Teacher_harry henderson
Grade.Quarter.Unit
Day(s)1
Dates:_ TBD _

RRPS SECONDARY MATH UNIT/LESSON PLAN TEMPLATE 2013-2014

			Stage 1 – Preparation (PLC)	
Gra		nt Standard(s)/Standard(s) for ematical Practice	DOK levels and Learning Targets 1, 2, 3 Applying geometry law of sines and law of cosigns	Essential Question(s) How do we convert between agent based and serial?
N-Q.2 Define appropriate quantities for the purpose of descriptive modeling. G-MG Modeling with Geometry, Apply geometric concepts in modeling situations		cometry, Apply geometric concepts in	equations to real world problem. Modifying agent based model into a serial code [C++] then paralellize. Another object is optimizing the code. Using technology to explore mathematical relations.	How do we convert between agent based and serial? How do we optimize the code? How do we paralellize the code.
	s / Materials No	eeded multi-core supercomputer with OpenM	D	
Louisiana Objectives PHASE 1 PHASE 2 PHASE 3 PHASE 4 Prior know Familiarity	Board of Reger cover phase 2 Develop diff Convert agen Optimize cod Introduce and vledge: y with program	erential equations to represent the physic	e equations to build the serial code in C++	ent No. EPS-1003897 with additional support from the
Suggest	Setting			Assessment options/how used
ed Time/ Dates	(Whole Group, Small Group, Pairs, Independent)		Lesson/Unit Components	Provide premade serial codes if time or learning abilities are an issue. Resources: <u>http://openmp.org/wp/resources/</u> <u>https://computing.llnl.gov/tutorials/openMP</u>
5-10	Whole	Warm Up(s)		
minutes	group	review agent based model breed [axles axle] breed [magnets magnet] breed [metals metal] axles-own		http://openmp.org/mp-documents/omp- hands-on-SC08.pdf

RRPS SECONDARY MATH UNIT/LESSON PLAN TEMPLATE 2013-2014

[angular-velocity]	
globals	
hub mag-force-constant ; Multiplier for magnetic attraction; incorporates not only ; magnetic force, but also torque arm length.	
friction ; Drag acting opposite to rotation.	
finished? total_rotation max_rotation direction direction_check	
number_mag mag_list metal_list number_metal	
max_velocity	
counter_mag counter_metal happy_mag happy_metal	
number-magnets]	
to setup ; clear-all clear-turtles clear-links setup-globals	
setup-compass setup-field initiate	

RRPS SECONDARY MATH UNIT/LESSON PLAN TEMPLATE 2013-2014

reset-ti	icks	
end		
to setup-	-globals	
set tota	al rotation 0	
	ax_rotation 0	
set dire	ection 0	
	ection_check 0	
set une		
act may	g-force-constant 1	
Set IIIag	ction 0.999999	
set fric	tion 1 - 1 / 10 ^ friction_scale	
if fricti	$ion = 1 - 1 / 10^{10}$	
set fri	iction 1	
set fini	ished? false	
	inter_mag 0	
	ppy_mag true	
mag_lo	oop	
end		
to mag_	loop	
	[happy_mag]	
ifelse	(item (length mag_list - 1) mag_list) = (360 - (length mag_list) * 1); all done	
· set	counter metal 0	
	happy_metal true	
, SCI • cot	mag_list [32 31]	
	mag_list [352 344 336 320]	
	happy_mag false	
; me	etal_loop	
ifels	se (358 - counter_mag * 1) = item counter_mag mag_list	
	mag_list replace-item counter_mag mag_list ((item (counter_mag + 1) mag_list) + 1)	
set	counter_mag counter_mag + 1	

RRPS SECONDARY MATH UNIT/LESSON PLAN TEMPLATE 2013-2014

Γ	
set mag_list replace-item counter_mag mag_list ((item counter_mag mag_list) + 1)	
set happy_mag false	
set counter_mag 0	
end	
to metal_loop ; set for 6 metals at 60 degree spacing	
while [happy_metal]	
white [happy_hetai]	
ifelse (item (length metal_list - 1) metal_list) = 353 ; all done	
set max_rotation 8000	
set happy_metal false	
metal_loop	
ifelse ((60 * (counter_metal + 1) - 4) + 1) = item counter_metal metal_list	
set metal_list replace-item counter_metal metal_list ((counter_metal * 60) + 1)	
set metal_inst replace-item counter_inetal metal_inst ((counter_inetal = 00) + 1) set counter_metal counter_metal + 1	
set counter_metar counter_metar + 1	
set metal_list replace-item counter_metal metal_list ((item counter_metal metal_list) + 8)	
set happy_metal false	
set counter_metal 0	
end	
to setup-compass	
set metal_list mag_list	
areate culor 1	
create-axles 1	
set angular-velocity 0	
set heading 90	
set hub self	

