

Correlation Effects in Quantum Spin Hall Insulators

Zi Yang Meng

Louisiana State University

- Martin Hohenadler
- Fakher F. Assaad
- Thomas C. Lang Stefan Wessel
- **RWTH** Aachen University

Universität Würzburg

- Alejandro Muramatsu Universität Stuttgart
- Z. Y. Meng et al., Nature 464, (2010)
- M. Hohenadler et al., PRL 106, (2011)
- Z. Y. Meng et al., in preparation

Motivation

Topological / Quantum spin-Hall insulators

- New state of matter from strong spin-orbit (SO) coupling.
- Predicted and realized in HgTe QWs.

Bernevig et al., Science 2006; König et al., Science 2007

Correlated Dirac fermions

- Hubbard model on the honeycomb lattice, Quantum spin liquid phase. Meng et al., Nature (2010)
- Massless Dirac fermions in Graphene with SO coupling.
 Kane and Mele, Phys. Rev. Lett. (2005)

Topological / Quantum spin-Hall insulator + Interactions Hasan and Kane, Rev. Mod. Phys. (2010)

Hasan and Kane, Rev. Mod. Phys. (2010) Pesin and Balents, Nature Physics (2010) Rachel and Le Hur, Phys. Rev. B (2010) D. Zheng et al., arXiv:1011.5858 (2010) S.-L. Yu et al., Phys. Rev. Lett. (2011)

D.-H. Lee, arXiv:1105.4900 (2011); Griset and Xu, arXiv:1107.1245 (2011)

U/t

Kane-Mele-Hubbard Model

$$H = -t \sum_{\langle i,j \rangle} c_i^{\dagger} c_j^{} + i\lambda \sum_{\langle \langle i,j \rangle \rangle} \nu_{ij} c_i^{\dagger} s^z c_j^{} + \frac{U}{2} \sum_i (c_i^{\dagger} c_i^{} - 1)^2$$

- Nearest-neighbor hopping t
- Spin-orbit coupling λ
- Coulomb repulsion U

•
$$\lambda \neq 0$$
: SU(2) \rightarrow U(1), C₆ \rightarrow C₃

U=0 Kane-Mele Model

- Time reversal invariant QSH insulator
- Spin-orbital bulk gap $\Delta_{SO} = 3\sqrt{3}\lambda$
- Gapless, helical edge states (topologically

protected)

Kane and Mele, Phys. Rev. Lett. (2005) C. Wu et al., Phys. Rev. Lett. (2006)

Limiting cases

Method

Projective (zero temperature) Determinantal Quantum Monte Carlo

- Hubbard-Stratonovich transformation, auxiliary field of integer spins
- Scales as $\sim N_{\tau}N^3$ (N_{τ} imaginary time slices, $N = 2L^2$ system size)
- Sign-problem free at half-filling

 $\lambda = 0$: Heisenberg AFMI with J = 4t²/U at large U/t $\lambda > 0$: z-direction frustrated, easy-plane XY order

Magnetic structure factor:

$$S_{\rm AF}^{xy} = \frac{1}{L^2} \sum_{i,j} (-1)^{i+j} \langle \Psi_0 | S_i^+ S_j^- + S_i^- S_j^+ | \Psi_0 \rangle$$

U(1) symmetry is spontaneously broken, expected (2+1)D XY universality class D.-H. Lee, arXiv (2011); Griset and Xu, arXiv (2011)

 $\lambda = 0$: Heisenberg AFMI with J = 4t²/U at large U/t $\lambda > 0$: z-direction frustrated, easy-plane XY order

Magnetic structure factor:

$$S_{\rm AF}^{xy} = \frac{1}{L^2} \sum_{i,j} (-1)^{i+j} \langle \Psi_0 | S_i^+ S_j^- + S_i^- S_j^+ | \Psi_0 \rangle$$

U(1) symmetry is spontaneously broken, expected (2+1)D XY universality class D.-H. Lee, arXiv (2011); Griset and Xu, arXiv (2011)

 $\lambda = 0$: Heisenberg AFMI with J = 4t²/U at large U/t $\lambda > 0$: *z*-direction frustrated, easy-plane XY order

Magnetic structure factor:

$$S_{\rm AF}^{xy} = \frac{1}{L^2} \sum_{i,j} (-1)^{i+j} \langle \Psi_0 | S_i^+ S_j^- + S_i^- S_j^+ | \Psi_0 \rangle$$

U(1) symmetry is spontaneously broken, expected (2+1)D XY universality class D.-H. Lee, arXiv (2011); Griset and Xu, arXiv (2011)

 $\lambda = 0$: Heisenberg AFMI with J = 4t²/U at large U/t $\lambda > 0$: *z*-direction frustrated, easy-plane XY order

Magnetic structure factor:

$$S_{\rm AF}^{xy} = \frac{1}{L^2} \sum_{i,j} (-1)^{i+j} \langle \Psi_0 | S_i^+ S_j^- + S_i^- S_j^+ | \Psi_0 \rangle$$

U(1) symmetry is spontaneously broken, (2+1)D XY universality class

What happens to QSL at finite at $\lambda > 0$?

- No local order parameter in the QSL, nor TBI.
- Single particle gap at the Dirac point:

 $G(\mathbf{K},\tau) = \langle \Psi_0 | \, c^{\dagger}_{\mathbf{K},\sigma}(\tau) c^{}_{\mathbf{K},\sigma} | \Psi_0 \rangle \approx Z \exp(-\tau \Delta_{\rm sp})$

M. Hohenadler et al., Phys. Rev. Lett. 106, (2011)

QSL to TBI transition with increasing λ

Extrapolated single particle gap:

- QSL TBI transition at $\lambda_{\rm C} \approx 0.03t$
- States not adiabatically connected

Free energy derivative:

 $\frac{\partial F}{\partial \lambda} = \langle i \sum_{\langle \langle i,j \rangle \rangle} \nu_{ij} c_i^{\dagger} s^z c_j^{} \rangle$

Transition appears to be continuous. Predicted to be 1st order

Griset and Xu, arXiv (2011)

Effect of Spin-Orbit coupling on semi-metal

- Agree with U=0 results: $\Delta_{sp} = 3\sqrt{3}\lambda$, $\Delta_s = 6\sqrt{3}\lambda$.
- SM to TBI transition at $\lambda = 0^+$.

5 different phases

Benchmark & unify recent works:

- Rachel and Le Hur, Phys. Rev. B (2010) (mean-field, slave rotor)
- D. Zheng et al., arXiv:1011.5858 (2010) (QMC)
- S.-L. Yu et al., Phys. Rev. Lett. (2011) (VCA)
- Yamaji and Imada, Phys. Rev. B (2011) (VMC)
- W. Wu et al., arXiv:1106.0943 (2011) (DMFT)
- D.-H. Lee, arXiv:1105.4900 (2011) (QFT)
- Griset and Xu, arXiv:1107.1245(2011) (QFT)