How do atoms bond to form solids?

Types of bonding:

- Van der Walls
- Ionic
- Metallic (delocalized)
- Covalent (directional)

The type of bonding in a solid is determined essentially by the degree of overlap between the electronic wavefunctions of the atoms involved

Electronic configurations

H,																							He ²
1s		Perio	dic Ta	ble,	with	the Coms i	Duter I	Elect	ron Co	onfig	urat s	ions	s of	Neu	tral								1s ²
LI ³	Be ⁴	The	notatio	n us	ed to	desc	ribe th	ie el	ectron	ic co	onfigu	urati	ion (of at	oms	B ⁵	10	16	N ²	0.		F?	Ne"
24	24	and ions is discussed in all textbooks of introductory atomic physics. The letters s , p , d , signify electrons having orbital angular momentum 0, 1, 2, in units h ; the number to the left of the $2s^32p^2 2s^22p^2 2s^22p^3 2s^22p^4 2s^22p^4 2s^22p^4 2s^2p^4 2s^2p^$										2s ² 2p											
Na ¹¹	Mg"	letter denotes the principal quantum number of one orbit, and the superscript to the right denotes the number of electrons in the orbit.									Aris												
3s	352											_		_		3823	p 3	a3p2	3s*3p	3 382	3p4	3s23p3	3s²3p
K10	Ca ²⁰	Sc21	Tim	V'	•	Cr24	Mn ²⁵	Fe	³⁵ C	0.31	Ni ²	*	Cu ²	1	Zn ¹⁰	Ga	9	ie ^{xt}	As ³⁰	Se	34	Br ³⁵	Kr ³⁶
4s	482	$\frac{3d}{4s^2}$	$\frac{3d^2}{4s^2}$	3d 4s	1	3d's Es	$\frac{3d^{3}}{4s^{2}}$	3d 4s	× 3	d ⁷ s ²	3d 4s ²	•	3d 3 4s		3d 10 4s ²	4524	p 4	s ² 4p ²	4s243	1 ³ 4s ³	4p*	4s24p3	4s²4p
Rb17	Sr ³⁴	¥39	Zr=	N	De1 1	Mo ⁺²	Te43	R	1 ¹⁴ R	h45	Pd	45	Agʻ	T	Cd∞	Ine	S	in ^a	Sb1	Te	a2 .	lau .	Xest
59	5e²	4d 5s ²	$\frac{4d^4}{5s^2}$	4d 5s	"	4d ³ 5s	$\frac{4d^{a}}{5s}$	4d 5s	1 ⁷ 4 5	d* s	4d -	**	4d* 5x		4d ¹⁰ 58 ²	5025	p 5	is ² 3p ²	5s²5µ	² 5s ²	5p*	5s25p3	5e²5p
Cs ¹³	Base	La ¹⁷	Hft	Ta	1 ²³	WTH	Re ³⁵	0	s ³⁶ Ir	777	Pt	•	Au	•	Hg*	TIN	P	^b P ₁₃	Biss	Po	y84	Ates	Rn ⁸⁶
6s	681	$\frac{5d}{6s^3}$	4) 5d ² 6s ²	50 6s		5d* 6s ³	$\frac{5d^3}{6s^2}$	5d 6s	1ª 5	d®	5d 6s	•	5d* 6s	•	5d 10 6s ³	6s26	ip 6	is²5p²	6s²6p	³ 6s	¹ 6p ⁴	6s ² 6p ³	6s ¹ 6p
Fr ⁸⁷	Rass	Acro		- 14		L au	a Le		Carti	Le.		0.0		The	T		Hal	1 6.	4 1	Cara 12	I va	· 1	
78	7s ³	$\frac{6d}{7s^2}$	4	f ²	4f°	4)		f ¹	4f*	4/	7	4f		4f ⁴ 5d	4	f ^m	4f"	41	12	(f ¹³	41	4 5	f14 d
			1	h*	Pa ^{si} 5f ²	U ¹ 5/		ip ³²	Pu ^{se} 5f ^s	A1 5j	m ⁹⁶	Crr 5f	150	Bk ^s	0	f.s.	Esi	Fn	n ¹⁰⁰ M	Md ¹⁰¹	No	, L	r ¹⁸³
			8	d" s"	6d 7s ²	64 78	1 7	8 ³	$7s^2$	78		6d 78 ⁸											

Types of Bonding

fcc structure of inert gases

Consider two inert gas atoms at a separation R apart. The two atoms talk to each other by inducing a dipole moment.

Fluctuations will produce a dipole moment p_1 producing a field $E \sim p_1/r^3$. This polarizes the second atom with polarizability $\alpha - p_2 = \alpha p_1 / r^3$ and the potential is $p_2 \cdot E \sim 1/r^6$.

Van der Waals Bonding

At equilibrium $(R=R_0)$,

$$U(R_0) = -2.15(4N\varepsilon)$$

-- cohesive energy at T=0

-- Lennard-Jones potential

$$U(R) = 4\epsilon \left[\left(\frac{\sigma}{R} \right)^{12} - \left(\frac{\sigma}{R} \right)^{6} \right]$$

Ionic Crystals

Electron density in NaCl: x-ray data

Picture showing the calculation of the Cohesive energy for NaCl.

Ionic Crystals

In ionic crystals, it is not possible for the electrons to move about freely between ions unless a large amount of energy (~10 eV) is supplied – it is not conducting.

Covalent Crystals

No bonding

Covalent Crystals

Binding energy: 3.87 eV/atom

Ionic vs. Covalent Bonding

Metallic Bonding

Metallic Bonding

→A metal is a lattice of positive metal "ions" in a "sea" of delocalized electrons.

