An effecient numerical approach to model 2D S=1/2 antiferromagnet and doped CuO2 planes. for EVO Seminar Louisiana State University November 2<sup>nd</sup>, 2011

> Bayo Lau Department of Physics Columbia University

#### Acknowledgements



#### George Sawatzky



Ilya Elfimov



#### Mona Berciu

CFI, CIfAR, CRC, NSERC, Sloan Foundation, and Westgrid



#### 1) Introduction

#### 2) Numerical Approach

3) Application to Doped Scenarios

4) Summary

### Motivations

- A full understanding of cuprates should elucidate the role of a doped AFM.
- Can we make more direct comparisons between models with increasing level of microscopic details?



Phys. Rev. B 78 054578 (2008)

#### 3-band $\rightarrow$ 2+1 band

$$H_{3B} = t_{pd} \sum [(p_{l+\epsilon,\sigma}^{\dagger} - p_{l-\epsilon,\sigma}^{\dagger})d_{l,\sigma} + h.c.] + t_{pp} \sum (-1)^{n_{\delta}} p_{l+\epsilon+\delta,\sigma}^{\dagger} p_{l+\epsilon,\sigma} - t_{pp}' \sum (p_{l-\epsilon,\sigma}^{\dagger} + p_{l+3\epsilon,\sigma}^{\dagger}) p_{l+\epsilon,\sigma} + \Delta_{pd} \sum p_{l+\epsilon,\sigma}^{\dagger} p_{l+\epsilon,\sigma} + U_{pp} \sum p_{l+\epsilon,\uparrow}^{\dagger} p_{l+\epsilon,\downarrow} p_{l+\epsilon,\downarrow} + U_{dd} \sum d_{l,\uparrow}^{\dagger} d_{l,\uparrow} d_{l,\downarrow}^{\dagger} d_{l,\downarrow}.$$



B. Lau, M. Berciu, and G. A. Sawatzky, Phys. Rev. Lett. 106 036401 (2011)

#### Exchange terms

• 
$$H_{J_{dd}} = J_{dd} \sum \overline{S}_{l\pm 2\epsilon} \cdot \overline{S}_l \Pi_{\sigma} (1 - p_{l\pm \epsilon,\sigma}^{\dagger} p_{l\pm \epsilon,\sigma})$$



• 
$$H_{J_{pd}} = J_{pd} \sum \overline{S}_l \cdot \overline{S}_{l\pm\epsilon}$$

• 
$$\sqrt{\frac{1}{6}}(|\uparrow\downarrow\rangle+|\downarrow\uparrow\rangle)|\sigma\rangle_h-\sqrt{\frac{2}{3}}|\sigma\sigma\rangle|-\sigma\rangle_h$$

Emery and Reiter, PRB 38 4547 (1988)

LBS, PRL (2011)

#### **Kinetic Terms**

$$T_{0} = t_{pp} \sum (-1)^{n_{\delta}} p_{l+\epsilon+\delta,\sigma}^{\dagger} p_{l+\epsilon,\sigma}$$

$$-t'_{pp} \sum (p_{l-\epsilon,\sigma}^{\dagger} + p_{l+3\epsilon,\sigma}^{\dagger}) p_{l+\epsilon,\sigma}$$

$$T_{swap} = -t_{sw} \sum (-1)^{n_{\eta}} p_{l+\epsilon+\eta,\sigma}^{\dagger} p_{l+\epsilon,\sigma'} |\sigma'_{l_{\epsilon,\eta}}\rangle \langle \sigma_{l_{\epsilon,\eta}}|$$

$$p^{1}p^{2}d^{9} \stackrel{\uparrow}{\uparrow} \stackrel{\uparrow}{\uparrow} \stackrel{\uparrow}{\downarrow} \stackrel{\uparrow}{\downarrow} \stackrel{\uparrow}{\downarrow} \stackrel{\uparrow}{\downarrow} \stackrel{\uparrow}{\downarrow} \stackrel{\uparrow}{\downarrow} \stackrel{\uparrow}{\downarrow} \stackrel{\uparrow}{\downarrow} \stackrel{\downarrow}{\downarrow} \stackrel{\uparrow}{\downarrow} \stackrel{\uparrow}{\downarrow} \stackrel{\downarrow}{\downarrow} \stackrel{\uparrow}{\downarrow} \stackrel{\downarrow}{\downarrow} \stackrel{\uparrow}{\downarrow} \stackrel{\downarrow}{\downarrow} \stackrel{\downarrow}{\downarrow} \stackrel{\uparrow}{\downarrow} \stackrel{\downarrow}{\downarrow} \stackrel{\downarrow}{$$

#### **Benefits**

 charge-transfer physics, AFM physics, and a more faithful 2D lattice structure.

 has the same form (Heisenberg) as the t-J model at zero-doping limit.

