
LA-­‐SIGMA	
 REU-­‐SUBR	

Stereographic V isualization of
Molecular Configurations in a C A V E 	

1, Sanjay Kodiyalam2, Amitava Jana2
Department of 1Biological Sciences / 2Mechanical Engineering

Southern University, Baton Rouge, Louisiana.

	

7/25/2011

2

Abstract

Motivated by the need for visualizing large scale molecular configurations from parallel
atomistic simulations we have developed a Visual Studio C/C++ project using the CAVE and
GLU libraries for stereographically visualizing atoms and bonds in a molecular configuration. In
the absence of any simulation data the project constructs Bravais lattice configurations for
visualization: the Simple Cubic lattice with only atoms and the Body Centered Cubic lattice with
atoms and bonds. OpenGL lighting effects are used to enhance depth perception and to
distinguish atom types. The CPU time required for the display versus the total number of atoms
is determined. This timing identifies future tasks for improving tion efficiency to
enable display of million-atom configurations. The project may be used in education on
visualization.

Introduction

Current research in the area of computational sciences focuses on virtual reality systems
with emphasis on the Cave Automatic Virtual Environment (CAVE) for the visual inspection of
the computed results. This work, on visualizing atomistic configurations, was conducted at the

lege of Engineering (CoE) (Fig. 1a). This CAVE is an 8 ft x 8 ft x 8 ft
space with 4 displays (3 on screen-walls and one on the floor). All displays are via mirrors used
to set the required optical distance
housing the CAVE. Active stereo viewing is enabled by projecting rapidly alternating left- and
right- eye images that are synchronized with the shutters of the stereo eye-ware. The
position and orientation of two sensors are continuously tracked in the CAVE. They are attached

-ware and wand. In order to perceive a 3-dimensional object the displays must

automatically carried out by the CAVE library [1] with the visualization application developer
needing to code for a single (non-stereo) display. This library also allows the application access

/ navigation through
the virtual world by appropriate updates to the display. The CAVE is run by a two-node cluster:

While perspective transformations allow for depth perception even in a non-stereo
display, the CAVE with stereo displays and user navigation enables clearer depth perception and
exploration of the virtual world at all relevant length scales. This makes it an ideal environment
for visualizing large scale molecular configurations from parallel atomistic simulations. The
visualization will then motivate, and can be coupled to, subsequent analysis of the
configurations. We have therefore begun the construction of such a visualization + analysis
program with the eventual goal of being able to visualize ~million-atom configurations. A Visual
Studio C/C++ project for visualization of atoms and bonds in a molecular dynamics
configuration is developed and its performance (CPU time taken versus number of atoms) is
determined. The CPU-timing is carried out on the development platform: a desktop with a non-
s

3

F igure 1. (a)
and screens. (b) Threads involved in the operation of the CAVE library [1].

Methodology

The operation of the CAVE library (Fig. 1b) The CAVE
library automatically spawns synchronized threads for the displays in addition to the main thread
that continues to operate asynchronously under user control. The display threads are not under
user control but simply call a user defined initialization function once followed by an infinite
loop that has calls to the user defined navigation and display functions.

Within the main thread, in the absence of data from any atomistic simulation, a function

(MakeMDdata) is implemented. This function is called once at the beginning of project
execution. It creates arrays corresponding to the type (an integer), position & velocity (3 double
precision numbers each) for the set of atoms to be visualized. The positions of the atoms are
corresponding to either a Simple Cubic or Body Centered Cubic (BCC) Bravais lattice that are
both spatially periodic structures [3]. While the former has only one type of atom the latter has
two types with the atoms at the cube-corners distinguished from those at the cube-center. The
velocities are set to zero as they are not subsequently used. The velocity array is nevertheless
provided as both position and velocity together completely define the state of an atomistic
configuration for future use when reading in data from a simulation. The main thread does not
have any other functions it is kept from termination by an infinite loop that allows for the CPU
to sleep.

Using standard OpenGL an initialization function within the display thread (InitDisplay)

is used for setting up the lighting that remains fixed for the entire execution. A single directional
light, with ambient, diffuse, and specular components, is used in an attempt to enhance depth
perception. The ambient component corresponds to light being reflected equally in all directions
by the visualized surfaces, the diffuse & specular components correspond to reflection in broad
and narrow angular ranges around the ideal mirror-like reflection. The emissive component of
lighting corresponding to light emitted by surfaces independent of an incident light was not used.