RRPS SECONDARY MATH UNIT/LESSON PLAN TEMPLATE 2013-2014

	1
set color white	
; let turtle-count (count turtles)	
;set mag_list sentence random 360 random 360	
;repeat random 10	
; set mag_list lput (random 360) mag_list	
;]	
; set mag_list [0]	
;set number-magnets 4	
create-magnets 1	
set size 4	
set color white	
; set heading random-float 360	
; set label who	
; set label item (who - 1) mag_list	
; set heading item (who - 1) mag_list	
; set heading (item (number-magnets - who) mag_list)	
set heading 0	
jump 20	
create-link-from hub ; No need to ask the hub to create this link	
tie	
end	
to setup-field	
let turtle-count (count turtles)	
; set metal_list [10]	
;set metal_list sentence random 360 random 360	
;repeat random 10	
; set metal_list lput (random 360) metal_list	
;]	
; set metal_list [61 179 299]	
; set metal_list lput 179 metal_list	
create-metals length metal_list; number-metals	

RRPS SECONDARY MATH UNIT/LESSON PLAN TEMPLATE 2013-2014

I I	
	set size 3
	set shape "circle"
	set color yellow
	; set heading random-float 360
	; set heading ((who - (count turtles with [breed = magnets])) * e) 2
	set heading (item (who - 2) metal_list)
	; set label (who - number-magnets - 1)
	jump 24
	end
	to initiate
	let angular-acceleration (mag-force-constant * sum
	sum
	$20 \star (circulate states the structure of the tensor the mass 10 / (distance mass 10 Å)$
	20 * (sin subtract-headings towards hub towards myself) / (distance myself) ^ 3
] of magnets
] of metals)
	ask hub
	[
	set angular-velocity (angular-velocity * friction + angular-acceleration)
	if angular-velocity > max_velocity
	set max_velocity angular-velocity
	J
	right angular-velocity
	ifelse angular-velocity > 0
	reise angulai-velocity > 0
	set direction -1
	set direction_check -1
	set angular-velocity angular-velocity - direction * 2 * (1 - friction)
	; set angular-velocity direction / -500
	set direction 1
	set direction check 1
	set angular-velocity angular-velocity - direction * 2 * (1 - friction)
	; set angular-velocity direction / -500

RRPS SECONDARY MATH UNIT/LESSON PLAN TEMPLATE 2013-2014

end	
to test	
if max_rotation > 7200	
ask turtle 0	
[
let t 0	
repeat count turtles - 1	
[
set t t + 1	
file-write [heading] of turtle t	
file-write (precision max_rotation 2)	
file-print 0	
file-close	
stop	
go end	
to go	
if (finished?)	
if max_rotation > 355	
ask turtle 0	
[
let t 0	
repeat count turtles - 1	
set t t + 1	
file-write [heading] of turtle t	
[] [f] sumits (manifold many notation 2)	
file-write (precision max_rotation 2)	
file-print 0	
set max_rotation 1	
setup	
l south	

RRPS SECONDARY MATH UNIT/LESSON PLAN TEMPLATE 2013-2014

; stop	
rotate	
flip	
tick	
end	
to rotate	
let angular-acceleration (mag-force-constant * sum	
r r	
sum	
20 * (sin subtract-headings towards hub towards myself) / (distance myself) ^ 3	
] of magnets	
] of metals)	
ask hub	
set angular-velocity (angular-velocity * friction + angular-acceleration)	
right angular-velocity	
if else angular-velocity > 0	
set direction -1	
set direction 1	
set total_rotation total_rotation - angular-velocity	
if abs total_rotation > max_rotation	
L	
set max_rotation abs total_rotation	
set number_mag count magnets	
set number_metal count metals	
end	
to flin	
to flip	
if direction != direction_check	
if multi	

