DFT and Range Separated DFT

<u>C. E. Ekuma</u>, J. Moreno, and M. Jarrell

Department of Physics & Astronomy

Louisiana State University (LSU), Baton Rouge, LA

D. Bagayoko (Department of Physics, Baton Rouge)

D. J. Singh (Material Research Lab., ORNL, Tennessee)

B. Williams, N. Gorind, and K. Kowalski (Environmental Molecular Simulation Lab., PNNL, WA)

A Presentation at the 2011 LA-SiGMA Graduate Student Retreat October 15, 2011

OUTLINE

I. INTRODUCTION: (a) The system of equation defining the density functional approximation (DFA).

II. MOTIVATIONS: To describe with ab-initio, self-consistent calculations the properties of materials. In search of a better functional to describe strongly "correlated" systems within DFT

III. DFT: No doubt a very powerful and successful theory for studying material properties. An overview will be given.

IV. Range Separated DFT: A powerful tool for improving KS-DFT to include many-body effects (long-range correlation).
(a). ACDFT Connection (RPA)
(b). Coupled Cluster Theory

V. CONCLUSION:

Motivations

✓ The extreme approximations in standard DFT in obtaining the position dependent exchange-correlation (xc) energy per particle $\varepsilon_{xc}(r)$ for many-electron system.

✓ The also very obvious extreme approximations in obtaining the xc potential $V_{xc}(r)$.

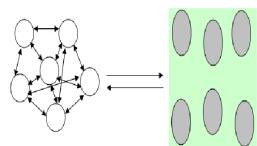
Note: In current implementation in most electronic structure calculations, these two quantities are calculated using LDA functionals and its semi-local variants.

<u>Very Important:</u> While these LDA functionals in DFT obtain correctly many properties of materials self-consistently from ab-initio first principle methods, they fail to yield useful information in the regime of strongly correlated systems.

Fundamentals of HKS-DFT

The ground state density is the basic variable.

Map many interacting electrons with real potential to non-interaction fictitious particles with effective potential V_{eff}(r).



From the mapping above, one gets the so-called KS anstaz:

With all these approximations, one now has a single particle KS equation:

$$\left[-\frac{1}{2}\nabla^2 + V_{eff}(\mathbf{r}) - \varepsilon_{j\sigma}(r)\right]\phi_{j\sigma}(r) = 0$$

where
$$V_{eff}(\mathbf{r}) = V_{ext}(\mathbf{r}) + \int d\hat{r} \quad \frac{n(\hat{r})}{|r-\hat{r}|} + \frac{\delta E_{xc}[n_{\uparrow}(r), n_{\downarrow}(r)]}{\delta n_{\sigma}(r)}; \qquad n_{\sigma}(r) = \sum_{occ} \left|\phi_{j\sigma}(r)\right|^2$$

I. THE SYSTEM OF EQUATIONS Defining the density functional approximation

EQUATION 1 (Only for the ground state)

$$\left[-\frac{1}{2}\nabla^2 + V_{ext}(\vec{r}) + \int \frac{n(\vec{r}')}{\left|\vec{r} - \vec{r}'\right|} d\vec{r}' + V_{xc}(n(\vec{r}))\right] \left|\Phi_n\right\rangle = \varepsilon_n \left|\Phi_n\right\rangle$$

Subject to Equation 2 (Sum over occupied states only)

$$n(r) = \sum_{n=1}^{N} |\Phi_n(r)|^2 \quad \begin{array}{l} \text{Sum over occupied} \\ \text{states only} \end{array}$$

Kohn and Sham explicitly stated that the system of equations defining LDA has to be solved self-consistently [See Page A1134 of Phys. Rev., Vol. 140, No. 4A, Pages A1133-A1138 (1965)]. Once an LDA potential is selected, the system reduces to the two equations above.

II. DFT Methods Presently Implemented

- Linear combination of Atomic Orbitals (LCAO) method: BZW method is used and band gap and other related electronic properties are predicted with high accuracy.
- Linearized Augmented Plane wave (LAPW) method: WIEN2K electronic structure package is used. We have a systematic way of obtaining with high accuracy properties of materials.