(a) (b)

4

 The navigation function within the display thread is adopted from earlier work [4]. It
enables the translation, rotation, and scaling of the entire virtual world using the wand. The
translation occurs in the direction pointed to by the front of the wand which also serves as the
axis of rotati
rotation and scaling are centered around the origin of the CAVE: The mid-point of the floor-
display.

The display function uses standard OpenGL commands and the GLU library. Atoms are

displayed within a loop spanning the total number of atoms. They are displayed as spheres using
the function gluSphere from the GLU library. This function displays a sphere, at the current
OpenGL origin, with a user-defined radius and surface smoothness. The position of each atom is
therefore set using the OpenGL transformation function glTranslated before the call to
gluSphere. For the independent action of transformations corresponding to different atoms the
display of each atom is enveloped by a glPushMatrix-glPopMatrix pair. The smoothness of the
atom-sphere is controlled by two integer parameters: the slices (longitudes) and stacks (latitudes)
that the sphere is divided into for the purpose of its display: Via the display of the OpenGL
primitives - triangles or quadrilaterals defined by the intersections of neighboring latitudes &
longitudes. We therefore assume the measure of smoothness to be the product of the two
parameters: Smoothness measure = numbers of slices x numbers of stacks. Different atom types
are distinguished by their color that is set using the glColorMaterial function. While the specular
reflection quality is set to a constant white color (and the shinyness ficed at 1.0), the ambient and
diffuse components are set to green or blue color. Bonds are displayed as red lines, setting
GL_LINES, between atoms of different type and therefore exist only in the BCC lattice
configuration. Only nearest neighbor atoms are bonded [5]. In order to determine the nearest
neighbors of a particular atom the (distance)2 to all other atoms of different type is determined:
Bonds are drawn only between those atom pairs for which this (distance)2 is less than the
expected (bondlength)2 x 1.01. a (first)
loop over all atoms enveloping another (second) loop over all the atoms.

The performance of the code is studied by determining the CPU time required by the
display function for displaying either all the atoms or all the bonds once (= one frame). The
separation of atoms and bonds is in the expectation that the trend in the variation of this time per
frame, with increasing total number of atoms, is different for the two cases. This time is
determined as an average over many frames typically 100. The increase in this time with
increasing total number of atoms then indicates the limiting number of atoms the project can
handle while having an interactive frame rate of ~10 frames/second i.e. when the time per frame
reaches 0.1 second. This timing study is motivated by the eventual goal of having an efficient
program capable of handling ~million atom configurations.

Results

While the project executes as expected on the machines driving the CAVE it is tested on
the development platform producing a single display in non-
is a perspective view of the entire CAVE (Fig. 2). This platform is a Windows-XP desktop
having 2 GB of RAM and 4 CPU (2 x dual core Opterons, 2.4 GHz).

5

F igure 2. Perspective views of atoms / bonds in the BCC lattice configurations from the CAVE
simulator display on the desktop. (a) shows only the atoms as coarse spheres each composed
out of 5 slices and 5 stacks. (b) shows only the atoms as smooth spheres each composed out of
50 slices and 50 stacks. (c) shows both atoms and bonds. (d) shows only the bonds.

Figure 2 shows images of the BCC lattice configuration. The first atom type is shown in

green, the second in blue, and the bonds in red. When the sphere-atom is composed of only 5
slices and 5 stacks its display is rather coarse (Fig. 2a). This sphere becomes smooth when the
number of slices and stacks are both increased to 50 (Fig. 2b). Each atom inside the lattice has
eight bonds as expected (Fig. 3c). Images with only bonds (Fig. 3d) are generated for timing
purposes.

(a) (b)

(c) (d)

6

F igure 3. Code execution: Time required for a
displaying one frame of the BCC lattice
configuration. (a) and (b) shows the variation in
the time required for displaying only the atoms.
(c) shows the time required for displaying only
the bonds.

Figure 3 shows the variation in the time required to display one frame (T) with only

atoms or only bonds. Figs. 3a & 3b show that with atoms alone this time is proportional to both
the number of atoms and the smoothness measure. This behavior is as expected, but was not
demonstrated, in earlier work [6]: the time is proportional to the total number of Open GL
primitives (triangles / quadrilaterals) that need to be displayed. The time required for displaying
bonds alone (Fig. 3c) is seen to vary roughly as the (Number of atoms)2. It is understood as
being due to the double loop over atoms needed for the determination of neighboring atoms.
From the curve fits to the timing graphs (Figs. 2b & c) the upper bound to the number of atoms
that the project can currently handle with an interactive frame rate, i.e. with T = 0.1 seconds, is
706 and 2913 respectively for the display of atoms alone or bonds alone respectively.