→Metallic bonding refers to the interaction between the delocalized electrons and the metal nuclei.

→The physical properties of metals are the result of the delocalization of the electrons involved in metallic bonding.

- → The physical properties of solid metals are:
- Conduct heat
- Conduct electricity
- High melting and boiling points
- Strong
- Malleable (can be hammered or pressed out of shape without breaking)
- Ductile (able to be drawn into a wire)
- Metallic luster
- Opaque (reflect light)

F

The Drude Theory of Metals

How to describe metallic behavior?

Drude Model -- treat electrons as gas

Calculations of electron density

Total number of atoms/mole: 6.022x10²³

```
Mass density: \rho_m (g/cm<sup>3</sup>)
```

Atomic mass: A

Number of electrons/volume: $n = Z \left(6.022 \times 10^{23} \right) \frac{\rho_m}{A}$ Volume/electron: $\frac{1}{n} = \frac{4 \pi r_s^3}{3}$

 r_{s} : Radius of a sphere, with volume = volume/conduction-electron

 $r_s > a_0$

carrier concentration = FREE ELECTRON DENSITIES OF SELECTED METALLIC ELE-MENTS^a

ELEMENT	Ζ	$n (10^{22}/\text{cm}^3)$	$r_{\rm s}({\rm \AA})$	r_s/a_0	
∠ Li (78 K)	1	4.70	1.72	3.25	
∕ Na (5 K)	1	2.65	2.08	3.93	Hydrogon
K (5 K)	1	1.40	2.57	4.86	riyuloyen
Rb (5 K)	1	1.15	2.75	5.20	atom
Cs (5 K)	1	0.91	2.98	5.62	
Cu	1 ·	8.47	1.41	2.67	
Ag	1	5.86	1.60	3.02	
Au	1	5.90	1.59	3.01	
∕Be	2	24.7	0.99	1.87	
∠ Mg	2	8.61	1.41	2.66	
∠Ca	2	4.61	1.73	3.27	
Sr	2	3.55	1.89	3.57	
Ba	2	3.15	1.96	3.71	
Nb	1	5.56	1.63	3.07	
Fe	2	17.0	1.12	2.12	
$Mn(\alpha)$	2	16.5	1.13	2.14	
Zn	2	13.2	1.22	2.30	
Cd	2	9.27	1.37	2.59	
Hg (78 K)	2	8.65	1.40	2.65	
A 1	3	18.1	1.10 -	2.07	
Ga	3	15.4	1.16	2.19	
In	3	11.5	1.27	2.41	
Tl	3	10.5	1.31	2.48	
Sn	4	14.8	1.17	2.22	
Pb	4	13.2	1.22	2.30	
Bi	5	14.1	1.19	2.25	
Sb	5	16.5	1.13	2.14	

The density of "electron gas" >> classic gas

Drude Model Assumptions:

- Travel in straight line, ignore e-e interactions (i.e., *independent electron approximation*)
- Ignore electron-ion interactions (i.e., free electron approximation)
- Collision instantaneously alters the velocity of an electron
- The relaxation time (*mean free time*) is independent of electron position and velocity
- Achieve thermal equilibrium only through collision

DC Electrical Conductivity σ

Experimental Probe:

Resistance:
$$R = \frac{\Delta V}{I} = \frac{EL}{AJ} = \left(\frac{E}{J}\right)\left(\frac{L}{A}\right) = \rho\left(\frac{L}{A}\right)$$

Resistivity: $\rho = \frac{1}{\sigma}$

ELEMENT	77 K μΩ-cm	273 K μΩ-cm	373 K μΩ-cm	$\frac{(\rho/T)_{373 \text{ K}}}{(\rho/T)_{273 \text{ K}}}$		
Li	1.04	8.55	12.4	1.06		
Na	0.8	4.2	Melted			
K	1.38	6.1	Melted			
Rb	2.2	11.0	Melted			
Cs	4.5	18.8	Melted			
Cu	0.2	1.56	2.24	1.05		
Ag	0.3	1.51	2.13	1.03		
Au	0.5	2.04	2,84	1.02		
Be		2.8	5.3	1.39		
Mg	0.62	3.9	5.6	1.05		
Ca		3.43	5.0	1.07		
Sr	7	23				
Ba	17	60				
Nb	3:0	15.2	19.2	0.92		
Fe	0.66	8.9	14.7	1.21		
Zn	1.1	5.5	7.8	1.04		
Cd	1.6	6.8				
Hg	5.8	Melted	Melted			
Al	0.3	2.45	3.55	1.06		
Ga	2.75	13.6	Melted	· .		
In	1.8	8.0	12.1	1.11		
TI	3.7	15	22.8	1.11		
Sn	2.1	10.6	15.8	1.09		
Pb	4.7	19.0	27.0	1.04		
$\mathbf{B}\mathbf{i}$	35	107	156	1.07		
Sb	8	39	59	1.11		

ELECTRICAL RESISTIVITIES OF SELECTED ELEMENTS^a

Being a good metal, the resistivity should be in the order of $\,\mu\Omega\text{-cm}$

- 1. For solid H2, one finds from measurements that the Lennard-Jones parameters are $\varepsilon = 50^{*}10^{-16}$ erg and $\sigma = 2.96$ Å. Find the cohesive energy in kJ/mole of H2-do the calculation for an fcc structure.
- 2. Problem 1(a-d) (page 26) (Ashcroft/Mermin)