



#### Study of the Effect of the Blood Pressure and the Nanoparticle Concentration on the Delivery of the Nanoparticles to the Tumor Tissues by Simulations

Vishwa Priya<sup>1</sup> and Pedro Derosa<sup>1,2</sup> <sup>1</sup>Louisiana Tech University, Institute for Micromanufacturing <sup>2</sup>Grambling State University, Physics Department





### SPECIFIC AND TARGETED DRUG DELIVERY IS A NECCESITY!



# NANOCARRIERS IN DRUG DELIVERY



- Polymer based nanoparticles:
  - Albumin- taxol(Abraxen)[1]
     PEG-PLA-Taxol[2]
- Liposomes:
  ▶Doxil[3]
- Carbon nanotubes
   CNT-amphotericin B[4]

[1] W. J. Gradishar, S. Tjulandin, N. Davidson, H. Shaw, N. Desai, P. Bhar, M. Hawkins, and J. O'Shaughnessy, "Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer," *J Clin Oncol*, vol. 23, pp. 7794-803, Nov 1 2005.

[2] T. Y. Kim, D. W. Kim, J. Y. Chung, S. G. Shin, S. C. Kim, D. S. Heo, N. K. Kim, and Y. J. Bang, "Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies," *Clin Cancer Res*, vol. 10, pp. 3708-16, Jun 1 2004.

[3] M. Markman, "Pegylated liposomal doxorubicin in the treatment of cancers of the breast and ovary," *Expert Opin Pharmacother*, vol. 7, pp. 1469-74, Aug 2006.

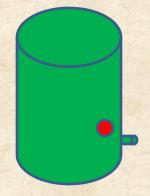
[4] W. Wu, S. Wieckowski, G. Pastorin, M. Benincasa, C. Klumpp, J.-P. Briand, R. Gennaro, M. Prato, and A. Bianco, "Targeted Delivery of Amphotericin B to Cells by Using Functionalized Carbon Nanotubes," *Angewandte Chemie International Edition*, vol. 44, pp. 6358-6362, 2005.

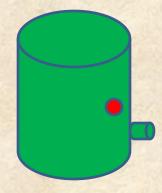




- Blood Pressure in the tumor microvessels
- Size of the Nanoparticle
- Density of Nanoparticles

# UNIQUE PATHOPHYSIOLOGY OF TUMOR TISSUES


- Tumor microvessels are much "leakier" than those in normal vessels[5]
- Angiogenesis[5]
- Increased expression of the pre –angiogenic factors[5]


[5] J. M. Brown and A. J. Giaccia, "The Unique Physiology of Solid Tumors: Opportunities (and Problems) for Cancer Therapy," *Cancer Research*, vol. 58, pp. 1408-1416, April 1, 1998.



#### RELATIVE SIZE OF THE NANOPARTICLE







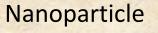
#### healthy tissue blood vessel

Tumor tissue blood vessel



## FROM THE LITERATURE




- The median diameters of the pores in the liver sinusoids is 106 nm[6].
- The maximum pore size of the tumor vessel is assumed to be the maximum size of the liposome which could penetrate into the tumor tissue (400-600 nm)[6].
- Diameter of a capillary vessel is 4-9 um[7].
- Thickness of the capillary wall is about 0.5 um[7].

[6] F. Yuan, M. Dellian, D. Fukumura, M. Leunig, D. A. Berk, V. P. Torchilin, and R. K. Jain, "Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size," *Cancer Research*, vol. 55, pp. 3752-3756, September 1, 1995 1995.
[7] J. E. Hall and A. C. Guyton, *Guyton and Hall textbook of medical physiology*, 12th ed. Philadelphia, Pa.: Saunders/Elsevier.



