public class AxiomType<C extends OWLAxiom>
extends java.lang.Object
implements java.io.Serializable
AxiomType
. For example, see OWLOntology.getAxioms(AxiomType)
and
OWLOntology.getAxiomCount(AxiomType, boolean)
.Modifier and Type | Method and Description |
---|---|
static java.util.Set<OWLAxiom> |
getAxiomsOfTypes(java.util.Set<OWLAxiom> sourceAxioms,
AxiomType<?>... axiomTypes)
Gets the set of axioms from a source set of axioms that have a specified type
|
static java.util.Set<OWLAxiom> |
getAxiomsWithoutTypes(java.util.Set<OWLAxiom> sourceAxioms,
AxiomType<?>... axiomTypes)
Gets the set of axioms from a source set of axioms that are not of the specified type
|
static AxiomType<?> |
getAxiomType(java.lang.String name)
Gets an axiom type by its name
|
int |
getIndex() |
java.lang.String |
getName() |
boolean |
isAxiomType(java.lang.String _name)
Determines if there is an axiom type with the specified name
|
boolean |
isLogical()
Determines if this axiom type is a logical axiom type.
|
boolean |
isNonSyntacticOWL2Axiom()
Some OWL 2 axioms, for example,
OWLNegativeDataPropertyAssertionAxiom axioms
are structurally OWL 2 axioms, but can be represented using OWL 1 syntax. |
boolean |
isOWL2Axiom()
Determines if this axiom is structurally an OWL 2 axiom.
|
java.lang.String |
toString() |
public final int index
public static final java.util.Set<AxiomType<?>> AXIOM_TYPES
public static final AxiomType<OWLDeclarationAxiom> DECLARATION
public static final AxiomType<OWLEquivalentClassesAxiom> EQUIVALENT_CLASSES
public static final AxiomType<OWLSubClassOfAxiom> SUBCLASS_OF
public static final AxiomType<OWLDisjointClassesAxiom> DISJOINT_CLASSES
public static final AxiomType<OWLDisjointUnionAxiom> DISJOINT_UNION
public static final AxiomType<OWLClassAssertionAxiom> CLASS_ASSERTION
public static final AxiomType<OWLSameIndividualAxiom> SAME_INDIVIDUAL
public static final AxiomType<OWLDifferentIndividualsAxiom> DIFFERENT_INDIVIDUALS
public static final AxiomType<OWLObjectPropertyAssertionAxiom> OBJECT_PROPERTY_ASSERTION
public static final AxiomType<OWLNegativeObjectPropertyAssertionAxiom> NEGATIVE_OBJECT_PROPERTY_ASSERTION
public static final AxiomType<OWLDataPropertyAssertionAxiom> DATA_PROPERTY_ASSERTION
public static final AxiomType<OWLNegativeDataPropertyAssertionAxiom> NEGATIVE_DATA_PROPERTY_ASSERTION
public static final AxiomType<OWLEquivalentObjectPropertiesAxiom> EQUIVALENT_OBJECT_PROPERTIES
public static final AxiomType<OWLSubObjectPropertyOfAxiom> SUB_OBJECT_PROPERTY
public static final AxiomType<OWLInverseObjectPropertiesAxiom> INVERSE_OBJECT_PROPERTIES
public static final AxiomType<OWLFunctionalObjectPropertyAxiom> FUNCTIONAL_OBJECT_PROPERTY
public static final AxiomType<OWLInverseFunctionalObjectPropertyAxiom> INVERSE_FUNCTIONAL_OBJECT_PROPERTY
public static final AxiomType<OWLSymmetricObjectPropertyAxiom> SYMMETRIC_OBJECT_PROPERTY
public static final AxiomType<OWLAsymmetricObjectPropertyAxiom> ASYMMETRIC_OBJECT_PROPERTY
public static final AxiomType<OWLTransitiveObjectPropertyAxiom> TRANSITIVE_OBJECT_PROPERTY
public static final AxiomType<OWLReflexiveObjectPropertyAxiom> REFLEXIVE_OBJECT_PROPERTY
