The Reciprocal Lattice
-- continued

A set of wave vectors K that ensure
(]
e IK*R 1

Direct lattice (Bravais lattice): R = n,a;+n,a,+n;a,

Reciprocal lattice: K = k,b;+k,b,+k;b,



Application:

Name Lattice Planes - Miller Indices

1/2

Direct lattice

The smallest three integers

having the same ratio as
1/3:1/2:1/2=2:3:3

The plane is called (233) plane
- Miller Indices



Three Miller Indices (hkl)







Four Miller-Bravais Indices (hkil)
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Application:
Construction of Brillouin Zones

In Bravais lattices In reciprocal lattices

(direct lattices)
Winger-Seitz cell

= first Brillouin Zone

Winger-Seitz cell




Determination of
Crystal Structures

2D 3D

Crystal structures 5 14



Distance between atoms
in the order of

A~108cm~10"1m

requires

Wave length . ~ A

Wavelength A
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Determination of Crystal
Structures:

X-ray diffraction

(scattering)



Bragg Law:
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1915:

The Nobel Prize in Physics was
awarded jointly to Sir William Henry
Bragg and William Lawrence Bragg

"for their services in the analysis of
crystal structure by means of X-rays'

Sir W. Henry Bragg W. Lawrence Bragg

Bragg Law:
2d sinf = nA

(n = integer)



X-ray

Y

Lattice

(a™

G
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Diffraction conditions:
(diffracted
beam) The set of reciprocal lattice vectors G
determines the possible x-ray reflection

plane

‘\ .n\ ’

Ku
A AK = K'K = G
: AK
; KiG =K’
.\ Elastic scattering: K=K’
. K (K.|.G)2 _ K2
(undiffracted

beam) 2KeG = (32
G= hb1+ kb2+ |b3
If cubic d'l o \/hz n k2 4 lz
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Von Laue Approach L\ -

Condition: (K-K’)er = 21Tn (0 =integer)

(k=K' )er
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Constructive interference will occur if AK = K’-K Is
a vector of the reciprocal lattice.



In the case of elastic scattering: K=K

AK is the reciprocal lattice vector: K=n(21/d)=2ksin©



The Ewald Construction

L 0 g e ) ORI, Kok =k




The Laue Method

sample position and incident beam (direction) - unchanged

wave length - from A, to A,

-
Ak



The Rotating - Crystal Method

Monochromic beam (same A)

Rotate sample: change angle ©




The Debye -Scherrer Method
-- for Powder X-ray Diffraction

Monochromic beam (same A)

change angle ©




2D Structure Determination

Low-Energy Electron Diffraction

(E.k") (E.K")




Observer

Retarding Field Analyzer
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Are all Bragg peaks
revealed in the x-ray
diffraction pattern?

Why?
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phase factor:

(k—k')*
Scattering amplitude: F = den(r)el( )

= NSk



n
iAKed,
Structural factor: Sk = E e
j=1

AK = k- k' - vector of reciprocal lattice

dj - j!" basis point in Bravais lattice

Bragg peak intensity o ‘SK ‘2

Can predict when the peak vanishes




Body-centered cubic

Bravais lattice .
a3
4,
Yy
0 a; 4 ¢
a,= ax, a,= ay, a;= az

b,= (2m/a)x, b,=(2m/a)y, b= (21/a)z
Two basis points: d,= 0, d,= (a/2) (x+y+z)
AK = (211/a)(nx+my+1z)

n
SK — EeiAK.dj =1+(_1)n+m+l =%2, n+m+| = even

0, ntm+| = odd
j=1



even
odd

2, ntm+|
0, n+m+l

n

1 + (_1)n+m+l



= (al2)(y+z),
= (a/2)(z+x),
= (a/2)(x+y)

= (211/a)(y+2z-X)
b,= (211/a)(z+x-y)
b,= (211/2)(X+Yy-2)

Two basis points: d,= 0, d,= (a/4) (x+y+z)
= (4mr/a)(nx+my+lz)

[lin(n+m+l)] 2, (n+m+l1)/2 = even

n

IANKed
E T=l+e ? =% 1+i, n+m+| = odd
/=1 0, (n+m+1)/2 = odd



even
odd
odd

2, (n+m+1)/2
141, N+m+|
0, (n+m+1)/2
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Symmetry element Reflection affected  Systematic-absence condition

Centred cells

Body-centred, I fiki h4+k+il=2n+1
Face-centred, F 13} C h4kh+lLk+l=2n+1
Side-centred, C bkl h+k=2n+1

Screw axis -

2, along a #00 h=2n+1

Glide planes 1 b

Translation {a/2) (a-glide) 0! fi=2n+1

Translation (a2 + ¢/2) (n-glide) RO 4] =2n+1

Translation {a/4 + ¢/4) (d-ghde) ho! h+!=4n+1,23




In case of powder sample:

n .
Sk = 3 f5(AK)e Y
j=1

Atomic form factor

‘SK‘:&O



Homework today (due on Sept. 9, 2010)

1. Problem 1 in page 93 (Ashcroft/Mermin)

2. Hexagonal space lattice: The primitive translation vectors
of the hexagonal space lattice may be taken as: a;=
(3¥2a/2)x+(a/2)y; a,=-(3¥2a/2)x+(a/2)y; a,= cz.

(a) Show that the volume of the primitive cell is (31/2/2)aZc;

(b) Show that the primitive translations of the reciprocal
lattice are

b,= (3¥/22r/a)x+(2n/a)y; b,=-(3V/22n/a)x+(2m/a)y; b=
(2m/c)z.

so that the lattice is its own reciprocal, but with a
rotation of axes.