Range Separated DFT: (a) ACDFT

☐ The trick, decomposed the electron-electron (Coulomb) interaction into long-range and short-range components:

 $\frac{1}{r} = V \frac{\mu}{ee}(r) + V \frac{\bar{\mu}}{ee}(r); \mu \text{ is a parameter controlling the separation}$

- Treat the short-range component $V \frac{\bar{\mu}}{ee}(r)$ with DFT
- Treat the long-range component $V_{ee}^{\mu}(r)$ with any many-body methods. Examples: Several variants of RPA, Configuration interaction, Coupled cluster theory, Second-order perturbation theory, etc.
- The universal functional $F[n(r)] = \min_{\psi} \langle \psi | \hat{T} + \hat{V}_{ee} | \psi \rangle$ is also decomposed into:

$$F[n(r)] = F^{\mu} [n(r)] + F^{\overline{\mu}} [n(r)]$$

where \hat{T} is the kinetic energy operator and $\hat{V}_{ee} = \sum_{i < j} 1/r_{ij}$ is the Coulomb interaction operator.

Range Separated DFT Contd: (a) ACFDT

Then, the exact ground state energy of an N-electron system, via variational principle (minimization over multi-determinant wave functions ψ) is:

$$E = \min_{n} \left\{ F[n(r)] + \int n(r)\hat{V}_{ne}(r)dr \right\}$$
$$= \min_{\psi} \left\{ \left\langle \psi \middle| \hat{T} + \hat{V}_{ne} + \hat{V} \frac{\mu}{ee} \middle| \psi \right\rangle + E \frac{\bar{\mu}}{H_{xc}} [n_{\psi}] \right\}$$
$$= \min_{\psi^{\mu} \to n} \left\{ \left\langle \psi^{\mu} \middle| \hat{T} + \hat{V} \frac{\mu}{ee} \middle| \psi^{\mu} \right\rangle + F^{\bar{\mu}} [n_{\psi^{\mu}}(r)] + \int n_{\psi^{\mu}}(r)\hat{V}_{ne}(r)dr \right\}$$

=

where \hat{V}_{ne} is the nuclei-electron interaction, $\hat{V}_{ee}^{\mu} = \frac{1}{2} \iint dr_1 \hat{V}_{ee}^{\mu} (r_{12}) \hat{n} (r_1, r_2)$ is the long-range electron-electron interaction which in real implementation is normally approximated using the error function $\hat{V}_{ee}^{\mu} = \frac{\operatorname{erf}(\mu r)}{r}$, the quantity $\hat{n}(r_1, r_2)$ is the pair density operation, and $E_{H_{xc}}^{\mu}$ is the corresponding short-range Hartree-exchange-correlation density functional. Here, ψ^{μ} is given by the Euler-Lagrange equation:

$$\hat{H}^{\mu}\psi^{\mu}\rangle = E^{\mu}\psi^{\mu}\rangle$$
; where $\hat{H}^{\mu} = \hat{T} + \hat{V}^{\mu}_{ee} + \hat{V}^{\mu}$; \hat{V}^{μ} is external local potential

(a) The Adiabatic Connection

What is the meaning of ACFDT?

This involves extracting nonlocal ground-state correlations from the linear charge density response function. <u>How?</u>

Generally, the interaction is controlled by μ , and it ranges between 0 and ∞ .

How is the minimization carried out? First, minimization is restricted to single determinant wave functions ϕ (RSH):

$$E_{RSH} = \min_{\phi} \left\{ \left\langle \phi \left| \hat{T} + \hat{V}_{ne} + \hat{V} \frac{\bar{\mu}}{ee} \right| \phi \right\rangle + E \frac{\bar{\mu}}{H_{xc}} \begin{bmatrix} n_{\phi} \end{bmatrix} \right\}$$

where the minimizing determinant ϕ_0 is given by the Euler-Lagrange equation.

