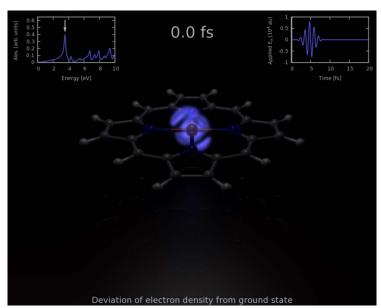
CML Conventions and Dictionaries on the web

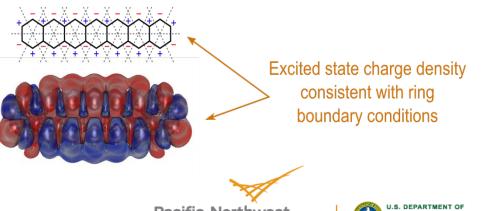
Firefox CML Dictionary - Computational Chemi +		ð
O www.xml-cml.org/dictionary/compchem/#e2Energy	☆ マ C 🖁 - Google 🔎 🖡 1	1 🖸 -
Actions* 🛑 Tools* 🗹 Validation* 🖀 Styles* 📛 Transformations* 问 Views* ∑ Stats* 🍾 S.O.A.* 🗋 Authoring* 🔞 Help*		
2-electron energy has unit type unitType:energy		
nuclear repulsion energy (ID: nuclearRepulsionEnergy)		
Definition		
The potential energy arising from Coulombic nuclei-nuclei repulsions.		
The potential energy arising from Coulombic nuclei-nuclei repulsions. $\hat{T}_n = -\sum_l \frac{\hbar^2}{2M_l} \nabla_{R_l}^2$ Description		
Description		
The nuclear repulsion energy is the sum of the repulsive Coulombic interaction energies between the positively charged nuclei.		
Data Type		
nuclear repulsion energy is of data type xad:double		
Unit Type		
nuclear repulsion energy has unit type unitType:energy		
energy (ID: scfEnergy)		
Definition		
The Hartree-Fock Self-Consistent Field component of the energy.		
Description		
This is the SCF energy, where the SCF energy is a compment of another energy, such as the MP2 energy. The scf_energy term should used, as the exact meaning of the SCF energy will be properly determined by the parameters in the <u>initialization</u> module.	NOT be used for the total energy of an SCF calculation, for this the total energy term should	be
Data Type		
energy is of data type xsd:double		
Unit Type		
energy has unit type unitType:energy		E

Handling large quantities of data within CML

- Both Gaussian and plane wave molecular orbitals can get large
 - Example is a 2500 Gaussian basis function calculation would require 2500² doubles (or complex numbers)
 - Even bigger for plane wave orbitals (easily an order of magnitude)
 - Multiple pieces may need to be stored
- A single geometry is small, but a million geometries in a dynamics simulation trajectory becomes large
- Materials genome requires thousands to millions of the data above

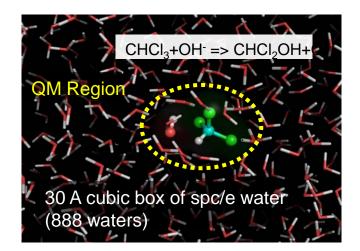


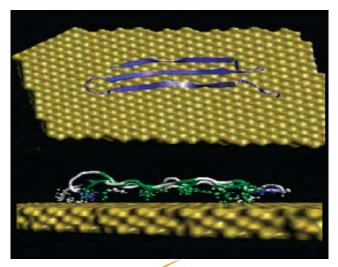

- Get "all" NWChem data stored into CML output file
 - Better alignment of CML data writing with flow of NWChem
 - Adding dictionary entries and convention drafts in the process
- Reduce CML data by avoiding replication
 - Using IDs to reference things like basis sets and geometries defined in a module in different modules
- Handling bigger data blocks
 - Molecular orbitals (and others stored in other output files)
 - Normalization, component ordering, basis set, geometry
 - Trajectories
 - Use XDMF and link into CML


Linking raw data to visualization and interpretation

- Real time analysis and visualization of computer simulation for control
 - Creation of free energy surface through dynamics simulation
 - Discovery of rare event processes
- Density information from dynamical simulation can be visualized in various ways

Pacific Northwest NATIONAL LABORATORY

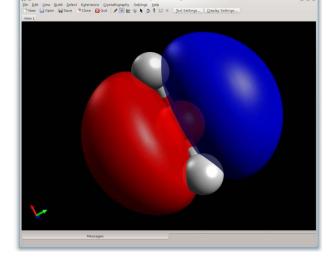

Further out: Representing complex simulations with many components



One example is QM/MM

- Linking quantum chemistry methods with molecular mechanics
- Representations for parts of the system are different, need to describe the interface?!