public static final AxiomType<OWLIrreflexiveObjectPropertyAxiom> IRREFLEXIVE_OBJECT_PROPERTY
public static final AxiomType<OWLObjectPropertyDomainAxiom> OBJECT_PROPERTY_DOMAIN
public static final AxiomType<OWLObjectPropertyRangeAxiom> OBJECT_PROPERTY_RANGE
public static final AxiomType<OWLDisjointObjectPropertiesAxiom> DISJOINT_OBJECT_PROPERTIES
public static final AxiomType<OWLSubPropertyChainOfAxiom> SUB_PROPERTY_CHAIN_OF
public static final AxiomType<OWLEquivalentDataPropertiesAxiom> EQUIVALENT_DATA_PROPERTIES
public static final AxiomType<OWLSubDataPropertyOfAxiom> SUB_DATA_PROPERTY
public static final AxiomType<OWLFunctionalDataPropertyAxiom> FUNCTIONAL_DATA_PROPERTY
public static final AxiomType<OWLDataPropertyDomainAxiom> DATA_PROPERTY_DOMAIN
public static final AxiomType<OWLDataPropertyRangeAxiom> DATA_PROPERTY_RANGE
public static final AxiomType<OWLDisjointDataPropertiesAxiom> DISJOINT_DATA_PROPERTIES
public static final AxiomType<OWLHasKeyAxiom> HAS_KEY
public static final AxiomType<OWLAnnotationAssertionAxiom> ANNOTATION_ASSERTION
public static final AxiomType<OWLSubAnnotationPropertyOfAxiom> SUB_ANNOTATION_PROPERTY_OF
public static final AxiomType<OWLAnnotationPropertyRangeAxiom> ANNOTATION_PROPERTY_RANGE
public static final AxiomType<OWLAnnotationPropertyDomainAxiom> ANNOTATION_PROPERTY_DOMAIN
public static final AxiomType<OWLDatatypeDefinitionAxiom> DATATYPE_DEFINITION
public static final java.util.Set<AxiomType<?>> TBoxAxiomTypes
public static final java.util.Set<AxiomType<?>> ABoxAxiomTypes
public static final java.util.Set<AxiomType<?>> RBoxAxiomTypes
public java.lang.String toString()
toString
in class java.lang.Object
public boolean isOWL2Axiom()
true
if this axiom is an OWL 2 axiom, false
if this axiom is not an OWL 2
axiom and it can be represented using OWL 1.public boolean isNonSyntacticOWL2Axiom()
OWLNegativeDataPropertyAssertionAxiom
axioms
are structurally OWL 2 axioms, but can be represented using OWL 1 syntax. This method determines if this axiom type
is a pure OWL 2 axiom and cannot be represented using OWL 1 syntax.true
if this axiom is a pure OWL 2 axiom and cannot be represented using OWL 1 syntax, otherwise
false
.public int getIndex()
public java.lang.String getName()
public boolean isLogical()
true
if this axiom type is a logical axiom type, otherwise false;public static java.util.Set<OWLAxiom> getAxiomsWithoutTypes(java.util.Set<OWLAxiom> sourceAxioms, AxiomType<?>... axiomTypes)
sourceAxioms
- The source set of axiomsaxiomType
- The types that will be filtered out of the source setpublic static java.util.Set<OWLAxiom> getAxiomsOfTypes(java.util.Set<OWLAxiom> sourceAxioms, AxiomType<?>... axiomTypes)
sourceAxioms
- The source set of axiomsaxiomType
- The types of axioms that will be returnedpublic static AxiomType<?> getAxiomType(java.lang.String name)
name
- The name of the axiom typenull
if there is no such axiom type with the
specified namepublic boolean isAxiomType(java.lang.String _name)
_name
- The name to test fortrue
if there is an axiom type with the specified name, or false
if there
is no axiom type with the specified name.