Conclusion

In the context of developing a coupled visualization and analysis program for studying
data from parallel atomistic simulations we have developed a Visual Studio C/C++ project using
the CAVE and GLU libraries to stereographically visualize atoms and bonds in a molecular

y = 1.41E-­‐04x + 5.21E-­‐04
R² = 1.00E+00

0

0.05

0.1

0.15

0.2

0 500 1000 1500

Ti
m
e
pe

r F
ra
m
e
(s
ec
on

ds
)

Number of Atoms

Only Atoms Displayed
y = 5.55E-­‐05x + 4.30E-­‐03

R² = 9.97E-­‐01

0

0.05

0.1

0.15

0.2

0 1000 2000 3000

Ti
m
e
pe

r F
ra
m
e
(s
ec
on

ds
)

Smoothness Measure

Only Atoms Displayed

y = 1.16E-­‐08x2 -­‐ 1.35E-­‐06x +
1.55E-­‐03

R² = 1.00E+00

0

0.02

0.04

0.06

0.08

0.1

0.12

0 1000 2000 3000 4000

Ti
m
e
pe

r F
ra
m
e
(s
ec
on

ds
)

Number of Atoms

Only Bonds Displayed

(a) (b)

(c)

of Atoms=1024 Smoothness= 2500

7

configuration. While data from any simulation has not been used molecular configurations in
Simple Cubic and Body Centered Cubic lattice configurations have been constructed and
visualized. The CPU time required for the display of atoms alone scales linearly with the total
number of atoms where as for the display of bonds alone the scaling is quadratic in the total
number of atoms. This scaling is understood as being due to the single and double loops involved
in the display of atoms and bonds respectively. The performance of the current version of the
project leads to an upper bound in the number of atoms that can be handled with an interactive
frame rate of 10 frames per second. This bound is 706 (2913) for the display of atoms (bonds)
alone.

The current limitations of the project identify

efficiency to eventually enable the interactive display of million-atom configurations such as
those from molecular dynamic simulations of protein-ligand docking. Display rate of atoms can
be increased by having a variable smoothness measure for the sphere-atom depending on the
perspective angular width of the atom as has been implemented in earlier work [7]. Bond display
can be made to scale linearly with the number of atoms by using linked and neighbor lists as has
been stated, but not demonstrated, in earlier work [6]. A more robust display of the bond using
cylinders can be attempted.

This project, in its current version and its future development, can be used in education

on visualization. As the algorithms of use in this project are applicable widely including
molecular dynamics simulations [6] it may also be used in education on molecular dynamics
simulation & analysis.

Acknowledgments

This work was funded by the Louisiana Board of Regents, through LASIGMA [Award
Nos. EPS-1003897, NSF (2010-15)-RII-SUBR, and HRD-1002541]. One of the authors (G. R.
Wright) thanks Dr. Diola Bagayoko for the opportunity to conduct research with the LA-SiGMA
REU.

References

[1] Dave Pape, Caoline Cruz-Neira, Marek Czernuszenko, CAVE Library version 2.6,

Electronic Visualization Laboratory, University of Illinois at Chicago, (1997). Currently
used: Version 3.2, CaveLibTM, Mechdyne Corporation, Marshalltown, Iowa.

[2] Figure from
 http.cs.uic.edu/~kenyon/conference/GILKY/CAVE_DOD.html
[3] Mehta, S.; Hazzard, K.; Machiraju, R.; Parthasarathy, S.; Wilkins, J.; , "Detection and

visualization of anomalous structures in molecular dynamics simulation data," Visualization,
2004. IEEE , vol., no., pp. 465- 472, 10-15 Oct. 2004.

[4] Ghadersohi, Amin. Center for Computational Research, SUNY-Buffalo. Collaborative
Scientific Visualization and Real-time Monitoring of Protein Structure Data.

8

[4]
Proceedings of the 2011 ASEE-GSW Conference, March 2011, Houston, Louisiana, Session
FC1-1.

[5] Ghadersohi, Amin. Center for Computational Research, SUNY-Buffalo. Collaborative
Scientific Visualization and Real-time Monitoring of Protein Structure Data.

[6] S. Kodiyalam,
Dynami Proceedings of the 2011 ASEE-GSW Conference,
March 2011, Houston, Louisiana, Session T3B-3.

[7] A. Sharma, A. Nakano, R. K. Kalia, P. Vashishta, S. Kodiyalam, P. Miller, W. Zhao, X.
Liu, T. J. Campbell, and A. Hass, -Atom

 Presence: Teleoperators and Virtual Environments 12, 85 (2003).