Mesoscale and nanoscale, linking with continuum models, complex and interacting systems

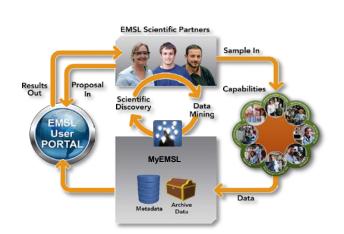


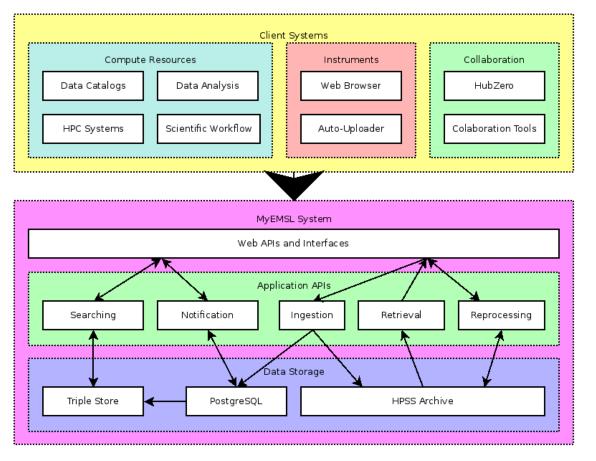
Utilizing NWChem's semantic data

- Open-source Avogadro can extract and visualize NWChem semantic output
 - Reads NWChem's CML and visualizes molecular orbitals and properties

Demonstrations of integrated access, and visualization of NWChem and NMR data using MyEMSL and EMSLHub

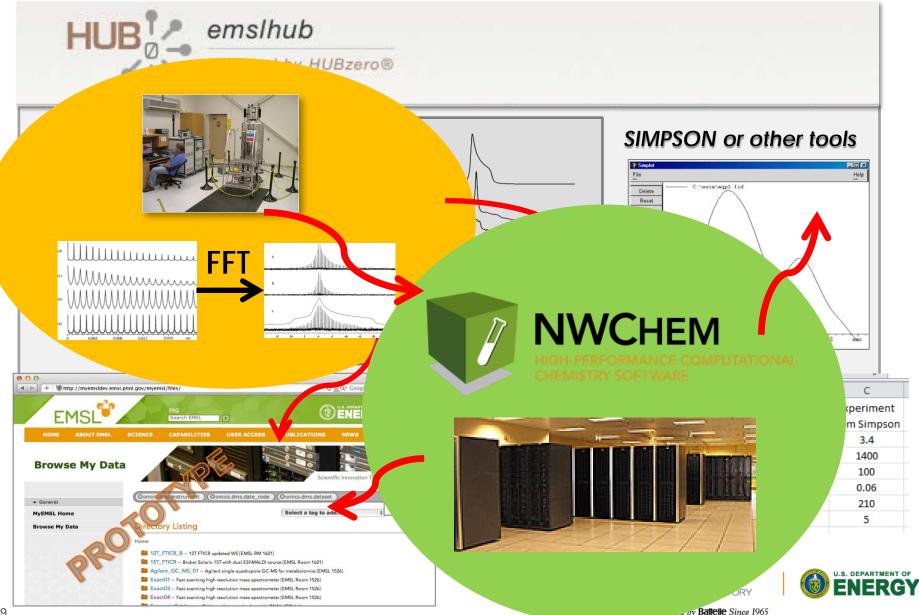
http://avogadro.openmolecules.net/wiki/Main_Page