RRPS SECONDARY MATH UNIT/LESSON PLAN TEMPLATE 2013-2014

	1	
		set finished? true]] set direction_check direction end
		Explicit Instruction: Core Lesson(s) Develop differential equations, Review agent based model of the code and Finite difference, Euler's method: $value_{new} = value_{old} + time step * differential equation$
Phases can be done on different days if class periods are close		$\frac{\text{TO:}}{\text{I will present the Euler forms as:}}$ $\theta_{new} = \theta_{new} + \Delta t \omega_{old}$
to an hour or back to back if longer time slot is allowed 10-20 minutes	Whole group	theta_new = theta_new + time_step * omega_old; $\frac{\text{WITH:}}{\text{We will now compute torque by expanding the distance, d, using the law of cosines from the review above}$ $\omega_{new} = \omega_{old} + \Delta t \frac{r_1 \sin \left(\left(\alpha - \theta_{new} \right) \right)}{r_0 \left(r_0^2 + r_1^2 - 2r_0 r_1 \cos \left(\left(\alpha - \theta_{new} \right) \right) \right)^{(3/2)}}$ omega_new [n] = omega_old [n] + time_step * 2 * (radius_1 * sin (alpha - theta_new) / (radius_0 * pow((pow(radius_0, 2) + pow(radius_1, 2) - 2 * radius_0 * radius_1 * cos(alpha - theta_new)), 1.5)));
20-30 minutes	Small Group, Pairs, or Independent	Guided and Independent Practice Opportunities BY: On your own now take the Euler forms with more than one metal piece, students should arrive at:

RRPS SECONDARY MATH UNIT/LESSON PLAN TEMPLATE 2013-2014

		$\theta_{new} = \theta_{old} + \sum_{n=1}^{u} \Delta t \omega_{oldn}$	
		for (int n=0; n<3; n++)	
		{ theta new = theta new + time step * omega old [n];	
		lineta_new - meta_new + mne_step + omega_oid [n],	
		$\omega_{new} = \omega_{old} + \sum_{n=1}^{u} \Delta t \frac{r_1 \sin \left(\left(\alpha_n - \theta_{new} \right) \right)}{r_0 \left(r_0^2 + r_1^2 - 2r_0 r_1 \cos \left(\left(\alpha_n - \theta_{new} \right) \right) \right)^{(3/2)}}$	
		for (int n=0; n<3; n++)	
		$\{ omega_new [n] = omega_old [n] + $	
		time_step * 2 * (radius_1 * sin (alpha [n] - theta_new) /	
		(radius_0 * pow((pow(radius_0, 2) + pow(radius_1, 2) - 2 * radius_0 * radius_1 * cos(alpha [n] - theta_new)), 1.5)));	
		<pre>2 * Tadius_0 * Tadius_1 * cos(alpha [ii] - tileta_new)), 1.5))), }</pre>	
5-15	Whole	Closure for Core Lesson(s) and Independent Practice	
minutes	group		
		students can also add friction and the complete code will look like:	
		theta_new = 0; for (int n=0; $n<3$; $n++$)	
		<pre>theta_new = theta_new + time_step * omega_old [n]; }</pre>	
		theta_new = theta_old + theta_new;	
		for (int n=0; n<3; n++)	
		omega_new [n] = omega_old [n] +	
		time_step * 2 * (radius_1 * sin (alpha [n] - theta_new) / (radius_0 * pow((pow(radius_0, 2) + pow(radius_1, 2) -	
		$2 * radius_0 * radius_1 * cos(alpha [n] - theta_new)), 1.5)));$	
		if (omega_new [n] > 0)	
L			

RRPS SECONDARY MATH UNIT/LESSON PLAN TEMPLATE 2013-2014

	d [n] / pow(radius_0, 2))); l Classroom Plan (Teacher)
Differentiation & Strategies to Individualize Unit/Lesson	Accommodations
This lesson is to be used with grades 10-12, depending on student population adjustment will need to be made to make the project level appropriate, these accommodations can als be used to make accommodations within grade level differentiation [e.g. IEP, gifted, etc	If the lesson needs to be shorter this option can be used with upper level students also.
	Reflection (Teacher and PLC)
 Which one of the "shifts" did this unit/lesson best reflect? Explain how. X Rigor: In major topics pursue conceptual understanding, procedural skill and fluency, and application with equal intensity. This project covers several key aspects of mathematics, ties in the scientific method and wraps everything together in a comprehensive experiment from start to finish including analysis all with a hands on real world application. Choose one of the following questions to answer or create your own: 1) How did this unit/lesson reflect academic rigor How did this unit/lesson cognitively engage students? 4) How did this unit/lesson engage students in collaborative skills? This project covers several key aspects of mathematics, ties in the scientific method and wraps everything together in a comprehensive experiment from start to finish including analysis all with a hands on real world application. 	