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An Adiabatic Theory of Lattice
Vibrations

Lattice vibrations are important -

* the thermal conductivity of insulators is due to
dispersive lattice vibrations, and it can be quite large.

* in scattering they reduce of the spot intensities, and
also allow for inelastic scattering.

* electron-phonon interactions re-normalize the
properties of electrons.

 superconductivity (conventional) comes from multiple
electron-phonon scattering between time-reversed
electrons.



Example: Consider the following triatomic linear
molecule: The central atom of mass M is flanked by two
smaller atoms of mass m. The potential between
adjacent atoms is that of a spring with constant k.
Assuming an equilibrium separation b the potential of the

system is given by
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The kinetic energy of the system is T = itimmj
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The secular equation becomes
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A natural expansion
parameter for a daunting problem

m
ratio of the electronic to the ionic mass: 77 <1

From Newtons 3rd law:
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ﬁ Adiabatic Approximation



Adiabatic Approximation:

* we treat the ions as stationary at locations R, - - - R and determine the electronic
ground state energy, E(R,, - - - R,). This may be done using standard ab-initio band

structure techniques.
» we then use this as a potential for the ions; i.e.. we recalculate E as a function of the
ionic locations, always assuming that the electrons remain in their ground state.
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Potential energy for the ions

»(R1,---R )= FE(R1,---R )+ the ion-ion interaction



We will define the zero potential such that when all R_
are at their equilibrium positions, @ =0. Then

Expanding about the equilibrium position of the ions.
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Symmetry
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The Equation of Motion

From the derivative of the potential, we can calculate the
force on each site
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so that the equation of motion becomes
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The solution to the equations of motion in Fourier space
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The equation of motion now becomes
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Where u_ (q) is independent of n so that a lattice vibration

can propagate and respect the translational invariance of the
lattice.




Recalling that ®™% = g\~
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where r,=r.-r, then the equation of motion becomes
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Example, a Linear Chain
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Consider a linear chain of oscillators composed of a two-
element basis with different masses, M, and M, and equal

strength springs with spring constant f . It has the potential
energy
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Suppress the indices i and j, the solution to the differential
equation
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The potential matrix has the form
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Which yields
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The secular equation det (D(q) — w?l) = 0 becomes
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which has solutions
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This equation simplifies significantly in the g—0 and g/a—1r
limits.
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Looking at the optical mode at q= 0, w,(0) = 2f/u
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We find the Eigenvectors which are non-trivial solutions to
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Acoustic modes:

Optical modes:

Zone-boundary modes:

High energy mode

Low energy mode

Q

Q @
@ O o o o




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

