Translational Invariance: First Brillouin Zone

$$\rho(x + ma) = \sum_{n} \rho_n e^{iG_n(x + ma)} = \sum_{n} \rho_n e^{iG_n(x)} e^{iG_n ma}
= \sum_{n} \rho_n e^{iG_n(x)} = \rho(x),$$

From the periodicity of the lattice it follows that $e^{iG_n ma} = 1$ or $G_n = 2n\pi/a$ where n is an integer.

$$\mathbf{G} \cdot \mathbf{r}_n = 2\pi m \quad m \in \mathcal{Z}$$

$$\mathsf{G} = h\mathsf{g}_1 + \mathsf{g}_2 + l\mathsf{g}_3$$

The condition of periodicity then requires that

$$(h\mathsf{g}_1+k\mathsf{g}_2+l\mathsf{g}_3)\cdot n_1\mathsf{a}_1=2\pi m\quad m\in\mathcal{Z}$$

 $|a| = |b|, \alpha = \pi/3$

First Brillouin Zone

Square Lattice

Hexagonal Lattice

Higher Brillouin Zones

The Nearest through Fifth Nearest Neighbors for a Point in a Square Lattice and Their Bragg Lines

First Four Brillouin Zones for a Square Lattice