The Reciprocal Lattice -- continued

A set of wave vectors K that ensure

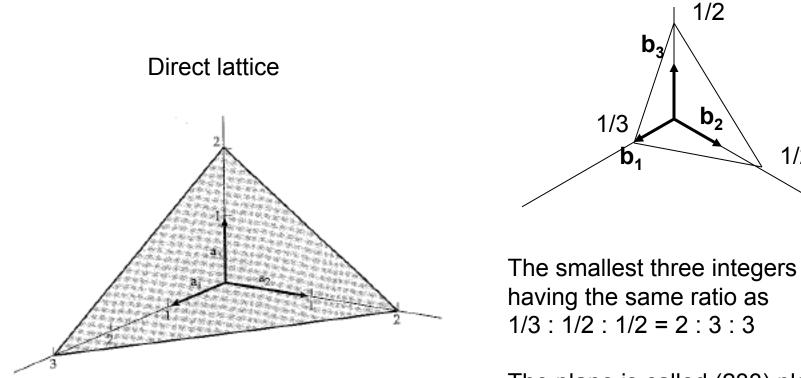
$$e^{iK \bullet R} = 1$$

Direct lattice (Bravais lattice): $\mathbf{R} = n_1 \mathbf{a_1} + n_2 \mathbf{a_2} + n_3 \mathbf{a_3}$

Reciprocal lattice:

 $K = k_1 b_1 + k_2 b_2 + k_3 b_3$

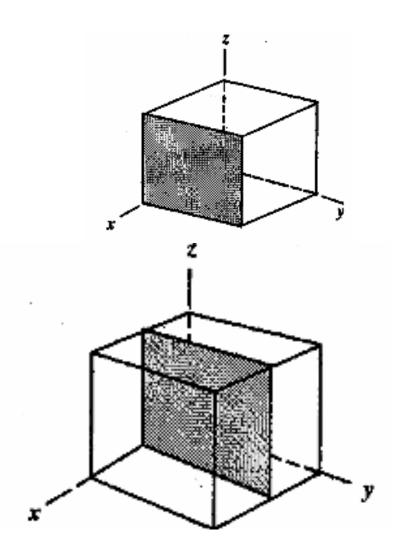
Application: Name Lattice Planes - Miller Indices

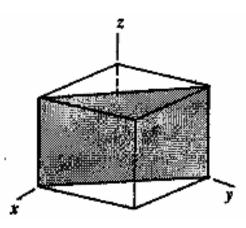


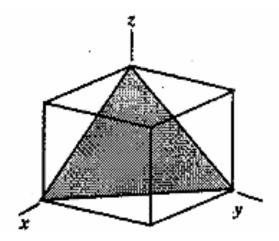
The plane is called (233) plane - Miller Indices

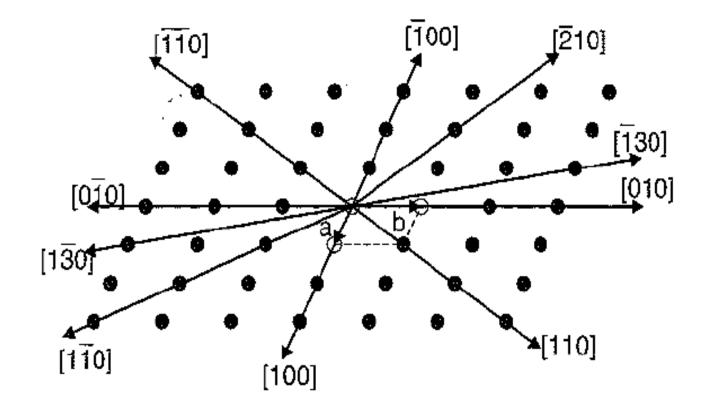
1/2

Three Miller Indices (hkl)

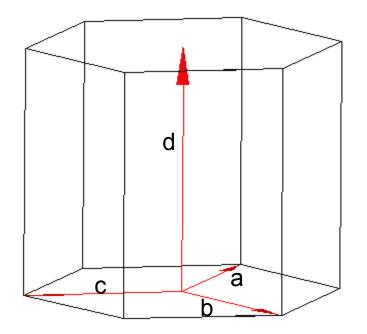






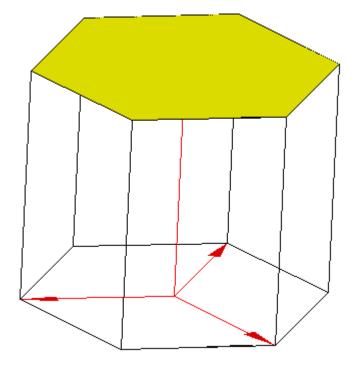


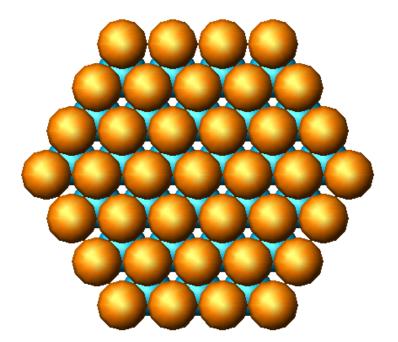
Four Miller-Bravais Indices (hkil)