Since E_{RSH} is not exact. Thus, we define $E = E_{RSH} + E_c^{\mu}$. The <u>adiabatic</u><u>connection</u> is then introduced via the energy expression:

$$E_{\lambda} = \min_{\psi} \left\{ \left\langle \psi \left| \widehat{T} + \widehat{V}_{ne} + \widehat{V}_{Hx,HF}^{\mu} \left[\phi_0 \right] + \lambda \widehat{V}^{\mu} \left| \psi \right\rangle + E_{H_{xc}}^{\overline{\mu}} \left[n_{\psi} \right] \right\}; \begin{array}{c} \lambda \text{ is a coupling} \\ \text{constant} \end{array} \right\}$$

where $\hat{V}^{\mu} = \hat{V}_{ee}^{\mu} - \hat{V}_{Hx,HF}^{\mu}$ is the long-range fluctuation perturbation operator. $\hat{V}_{Hx,HF}^{\mu}$ is the sum of the local Hartree part \hat{V}_{H}^{μ} and nonlocal exchange part $\hat{V}_{x,HF}^{\mu}$.

(a) The Adiabatic Connection Contd

Taking a derivative of E_{λ} gives:

$$E = E_{\lambda=0} + \int_0^1 d\lambda \langle \psi_{\lambda}^{\mu} | \hat{V}^{\mu} | \psi_{\lambda}^{\mu} \rangle; \quad E_{\lambda=0} = E_{RSH} - \langle \phi_0 | \hat{V}^{\mu} | \phi_0 \rangle$$

With this, the long-range correlation energy is:

$$E_{c}^{\mu} = \frac{1}{2} + \int_{0}^{1} d\lambda \left[\left\langle \psi_{\lambda}^{\mu} \middle| \hat{V}^{\mu} \middle| \psi_{\lambda}^{\mu} \right\rangle - \left\langle \phi_{0} \middle| \hat{V}^{\mu} \middle| \phi_{0} \right\rangle \right] = \frac{1}{2} \int_{0}^{1} d\lambda \, Tr[\hat{V}^{\mu} * P_{c,\lambda}^{\mu}]$$

where $P_{c,\lambda}^{\mu}$ is the four index correlation contribution of 2-particle density matrix in a one-electron basis, *Tr* is the trace over the remaining two indices, and * stands for contraction of two indices.

Exact Formal Treatment of the Long-Range $P_{c,\lambda}^{\mu}$

In terms of space-spin-time coordinates, let $1 = (x_1, t_1)$ and $2 = (x_2, t_2)$. Then, a self-consistent Dyson equation can be defined as:

$$\left(G_{\lambda}^{\mu}\right)^{-1}(1,2) = G_{0}^{-1}(1,2) - \Sigma_{\lambda}^{\mu}(1,2) - \Delta\Sigma_{\lambda}^{\bar{\mu}}(1,2)$$

where $\Sigma_{\lambda}^{\mu}(1,2) = \Sigma_{Hxc,\lambda}^{\mu} [G_{\lambda}^{\mu}](1,2) - \Sigma_{Hx,\lambda}^{\mu} [G_{0}](1,2)$ is the long-range self-energy.

Recall that
$$P_{c,\lambda}^{\mu} = -\frac{1}{2\pi} \int_{-\infty}^{\infty} du e^{-u0^+} \left[\chi_{\lambda}^{\mu}(iu) - \chi_{\lambda=0}^{\mu}(iu) \right] + \Delta_{\lambda}^{\mu}$$

where $\chi^{\mu}_{\lambda}(iu)$ is the imaginary 4-point polarizability given by the solution of Bethe-Salpeter-type equation:

$$\left(\chi_{\lambda}^{\mu}\right)^{-1} = \left(\chi_{IP,\lambda}^{\mu}\right)^{-1} - \lambda f \frac{\mu}{Hx} - f \frac{\mu}{c,\lambda}$$

where $\chi_{IP,\lambda}^{\mu} = -i G_{\lambda}^{\mu} G_{\lambda}^{\mu} = -i G_{\lambda}^{\mu} (1, 2) G_{\lambda}^{\mu} (2, 1)$ is the independent particle (IP) polarization propagator, λf_{Hx}^{μ} and $f_{c,\lambda}^{\mu}$ are respectively, long-range HF-type Hartree-exchange (known as LR-TDHFT or full RPA) and correlation kernels.

