

FIRST Training Program on Best Practices in STEM Teaching

Cynthia Sisson and Stephanie Aamodt LSU-Shreveport

Transforming undergraduate biology education through postdoctoral scholars

This material is based upon work supported by the National Science Foundation under Grant No. 0817224 (DUE).

Creating an Online Scientific Teaching Institute from FIRST IV

Similarities:

- Early career training in best practices in science teaching
- Scientific Teaching
- Student-centered classrooms

Differences:

- Biology \rightarrow Physical and Computational Sciences
- 4 day face-to-face workshop → 4 week online course with 4 PolyCom video conference meetings

In this online course, participants will

- **Explore current research** about how students learn and critically evaluate how assessment data provides evidence for student learning.
- Experience all the components of a student-centered classroom in the online course and through analysis of videos of teaching in learner-centered vs. teacher-centered classrooms.
- Learn to actively engage students in both large and small courses, use individual and group learning strategies, and implement multiple kinds of assessments.
- Develop a statement of teaching interests and a teaching demonstration for use in job applications and interviews.

Development of the Workshop

Five units:

- 1. Introductions
- 2. What the Research Says
- 3. What a Student-Centered Course Looks Like
- 4. Designing using Best Practices
- 5. Products for the CV

Using videos, screencasts, discussion forums, wikis, and weekly PolyCom video conferences

Cohort 1

- July 5^{th} July 31^{st}
- 25 Graduate Students and Post-docs LSU Louisiana Tech Southern University
 - Xavier University
- Friday video conferences between LSU-Shreveport and all institutions except Xavier

Units 1 & 2: Introductions / What does the Research Say?

How do you know what works: research and data! Scientific teaching: If this were a new research project, what would your first stop be?

Science Education Research

Re: Group 8's summary

by Cynthia Sisson - Thursday, 12 July 2012, 09:24 PM 50 control experiment 45 40 of students 35 30 25 Number 20 15 10 5 0 2 3 4 5 6 7 8 9 10 11 12 1 Score on test Can you explain the significance of this figure?

Table 4. Comparison of average performance on different assessments for all three courses

Assessment	Performance (average percent of maximum score)			
	F'03	S'04	S'05	
Pretest (12 questions) ^e	34	31	37	
posttest (12 questions) ^a	65	74	72	
Raw learning gain	31	43	38	
Normalized learning gain ^b	46	62	61	
Hourly exams	71	71	73	
Final exam	77	71	76	
Problem sets	82	85	90	
Participation	N/A	86	86	
Final total points	76	81	81	

^aData based only on the 12 questions that were common to all three pretests and posttests (see Appendix A).

⁶Average for each class is shown. Normalized learning gains were computed as described in the text and the legend to Figure 2.

1: the results of pretests (34 % -F'03 and 31% - F'04) indicate that incoming students were equally prepared, the average posttest results were significantly higher in the interactive courses (65% vs 74%).

2: there was only slight difference on the average performance on final exam and problems sets. However, because tests were conceptually different, no meaningful comparison on test performance could be made.

3: comparison of normalized <u>learning gains</u> (defined as actual gain E¹²2 and 8/04 actused

divided by the possible gain, i.e. 100×(posttest-pretest)/(100-pretest)) from F'03 and S'04 courses showed a significant 16% difference.

Re: Group 8's summary

by Fei Han - Thursday, 12 July 2012, 11:12 PM

As Table 1 showed, there is no significant difference in the test scores before the experiment. This figure shows that, after the one-week long experiment, the test score in the experimental section is significant higher than that in control section. This figure is taken as a strong evidence of the effect of the highly interactive teaching approach.

Misconceptions

Follow up on the Annenberg Media video by using Google Scholar to find scholarly papers on misconceptions in your major field of study (Engineering, Physics,	Misconception about Energy	NAC	<u>Chinedu Ekuma</u>	Ζ
Chemistry, etc.).	Which possible direction this object is moving?		<u>Guorong Li</u>	<u>10</u>
along with the reference.	Will you change your first choice?		<u>Fei Han</u>	<u>6</u>
Then, the fun part: using the most naive part of your brain, post your best guess on what students might answer (and why) to at least three of the questions that your classmates have posted. We're not looking for correct answers here, but for the whole spectrum of possible answers and the logic / illogic behind those choices.	<u>Temperature in a Room</u>		<u>Oneka Cummings</u>	<u>4</u>
	Just How Good is Density Functional Theory (DFT) ?		<u>Fernando Soto</u>	4

Units 3 & 4:

What a Student-Centered Course Looks Like & Designing using Best Practices

- 1. What are they learning?
- 2. How are they learning it?
- 3. How do you know?

Key Concept or Topic:

Course Goals Addressed (from Course Goals table)	Learning Objectives	Bloom's LO/HO	Type of Assessment that Accomplishes Objective	Bloom's LO/HO	Activity that Accomplishes Objective

1. What are they learning?

•Not what are <u>you</u> teaching, but what are <u>they</u> learning!

•What do you want them to know & be able to do?

If they sit and listen, what they learn to do is sit and listen. --- Randall Phillis, U. Mass. Amherst

2. How are they learning it?

What is the teacher doing?

What are the students doing?

What does an interactive classroom look like?

- Students engage with (and struggle with!) the content themselves
- Students explore, explain, and apply concepts with the help of each other and the professor

3. How do you know?

Check learning <u>while</u> teaching not just after the fact

copywrite Doun Dounell

Feedback in the classroom: clickers, whiteboards, and alternatives

Unit 5: Products for the CV

Tenure-Track Position, Department of Chemistry should include C.V., publication list, statement of present and future research interests (3-5 pages), statement of teaching strengths (1-2 pages),

Tenure-Track Position, Assistant Professor Applicants should send a vita, three letters of reference, copies of transcripts, a statement of teaching interests,

Participants leave this workshop with:

- Familiarity with the concepts of scientific teaching
- Experience with online learning
- Knowledge of the essentials of a student-centered classroom
- Information on resources for teaching
- Strategies for engaging students in the classroom
- Practice using technology & software to support teaching
- Plans for (and screencast of) a demonstration class session
- A statement of teaching interests