# DIMENSIONS OF THE BLOOD VESSEL IN OUR MODEL

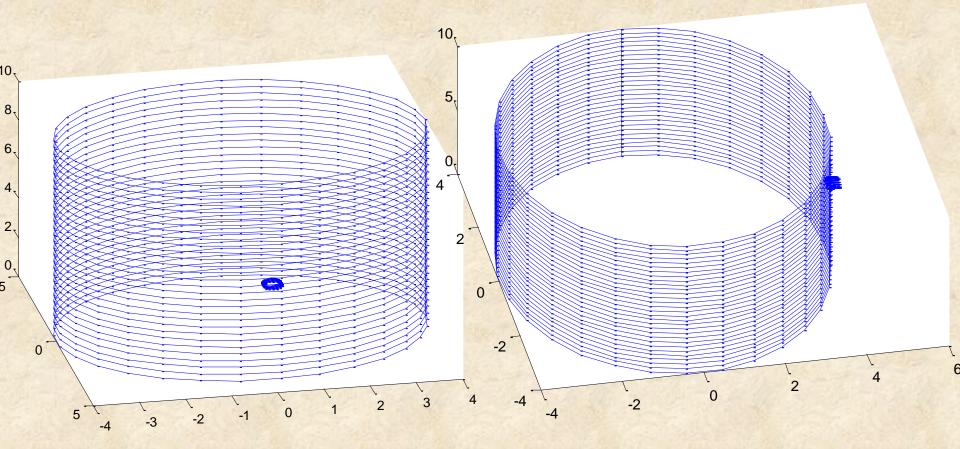






Blood vessel

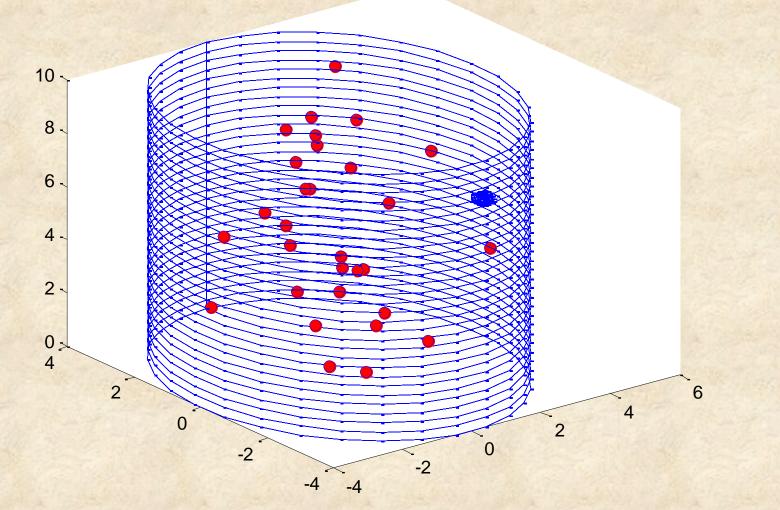
Diameter of nanoparticle=100 nm.


Diameter of blood vessel =8 um.

Length of the pore= 0.3 um.

Diameter of the pore= 0.6 um Length of unit blood vessel= 10 um.

Length of the blood vessel= 1 mm


# FIGURE OF THE BLOOD VESSEL





**STEP**1







**STEP 2** 



- For each time step, the nanoparticles are displaced.
- Displacement is due to:
   Velocity of the flow
   Random movement due to collisions with other molecules.



### **VELOCITY OF THE FLOW**



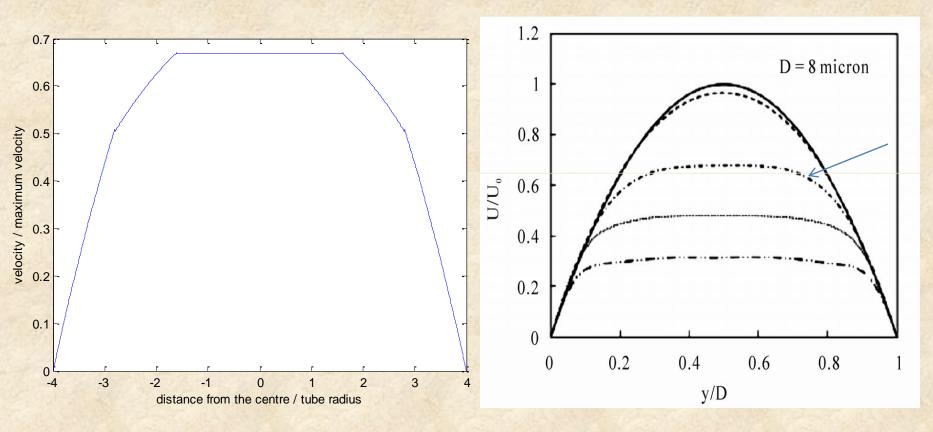
• Velocity of the flow is derived from the Hagen-poiseuille equation[8].