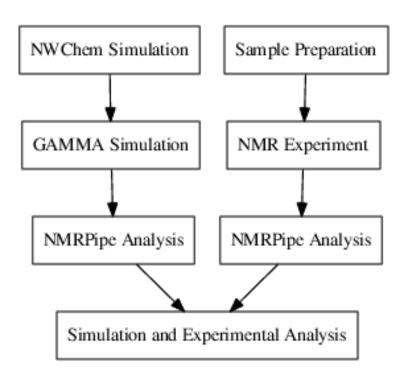



NATIONAL LABORATORY
Proudly Operated by Battelle Since 1965

Pacific Northwest

Storing data: MyEMSL in a nutshell

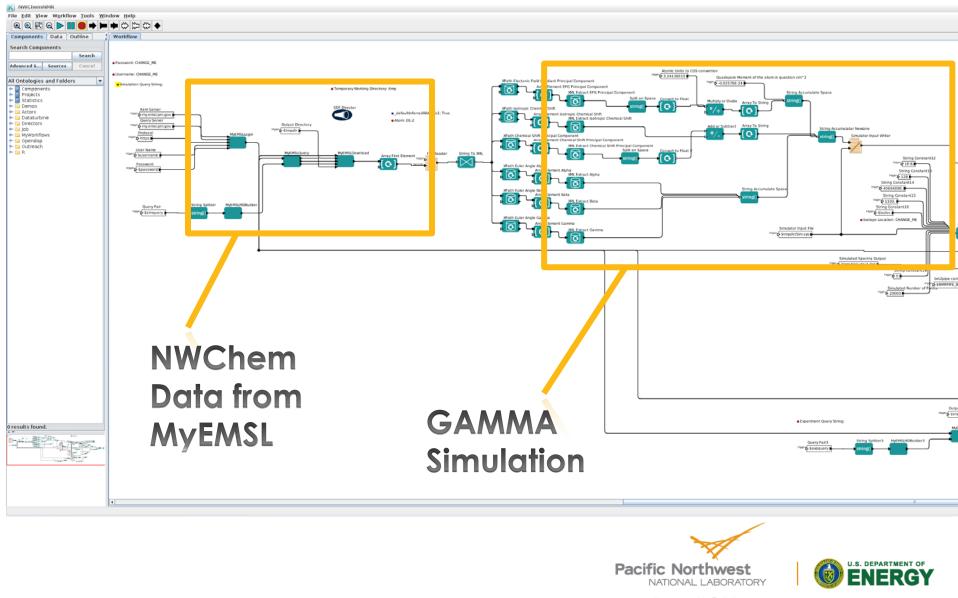



Utilizing NWChem's semantic data

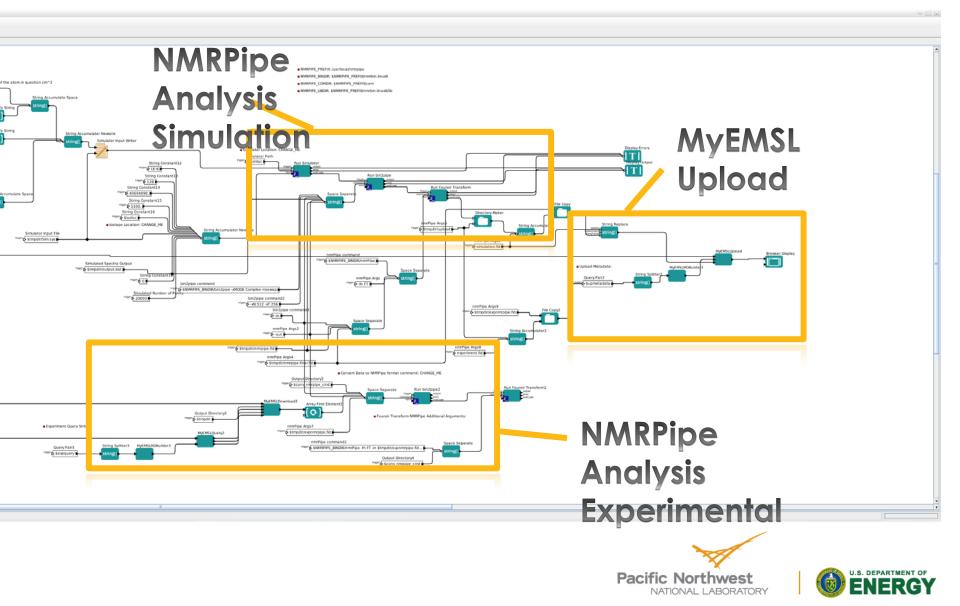
- NMR Experiment
 - NMR Capability at EMSL
 - General Workflow
- Simulation
 - NWChem
 - GAMMA
- Analysis and Visualization
 - NMRPipe

