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OUTLINE

l. INTRODUCTION: (a) The system of equation defining the density functional
approximation (DFA).

II. MOTIVATIONS: To describe with ab-initio, self-consistent calculations the
properties of materials. In search of a better functional to describe strongly
“correlated” systems within DFT

lIl. DFT: No doubt a very powerful and successful theory for studying material
properties. An overview will be given.

V. Range Separated DFT: A powerful tool for improving KS-DFT to include
many-body effects (long-range correlation).

(a). ACDFT Connection (RPA)

(b). Coupled Cluster Theory

V. CONCLUSION:



Motivations

v/ The extreme approximations in standard DFT in obtaining the
position dependent exchange-correlation (xc) energy per particle
Exc(1r) for many-electron system.

v The also very obvious extreme approximations in obtaining the xc
potential V.. (7).

Note: In current implementation in most electronic structure
calculations, these two quantities are calculated using LDA functionals
and 1ts semi-local variants.

Very Important: While these LDA functionals in DFT obtain correctly
many propertics of materials self-consistently from ab-initio first
principle methods, they fail to yield useful information in the regime of
strongly correlated systems.




Fundamentals of HKS-DFT
] The ground state density is the basic variable. . O O O

J Map many interacting electrons with real
potential to non-interaction fictitious particles O
with effective potential V, ¢ (r). O O

J From the mapping above, one gets the so-called KS anstaz:
HK KS HK,

Vo No(1) «—— no(N—v
FIn(N]=T [n(r)] + Uln()] + Exc[n(r)]: qu _.qTJ CIM—C%-

J With all these approximations, one now has a single particle KS equation:

[— %Vz + Vesp(t) — €is(M] @je(r) =0

n(r) + SExc[m(r)ny (1] : Ny (r)= Zocc|¢jff(r)|2

|r—7| dng(r)

where V(1) = Vo, (r) + [ ar



. THE SYSTEM OF EQUATIONS
Defining the density functional approximation

EQUATION 1 (Only for the ground state)
1oy eya (N0 '
_ ZV +V€Xt(r)+I\F—F'\

Subject to Equation 2 (Sum over occupied states only)

N 2 Sum over occupied
n(r) :Z‘(Dn (r)‘ states only
=1

Kohn and Sham explicitly stated that the system of equations defining LDA has to be
solved self-consistently [See Page A1134 of Phys. Rev., Vol. 140, No. 4A, Pages
A1133-A1138 (1965)]. Once an LDA potential is selected, the system reduces to the

two equations above.

dF+V, (n(P)) || @,) = &, |®@,)




Il. DFT Methods Presently Implemented

O Linear combination of Atomic Orbitals (LCAQO) method: BZW
method is used and band gap and other related electronic
properties are predicted with high accuracy.

4 Linearized Augmented Plane wave (LAPW) method: WIEN2K
electronic structure package is used. We have a systematic way
of obtaining with high accuracy properties of materials.




Range Separated DFT: (a) ACDFT

. The trick, decomposed the electron-electron (Coulomb) interaction into
long-range and short-range components:

1 _
- = IV eue (r)+V e“ o (1); u is a parameter controlling the

separation
) Treat the short-range component V/ eﬁ o (T) with DFT

] Treat the long-range component V é‘e (r)with any many-body methods.

Examples: Several variants of RPA, Configuration interaction, Coupled
cluster theory, Second-order perturbation theory, etc.

J The universal functional F[n(r)] = mlgn(lplf" + I7ee|1p) 1s also decomposed

into: -
F[nm] = F* [n(M] + F ¥ [n()]

where T is the kinetic energy operator and V,, = X, j 1/1j 1s the Coulomb
interaction operator.



Range Separated DFT Contd: (a) ACFDT

J Then, the exact ground state energy of an N-electron system, via variational
principle (minimization over multi-determinant wave functions v ) is:

E = mnin F[n(r)] + fn(r)lzle(r)dr

= min{<¢|7’ + Ve + 17:6 |1,D) + EHII [ny, ] }

XC

: N U
— T T
ﬁLnn (1,0 |T+Vee|1,b )+F

[nyr(r)] + f Nyph MV, (r)dr
where 1, is the nuclei-electron interaction, V = % [[ dr,V s (rip)ft (ry, 1) is the

long-range electron-electron interaction which in real implementation is normally
erf(ur)

approximated using the error function V ;‘e = , the quantity A (ry, 1) is the pair

r

density operation, and E Hﬁ is the corresponding short-range Hartree-exchange-
XcC

correlation density functional. Here, Y 1s given by the Euler-Lagrange equation:

HHpH) = EFpH), where H* =T +V ¥ +V #; V ¥ is external local potential



(a) The Adiabatic Connection

(dWhat is the meaning of ACFDT?
This involves extracting nonlocal ground-state correlations from the linear charge
density response function. How?