• direct comparison with the t-J model can single out the implications of oxygen-specific physics.

# **Direct Comparison**

• Matrix diagonalization is a good starting point.

 t-J model: N=40 for 0 hole; N=32 for 1, 2, 4 holes; doping removes spin degrees of freedom.

previous multiband attempts: 2 holes for N=16

 New numerical formulation: N=64 for 0 hole, N=32 for 1 and 2 holes. Numerical Approach

# Lanczos Tridiagonalization

- Repeated application of H to a random vector will yield an extremal eigen-pair eventually.
- Lanczos: a much smaller basis is constructed by selection of dominent eigen-pairs.



### **Basic Idea**

 In practice, Lanczos is limited by the exponentially scaling matrix size.

• The standard procedure is block-diagonalization using quantum numbers.



• We know additional attributes.

#### Recall...

• S=1/2 Heisenberg AFM at zero-doping

$$H_{J_{dd}} = J_{dd} \sum \overline{S}_{l\pm 2\epsilon} \cdot \overline{S}_l \Pi_{\sigma} (1 - p_{l\pm\epsilon,\sigma}^{\dagger} p_{l\pm\epsilon,\sigma})$$







# **Staggered Magnetization**

• consider a spin-rotational invariant bi-partite description, e.g.

$$|S=0,S^{z}=0\rangle = \sum \frac{(-1)^{S_{A}-m_{A}}}{\sqrt{2S_{A}+1}} \delta_{S_{A},S_{B}} \delta_{m_{A},-m_{B}} |S_{A},m_{A}\rangle |S_{B},m_{B}\rangle$$

GS's staggered magnetization is known

$$\hat{m^2} = \frac{1}{N^2} \left( \sum_r (-1)^{|r|} \hat{S}_r \right)^2 = \frac{\left(\hat{S}_A - \hat{S}_B\right)^2}{N^2} = \frac{1}{N^2} \left( 2\hat{S}_A^2 + 2\hat{S}_B^2 - \hat{S}^2 \right)$$

 m<sup>2</sup> and other numerical signtures suggest within each sublattice, N/8 spins add to zero while the rest adds to maximal value.

B. Lau, M. Berciu, and G. A. Sawatzky, Phys. Rev. B 81 172401 (2010)

### Requirements

• Select basis states according to sub-lattice spin.

• Systematic convergence.

 Basis transformation + Lanczos must cost less than Lanczos on original basis.

• Extendable to doped scenario.

# **Basis Formulation**

 octa-partition of spins, e.g. a singlet Clebsch-Gordan series

$$|0,0,f(\{S_i\})\rangle = \sum c_{\{S_i,m_i\}} \prod_{i=0}^7 |S_i,m_i\rangle$$

 Easy bookkeeping of hopping matrix elements for doped wavefunction of the form

$$rac{1}{\sqrt{N}}\sum e^{iKl}p_{l,\sigma_{l}}^{\dagger}\left(\prod_{\Delta l}p_{l+\Delta l,\sigma_{\Delta l}}^{\dagger}
ight)|\overline{\sigma}
angle_{l}$$



### **Recursive Enumeration**



- Define completeness  $C_s \in [0, 1]$ .
- Include N/2-basis states with sub-lattice spin of N/4 down to S<sub>A/B</sub>≥N/4(1-C<sub>s</sub>).