$$\mathbf{v} = \frac{P(R^2 - x^2)}{4\eta l}$$

Where:

- $\checkmark$  V= velocity of the nanoparticle
- $\checkmark$  P= pressure drop across the blood vessel.
- $\checkmark$  R= radius of the blood vessel
- $\checkmark$  x= distance of the nanoparticles from the centre of the blood vessel
- ✓  $\eta$ =dynamic viscosity of the blood plasma, 1.1×10<sup>-3</sup> Pa Sec
- $\checkmark$  l=length of the blood vessel

[8] G. A. Truskey, F. Yuan and D. F. Katz, *Transport Phenomenon in Biological Systems*, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 2008



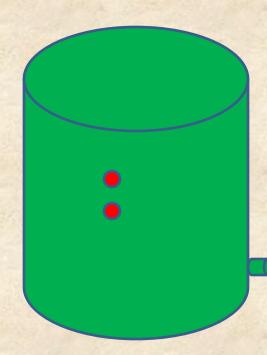



#### **VELOCITY PROFILE**

In our model

From the literature[9]




[9] T. Wong, and Z. Xing, "Characterization of Blood Flow in Capillaries by Numerical Simulation," *Journal of Modern Physics*, vol.1, pp. 349-356, September 15, 2010.

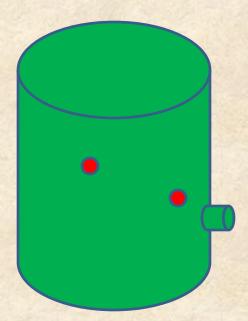


#### **RANDOM MOVEMENT**



• Monte Carlo Techniques generate random movement.