J Generally, the interaction is controlled by y, and it ranges between 0 and .

JHow is the minimization carried out? First, minimization is restricted to single
determinant wave functions ¢ (RSH):

. ~ o Lol u
Epsy = < ‘T |4 V ) E
RSH mq&n{ PIT + Ve + ¢)+ H,. [ng ]}

ee

where the minimizing determinant ¢ 1s given by the Euler-Lagrange equation.

J Since Epgy is not exact. Thus, we define E = Epgy + E ’;‘ The adiabatic-
connection is then introduced via the energy expression:

A is a coupling

Ey = ngn {(l/)"f + V:ne + VHxlpr [(f)o] +Av # ‘1/)) tE Hzc [nIIJ ] } ; constant

TH K _Y K - : : 5 U
where V5 =V -V, X HF 1S the long-range fluctuation perturbation operator. V', X HF
U

is the sum of the local Hartree part V I’j and nonlocal exchange part V X HF"



(a) The Adiabatic Connection Contd

(J Taking a derivative of E, gives:
E=Eyoo+ fy A5V #[4): Erco = Ersu — (o7 * |¢0)

J With this, the long-range correlation energy is:

1

1
E?z%+!dl[<¢§|f)”|¢) <¢,O|Vﬂ|¢0 =%Ofd/17’r ] C’:‘A]

where P C“l is the four index correlation contribution of 2-particle density matrix in a

one-electron basis, 7r is the trace over the remaining two indices, and * stands for
contraction of two indices.



Exact Formal Treatment of the Long-Range P C“A

. In terms of space-spin-time coordinates, let 1 = (x1,t;) and 2 = (x5, t;).
Then, a self-consistent Dyson equation can be defined as:

1 1 U Im
(G }\) (12) =G & 12 -1 1) -Arfa2)

where 245 (1,2) = X Hx‘f:’ A |G ‘{](1,2) =) H;"A [G ,1(1,2) is the long-range self-energy.

1 o _ . .
J Recall that P C‘,‘A = — ﬁf_oo due—10* [Xi (iw) — x5, (w)] + Aﬁ

where x‘; (iu) is the imaginary 4-point polarizability given by the solution of Bethe-
Salpeter-type equation:

u ‘1_( u )‘1 u u
(Xx) =Wp) Ml

where y £, = —i GY G4 = —iG4 (1,2)G% (2,1) is the independent particle (IP)
polarization propagator, Af Ifx and f C”A are respectively, long-range HF-type Hartree-
exchange (known as LR-TDHFT or full RPA) and correlation kernels.



(b). Coupled Cluster

The coupled cluster (CC) Hamiltonian (H) is: H |y) = E|y) (a)
The CC wavefunction is defined via the exponential anstaz:
[W)ee =1V ueer =€ |do) = He'4,) = Ee"|4,); (b)
2 n
where T =) T, is the excitation operator with, T, = (%) > t-a'bhji.. (€)
N . j...abc...
Generally, the CC Hamiltonian of Eq. (a) Is:
+ 1 + ~t
H =2 fa{@af+ 5 2 (pallrs)iaaaa j+ {4 H|4) (d)
Pq pars
=F, +Vy +(¢,|H|g,) = H, =F, +V, (e)

Then, by similarity transformed normal-ordered Hamiltonian (H ) via BCH:
— — 1 1
H-eTHe' = H=H, +[HN,T1]+[HN,T2]+E[[HN,Tl],T1]+E[[HN,T2],TZ]

RICTRARATS .
Then, by Eq. (e), [Hy. T]=[Fy.T]+[Vy.T]



(b). Coupled Cluster
For coupled cluster double (CCD), CCD equation is:

Eceo =(4|[Hy T2 ]| 4,) 9)

and
0= (@5 |y + [Hy T ]+ [H T T, ] Q

Very important tool in CC theory Is Wick's theorem which on
applying to Egs. (g & h) and taking only connected terms:

Eceo =(4|[Hy T, ].|4,) and 0=(@ (HN+HNT2+%HNTZZJ 4) ()

The CCD correlation energy after lengthy derivation is:

R B
E.™ = ZZ('JHab>tijb = EZ('J‘abﬁijb

ab - - - - - - - - -
t; Is obtained basically by solving the CCD equation in spin-orbital basis




What Next?

O We intend to implement the range separated DFT in NwChem
guantum chemistry code.
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