LBS PRB (2010)

#### Postulation

 ¼ is the lowest C<sub>s</sub> which allows N/8 sub-lattice spins adding to zero. The corresponding basis should capture low-energy states.

 can extract explicit wavefunctions for undoped case with up to 64 spins.

| Ν  | $C_s = \frac{1}{4}$ | S = 0              | $S_z = 0$             | Full     |
|----|---------------------|--------------------|-----------------------|----------|
| 16 | 50                  | 1430               | 12870                 | $2^{16}$ |
| 32 | 11042               | 35357670           | 601080390             | $2^{32}$ |
| 64 | $9.8 	imes 10^8$    | $5.55	imes10^{16}$ | $1.83 \times 10^{18}$ | $2^{64}$ |

#### Convergence (undoped)



LBS PRB (2010)

#### **Observables** (undoped)



#### Application to doped AFM

#### Recall...

$$H_{3B} = t_{pd} \sum [(p_{l+\epsilon,\sigma}^{\dagger} - p_{l-\epsilon,\sigma}^{\dagger})d_{l,\sigma} + h.c.] + t_{pp} \sum (-1)^{n_{\delta}} p_{l+\epsilon+\delta,\sigma}^{\dagger} p_{l+\epsilon,\sigma} - t_{pp}' \sum (p_{l-\epsilon,\sigma}^{\dagger} + p_{l+3\epsilon,\sigma}^{\dagger}) p_{l+\epsilon,\sigma} + \Delta_{pd} \sum p_{l+\epsilon,\sigma}^{\dagger} p_{l+\epsilon,\sigma} + U_{pp} \sum p_{l+\epsilon,\uparrow}^{\dagger} p_{l+\epsilon,\downarrow} p_{l+\epsilon,\downarrow} + U_{dd} \sum d_{l,\uparrow}^{\dagger} d_{l,\uparrow} d_{l,\downarrow}^{\dagger} d_{l,\downarrow}.$$



B. Lau, M. Berciu, and G. A. Sawatzky, Phys. Rev. Lett. 106 036401 (2011)

#### Generalization

• (N+n)-hole basis of the form  $\frac{1}{\sqrt{N}} \sum e^{iKl} p_{l,\sigma_l}^{\dagger} \left( \prod_{\Delta l} p_{l+\Delta l,\sigma_{\Delta l}}^{\dagger} \right) |\overline{\sigma}\rangle_l$ 



B. Lau, M. Berciu, and G. A. Sawatzky, Phys. Rev. B 84 165102 (2011)

### Convergence (1 hole, N=32)



# Solution ( $C_s = 1$ 1-hole N=32)



# Polaronic structure (1-hole, N=32)

• A local spin degree of freedom around the S=1/2 three-spin-polaron core.

S=1/2

S=3/2



# Further numerical support of C<sub>s</sub>

• Tabulate exact one-hole GS's probability in terms of sub-lattice spin.

C  $S_A \setminus^{S_B}$ 0 1 2 7 3 6 4 5 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.00 1 2 0.00 0.03 0.14 0.16 0.00 0.00 0.00 0.00 0.00 3 0.00 0.00 0.16 0.69 0.68 0.00 0.00 0.00 0.00 0.00 4 0.00 0.00 0.00 0.68 2.52 2.21 0.00 0.00 5 0.00 0.00 0.00 0.00 2.21 7.06 5.28 0.00 0.00  $C_{s} = 1/4$ 6 0.00 0.00 5.28 14.24 8.44 0.00 0.00 0.00 0.00 7 0.00 0.00 0.000.000.00 0.00 8.44 18.06 6.85 8 0.00 0.00 0.00 0.00 0.00 0.00 6.85 0.00 9.97

•  $C_s \sim 1/4 + O(1/N)$  required.

LBS, PRB (2011)

### Convergence (2 holes, N=32)



### Some N=32 two-hole Results

• Charges form S=1/2 cores, but their spin entities are carried outside of the cores.

 Band-structure distinctly different from N=16 three-band. Similar to N=32 t-t'-t"-J model, but...

• Exception: the lowest S=0 state is a d<sub>x2-y2</sub> local pair. Located ~W<sub>1h</sub> above GS, it is a direct signature of competition between kinetic energy and d<sub>x2-y2</sub> local attraction at low-doping. LBS, PRB (2011)

# Summary

- A stable, systematic, and efficient approach for doped and undoped AFM.
- 1- and 2-hole N=32 comparison quantified several oxygen-specific characters.