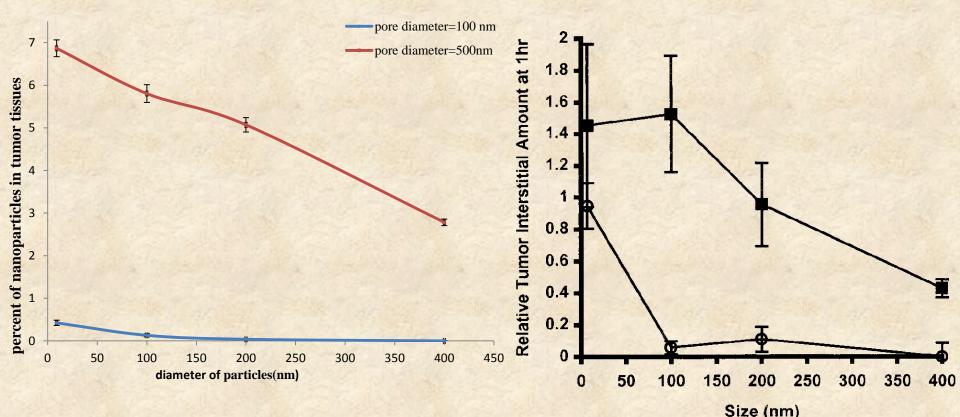





## **BOUNDARY CONDITION**







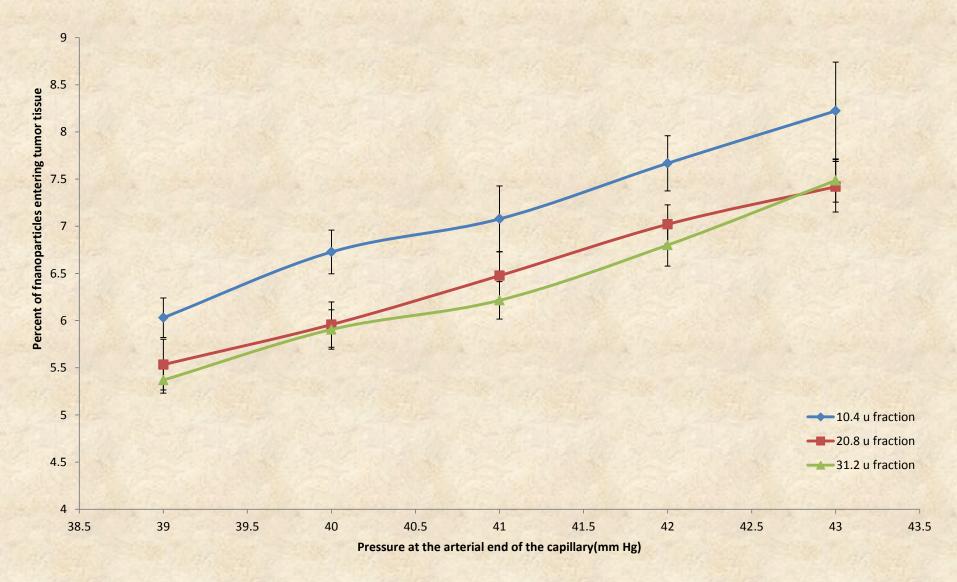



# RESULTS COMPARED TO THE EXPERIMENTAL DATA

Nanoparticle Delivery into Tumor Tissues as a Function of their Size

Experimental Data[10]

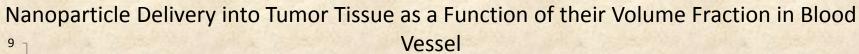


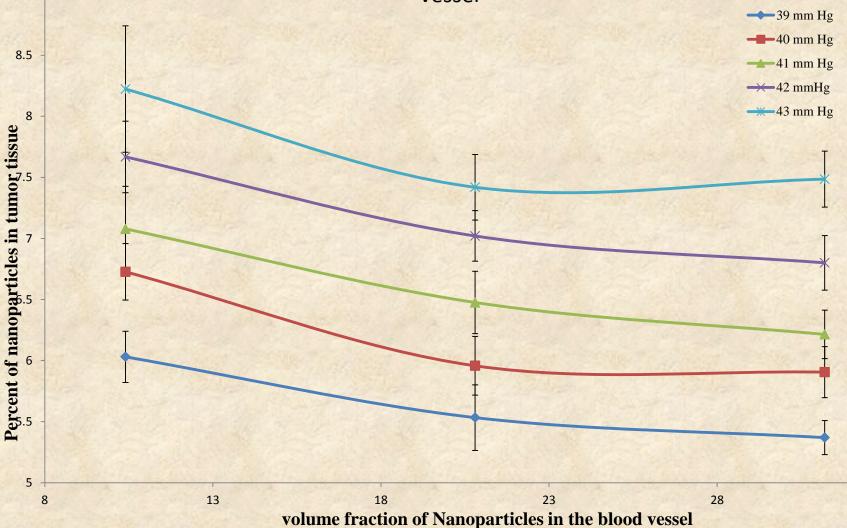

[10] G. Kong, R. D. Braun, and M. W. Dewhirst, "Hyperthermia Enables Tumor-specific Nanoparticle Delivery: Effect of Particle Size," *Cancer Research*, vol. 60, pp. 4440-4445, August 8, 2000.



#### RESULTS




#### Nanoparticle Delivery into Tumor Tissue as a function of Blood pressure






RESULTS







33



#### CONCLUSIONS



- Delivery of nanoparticles to the tumor tissue increases with the increased blood pressure.
- Delivery of nanoparticles to the tumor tissue decreases with the increased concentration of nanoparticles in drug but the trend is not steady.





#### ACKNOWLEDGEMENT

 We acknowledge the financial support of this research by "Louisiana Alliance for Simulation-Guided Materials Applications- LA-SIGMA", Federal Award Number: EPS-1003897



Louisiana Alliance for Simulation-Guided Materials Applications