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Abstract

This poster presents the findings of ab-initio calculations of electronic and
structural properties of cubic crystalline sodium oxide (Na,O). These results
were obtained using density functional theory (DFT), specifically a local
density approximation (LDA) potential, and the linear combination of Gaussian
orbitals (LCGO) formalism. Our implementation of LCGO followed the
Bagayoko, Zhao, and Williams method as enhanced by the work of Ekuma and
Franklin (BZW-EF). Our results include predicted values for:

1) The electronic band structure and associated band gaps,

2) The total and partial density of states (DOS and pDos),

3) The equilibrium lattice constant of Na,O, and

4) The bulk modulus.

Introduction and Method

Despite its potential for applications, Na,O has not attracted much attention
for experimental studies after 1940. The room temperature lattice constant
and band gap have been measured in 19341 and 19402, respectively. A
handful of calculations, mainly using DFT potentials, reported band gaps over
arange of 1.8to 4.9 eVl Previous success of our computational method
motivated us to attempt to resolve the discrepancy between previous
theoretical findings. Several past predictions with the BZW-EF method have
been confirmed by experimental measurements, i.e., for cubic Si;N, and InN.l4

Our method utilizes a local density approximation (LDA) potential and the
The linear combination of Gaussian orbitals (LCGO). These two features of
our work are similar to those of previous calculations. The distinctive feature
of our calculations is our implementation of the BZW-EF method that adheres
the conditions of validity of DFT. Calculations have to (1) keep the total
number of particle constant, (2) attain the absolute minima of the occupied
energies, and (3) avoid excessively large basis sets that destroy the physical
content of the lowest unoccupied energies. Successively augmented basis
sets are used by the method in calculations of electronic energies up to the
attainment of the absolute minima of the occupied energies. [4

Results

Table 1 shows the various basis sets for which the band structure of Na,O
was calculated, with a room temperature lattice constant of 5.56 Alll. The
direct band gap values at the I point are shown in the last column, in eV. The
absolute minima of the occupied energies are reached with Calculation 2.

Calc. # Nal* Orbitals O2- Orbitals # of Functionals T-I Band Gap (eV)
252 2pb 3s0
252 2p6 350 3p0
252 2p® 3s% 3p0 4p°
252 2p° 3s% 3p0 4p0 450
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than but qualitatively similar to some other LDA predictions which is expected
as many other LDA calculations tend to underestimate band gaps. There is onl

Calc. #3 and #4 shared the same occupied energies as Calc. #2 which tells us _ . .
X J one experimental value for an Na,O band gap calculated in 1940. This
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The plots we found were again qualitatively similar to other theoretical
predictions. However In this case we were unable to find any experimental
data.

Figure 4 below shows the density of Figure 5 below shows the partial . o . .
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From these figures we can see that the lower valence bands are due to the
Oxygen-S and the upper valence band is from the Oxygen-P. The higher
energy unoccupied bands are due to a hybridization of Sodium S and P. References
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