(b). Coupled Cluster

The coupled cluster (CC) Hamiltonian (H) is: $H |\psi\rangle = E |\psi\rangle$ (a) The CC wavefunction is defined via the exponential anstaz: $|\psi\rangle_{CC} = |\psi\rangle_{MBPT} = e^T |\phi_o\rangle \Rightarrow He^T |\phi_o\rangle = Ee^T |\phi_o\rangle;$ (b)

where $T = \sum_{N} T_{N}$ is the excitation operator with, $T_{N} = \left(\frac{1}{n!}\right)^{2} \sum_{j...abc...}^{n} t_{ij...}^{ab...} a^{\dagger} b^{\dagger} ... ji...$ (c)

Generally, the CC Hamiltonian of Eq. (a) is:

$$H = \sum_{pq} f_{pq} \left\{ a_{p}^{+} a_{q} \right\} + \frac{1}{4} \sum_{pqrs} \left\langle pq || rs \right\rangle \left\{ a_{p}^{+} a_{q}^{+} a_{s} a_{r} \right\} + \left\langle \phi_{o} |H| \phi_{o} \right\rangle$$
(d)
$$= F_{N} + V_{N} + \left\langle \phi_{o} |H| \phi_{o} \right\rangle \Longrightarrow H_{N} = F_{N} + V_{N}$$
(e)
Then, by similarity transformed normal-ordered Hamiltonian (H_N) via BCH:
$$\overline{H} = -\overline{T} H \overline{T} + \overline{H} = H = + \left[H - \overline{T} \right] + \left[H - \overline{T} \right] + \frac{1}{2} \left[H - \overline{T} \right] \overline{T} = - \frac{1}{2} \left[H - \overline{T} \right] \overline$$

$$\overline{H} = e^{-T} H e^{T} \Rightarrow \overline{H} = H_{N} + [H_{N}, T_{1}] + [H_{N}, T_{2}] + \frac{1}{2} [[H_{N}, T_{1}], T_{1}] + \frac{1}{2} [[H_{N}, T_{2}], T_{2}] + \left[[H_{N}, T_{1}], T_{2} \right] + \dots$$

$$+ [[H_{N}, T_{1}], T_{2}] + \dots$$

$$(f)$$
Then by Eq. (e) $[H_{N}, T_{1}] - [E_{N}, T_{1}] + [V_{N}, T_{1}]$

Then, by Eq. (e), $[H_N, T] = [F_N, T] + [V_N, T]$

(b). Coupled Cluster

For coupled cluster double (CCD), CCD equation is:

 $E_{CCD} = \left\langle \phi_o \left| \left[H_N, T_2 \right] \right| \phi_o \right\rangle \tag{g}$ and

$$0 = \left\langle \Phi_{ij}^{ab} \left| H_N + \left[H_N, T_2 \right] + \frac{1}{2} \left[\left[H_N, T_2 \right], T_2 \right] \right| \phi_o \right\rangle \tag{h}$$

Very important tool in CC theory is Wick's theorem which on applying to Eqs. (g & h) and taking only connected terms:

$$E_{CCD} = \left\langle \phi_o \left| \left[H_N, T_2 \right]_c \left| \phi_o \right\rangle \text{ and } 0 = \left\langle \Phi_{ij}^{ab} \right| \left(H_N + H_N T_2 + \frac{1}{2} H_N T_2^2 \right)_c \left| \phi_o \right\rangle$$
(i)

The CCD correlation energy after lengthy derivation is:

$$E_{c}^{CCD} = \frac{1}{4} \sum \langle ij || ab \rangle t_{ij}^{ab} = \frac{1}{2} \sum \langle ij | ab \rangle t_{ij}^{ab}$$

 t_{ij}^{ab} is obtained basically by solving the CCD equation in spin-orbital basis

What Next?

We intend to implement the range separated DFT in NwChem quantum chemistry code.

ACKNOWLEDGMENTS

Research funded in part by the National Science Foundation (NSF Award Nos. 0754821), NSF and the Louisiana Board of Regents, through LASIGMA (Award Nos. EPS-1003897, and NSF (2010-15)-RII-SUBR), Department of Energy (DOE) Through Material Research Laboratory. Thank You for Your Attention