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Quantum Impurity Problems and Model

Quantum Impurity Problems

G. Kotliar and D. Vollhardt, Phys. Today March, 53 (2004)

Quantum Impurity Problems(QIPs) were initially constructed to
describe the quantum mechanical properties of an impurity or
imperfection such as a magnetic atom, dislocation, or a
substitutional ion in a lattice.
Many-body lattice problems, such as heavy fermion systems, Mott
metal-insulator transition, nonconventional superconductivity could
be mapped to QIPs with dynamical mean field theory (DMFT).
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Quantum Impurity Problems and Model

Quantum Impurity Model

A quantum impurity model may be represented as a Hamiltonian HQI

HQI = Hloc + Hbath + Hhyb

Hloc = H0
loc + H I

loc =
∑
ab

E abd†a db +
∑
pqrs

Ipqrsd†p d†q dr ds (1)

Hbath =
∑
kα

εkαc†kαckα (2)

Hhyb =
∑
kαb

(V αb
k c†kαdb + h.c.) (3)

Hloc describes the “impurity” (a system with a finite (typically small)
number of degrees of freedom), Hbath describes the noninteracting
system, and Hhyb gives the coupling between the impurity and bath.
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Quantum Impurity Problems and Model

Anderson Impurity Model

The Anderson impurity model describes a localized electronic level,
subject to a local Coulomb interaction, which is coupled to a band of
non-interacting conduction electrons. In the single-impurity single-orbital
case, its Hamiltonian reads

HAIM =
∑
kσ

εkc†kσckσ︸ ︷︷ ︸
Hbath

+
∑
σ

ε0d†σdσ + Un↑n↓︸ ︷︷ ︸
Hloc

+
∑
kσ

(
Vkc†kσdσ + h.c.

)
︸ ︷︷ ︸

Hhyb

(4)

ε0 is the level energy and Un↑n↓ is the interaction term.
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Overview of Continuous-time Quantum Monte Carlo Method

Basic Idea of CT-QMC

In CT-QMC, the Hamiltonian H = Ha + Hb is split into two parts. The
partition function Z = Tr[e−βH ] is written in the interaction
representation with respect to Ha and expands in powers of Hb,

Z =Tr Tτe−βHa exp
[
−
∫ β

0
dτHb(τ)

]

=
∑

k
(−1)k

∫ β

0
dτ1 . . .

∫ β

τk−1

dτk

× Tr
[
e−βHa Hb(τk)Hb(τk−1) . . .Hb(τ1)

]
(5)

The impurity Green’s function (0 < τ < β) or the “solution” of the
impurity model is then given by

G(τ) =
1
Z Tr[e−(β−τ)Hde−τHd†] (6)
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Overview of Continuous-time Quantum Monte Carlo Method

CT-QMC Expansion Algorithms

There are several expansion algorithms with different choices of Hb. The
most widely used ones are:

CT-INT (Interaction expansion, Hb = H I
loc): works well for clusters,

single orbital models, has sign problem with repulsive interactions, is
not good for general electric structure Hamiltonians.
CT-HYB (Hybridization expansion, Hb = Hhyb): works well for
multi-orbital systems, handles low temperature and strong
interactions more efficiently, is not good for clusters.

Some other expansion algorithms that either consider an additional
auxiliary field decomposition (for clusters) or exchange coupling (for
Kondo problems) have been developed as well.
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Hybridization-expansion Algorithm

Hybridization Expansion (I)

In CT-HYB, we separate bath and impurity operators and obtain

Hb = Hhyb =
∑

pj
(V j

pc†pdj︸ ︷︷ ︸
H̃hyb

+
∑

pj
V j∗

p d†j cp)︸ ︷︷ ︸
H̃†hyb

(7)

Z =
∞∑

k=0

∫ β

0
dτ1 . . .

∫ β

τk−1

dτk

∫ β

0
dτ ′1 . . .

∫ β

τ ′k−1

dτ ′k∑
j1,···jk
j′1,···j

′
k

∑
p1,···pk
p′1,···p

′
k

V j1
p1

V j′1∗
p′1
· · ·V jk

pk
V j′k∗

p′k

× Trd

[
Tτe−βHlocdjk (τk)d†j′k (τ ′k) · · · dj1 (τ1)d†j′1 (τ ′1)

]
× Trc

[
Tτe−βHbathc†pk

(τk)cpk′ (τ
′
k) · · · c†p1

(τ1)cp′1 (τ ′1)
]

(8)
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Hybridization-expansion Algorithm

Hybridization Expansion (II)

The bath partition function could be integrated out

Zbath = Tre−βHbath =
∏
σ

∏
p

(1 + e−βεp ), (9)

With the anti-periodic hybridization function ∆,

∆lm(τ) =
∑

p

V l∗
p V m

p
eεpβ + 1 ×

{
−e−εp(τ−β), 0 < τ < β
e−εpτ , −β < τ < 0 , (10)

and by separating the contributions from each spin, we obtain

Z = Zbath
∏

j

∞∑
kj=0

∫ β

0
dτ j

1 . . .

∫ β

τ ′ jkj−1

dτ ′jkj
(11)

× Trd

[
Tτe−βHlocdj(τ

j
kj

)d†j (τ ′jkj
) . . . dj(τ

j
1)d†j (τ ′j1 )

]
det ∆j .
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Diagrammatic Monte Carlo

Monte Carlo Method

Monte Carlo methods are the only practical choices to do very high
dimension integrations such as equation 11.
For x ∈ C with weight p(x), we have the partition function

Z =

∫
C

dx p(x) (12)

The expectation value of a quantity A is given by

〈A〉p =
1
Z

∫
C

dx A(x)p(x) (13)

With M configurations xi in a Monte Carlo procedure,

〈A〉p ≈ 〈A〉MC ≡
1
M

M∑
i=1

A(xi ). (14)
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Diagrammatic Monte Carlo

Markov Process

A Markov process defines a transition matrix Wxy which specifies the
probability to go from state x to state y in one step of the Markov
process.
The Markov process will converge exponentially from any initial state to
a stationary distribution p(x) if two conditions are satisfied.

Ergodicity: for all x and y there exists an integer N <∞ such that
for all n ≥ N the probability (W n)xy 6= 0.
Balance: the distribution p(x) satisfies the detailed balance condition

Wxy
Wyx

=
p(y)

p(x)
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Diagrammatic Monte Carlo

Metropolis-Hastings Algorithm

An update from a configuration x to a new configuration y is proposed
with a probability W prop

xy but accepted only with probability W acc
xy . If the

proposal is rejected the old configuration x is used again.

W acc
xy = min

[
1,

p(y)W prop
yx

p(x)W prop
xy

]
. (15)

Wxy = W prop
xy W acc

xy (16)
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Diagrammatic Monte Carlo

Hybridization Update Diagrams

(a) original configuration; (b) removal of a segment; (c) shift of an end
point of a segment; (d) insertion of an antisegment; (e) removal of an
antisegment; (f) removal of another antisegment such that the remaining
segment ”wraps” around β.
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Diagrammatic Monte Carlo

Segment Representation

Segment representation make it possible to treat interaction by looking
at overlap of lines. Extension to density - density interactions for multiple
orbitals is made straightforward as well.
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Diagrammatic Monte Carlo

Segment Representation

Possible hybridization lines of a particular segment configuration.
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Diagrammatic Monte Carlo

CTQMC Workflow

Initialize

Calculate Transition

Probability

Old Configuration

New Configuration

Measure Quantities
Choose 

Update

Metropolis

Segment Shift Segment Addition Segment Removal

Reject

Accept
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