Abstract
In an effort to gain more information from vertical burn tests and improve the efficiency with which they are performed, a motorized apparatus with an attached microscope was engineered to maintain view of a sample at all times despite movement while burning. Using image processing in Mathematica combined with LabVIEW programming, linear translation stages moved the sample in response to images attained in real-time from the microscope. Thus, the sample always remained in view of the microscope as well as an X-ray beam despite a small field of view and the possibility of sample contortion. This tracking method will be used in the future to study not only flame retardants, but the charging of lithium ion batteries and the anatomy of laboratory mice.

Introduction
Problems with the UL-94 Standard for Analyzing Samples
- No indication of chemical data that determines whether a sample is an adequate flame retardant
- No high-resolution imaging possible
- Small field of view with microscope and X-ray (Figure 1 and 2)
- Ring clamp does not prevent contortion of sample (Figure 3)

Materials and Methods

The Original SolidWorks Design (above)
- Does not depict the additional rail that was later added to hold the Point Grey Flea03 microscope camera or the 25 mm translation stage with standard micrometer that was attached to the camera to facilitate focusing
- Used in conjunction with the Flea03 microscope camera to process the real-time images and ascertain sample position

LabVIEW
- Received sample position and sent movement commands to the Thorlabs motors

Results and Discussion

Image Processing
- Managed by Mathematica
- Real-time image of sample (Figure 5) divided into several smaller images and binarized to detect its edges (Figure 6)
- Individual images examined for the presence of white, indicating an edge
- Presence of white in certain partitions signaled the motors to move the sample back into its proper position

Objective
Engineer a machine with the capability of tracking moving samples and obtaining chemical data from them efficiently despite an extremely small field of view

Conclusion
- Functional motor movement achieved based on acquired visual data
- Future plans include testing with a burning sample and implementing a high-resolution X-ray interferometer[12][13] with a 3 mm² field of view
- Will be an effective and efficient method of testing samples in the laboratory for both physical and chemical data

Acknowledgements
This material is based on work supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with support from the Louisiana Board of Regents and funded by the W.K. Kellogg Foundation. Special thanks to Les Butler for having me as his research, LA-SiGMA for the opportunity, Bruno Beltran for his wisdom, and Zack Daniels and Antony Pisano for their support and optimism.

References