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Symmetry of Ψ(r)

Due to the translational symmetry of the lattice V (r) is 
periodic

and may then be expanded in a Fourier expansion

Since G·r
n
 = 2πm (m  Z)∈  guarantees V(r) = V(r + r

n
 ) and 

letting                          the Schroedinger equation becomes

V (r) = V (r+ rn); rn = n1a1 + n2a2 + n3a3
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Since this is true for any r, it must be that
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Bloch's Theorem

Ãk(r) = Uk(r)eik¢r; where Uk(r) = Uk(r+ rn)
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And as a result

HÃk = E(k)Ãk ) HÃk+G = E(k + G )Ãk+G

= HÃk = E(k+ G )Ãk+G

E(k + G) = E(k) : E(k) is periodic then since both ψ
k
(r) 

and E(k) are periodic in reciprocal space, one only 
needs knowledge of them in the first BZ to know them 
everywhere.



  

The nearly free Electron 
Approximation

If the potential is weak, VG ≈ 0   ∀ G, then we may 

solve the VG  = 0 problem, subject to our constraints of 
periodicity, and treat VG  as a perturbation.
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3-D cubic lattice the energy band 
structure along k
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An electron state with k=π/a will involve at least the two 
G values G=0, 2π . Of course, the exact solution must 
involve all G since
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We can generally take V
0
=0 since this just sets a zero for 

the potential. Then, those G for which                                
 are going to give the largest contribution since
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Thus to a first approximation, we may neglect the 
other C

k−G
, and since V

G
 = V

−G
 (so that V (r) is real)
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