NMR Integration Workflow Inputs

- MyEMSL Query to get CML
- MyEMSL Query to get Experimental Data
- MyEMSL Authentication
- Isotope Information for GAMMA
- Parameters for GAMMA
 - Field Strength, Number of Points
 - NWChem CML Inputs
- Atom to Simulate Spectra
- NMRPipe Command Line Parameters
 - Simulation
 - Experiment
- Upload Metadata

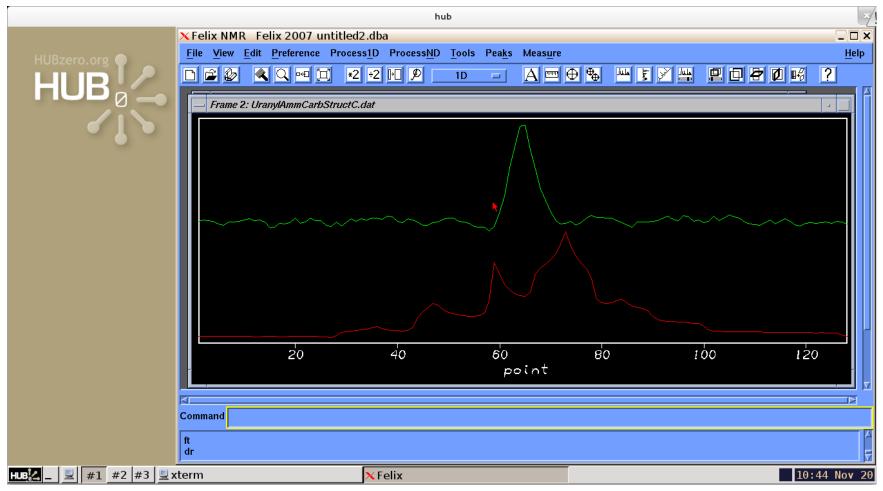

Kepler

- http://www.kepler-project.org
- Desktop Application
- Directed Acyclic Graph Workflows
- Components for doing Scientific Work
- Open Source Community
- Integrate with MyEMSL and HPC Systems.



Defining the workflow with Kepler Automation: Simulation to Spectrum

Defining the workflow with Kepler Automation: Spectrum to Visualization

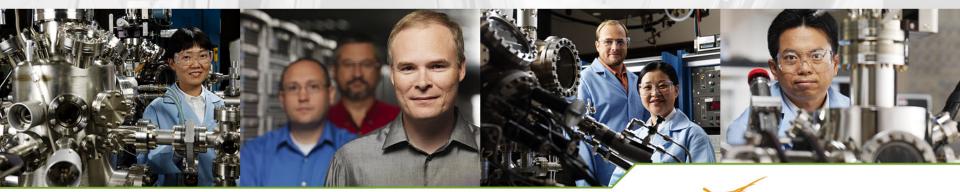


Proudly Operated by Battelle Since 1965

EMSI

Visualization in EMSLHub

Summary


- NWChem produces CML data
 - For Gaussian basis set modules
 - Utilizing FoX library
- Avogadro reads and visualizes CML data
 - Visualizing molecular orbitals
- FoX library expanded with new functionality
 - Can be utilized by other computational chemistry codes to produce CML data
- Drafts for CML language and conventions defined
 - Molecular orbitals
 - NMR and other properties

This research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

NWChem development is funded by: US Department of Energy BER, ASCR, BES offices PNNL LDRD

www.**emsl**.pnl.gov