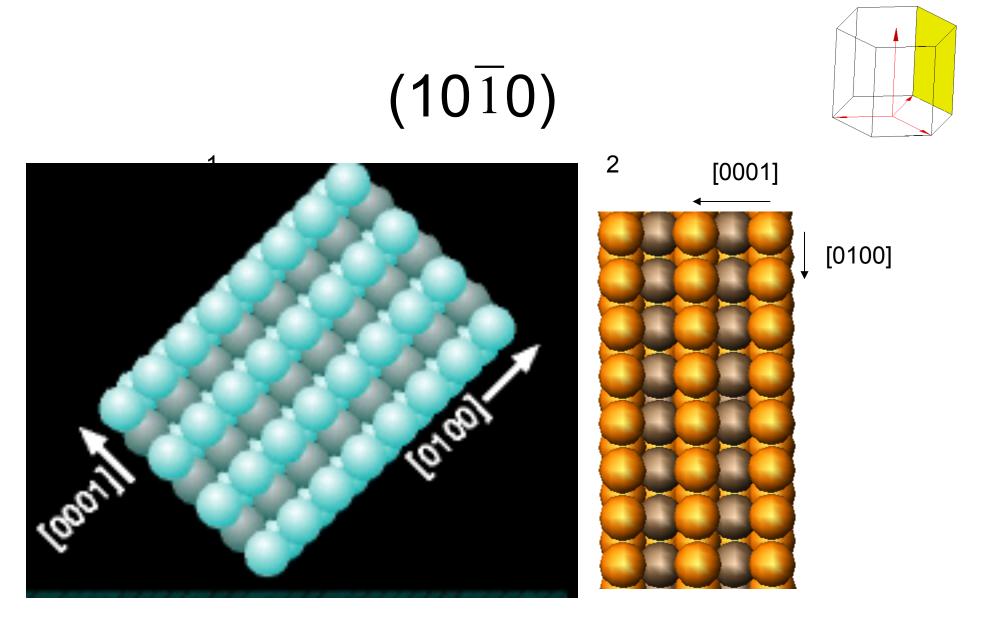


h + k + i = 0

(0001)





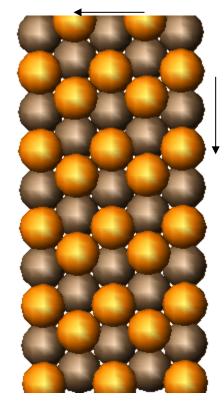


(11²0)

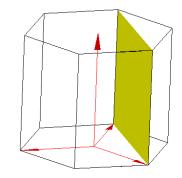
[0210]

Zig-Zag Rows

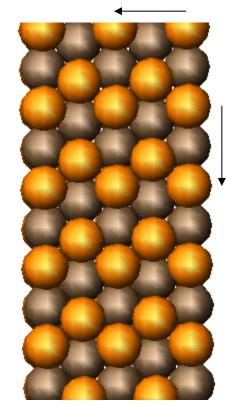
[0001]



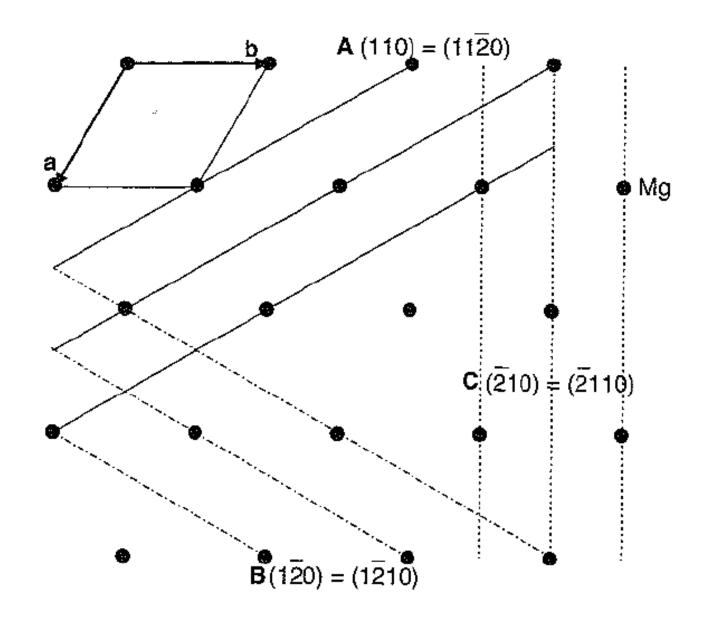
2



[0001]



[0210]



Application: Construction of Brillouin Zones

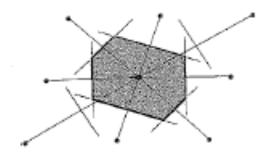
In Bravais lattices

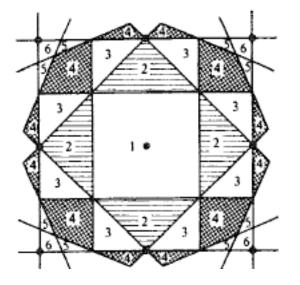
(direct lattices)

In reciprocal lattices

Winger-Seitz cell
= first Brillouin Zone

Winger-Seitz cell





Determination of Crystal Structures

2D 3D

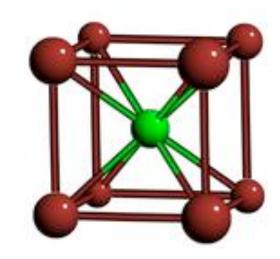
Crystal structures 5 7

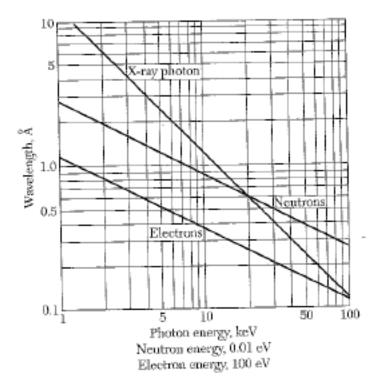
Distance between atoms in the order of

Å ~ 10⁻⁸ cm ~ 10⁻¹0 m

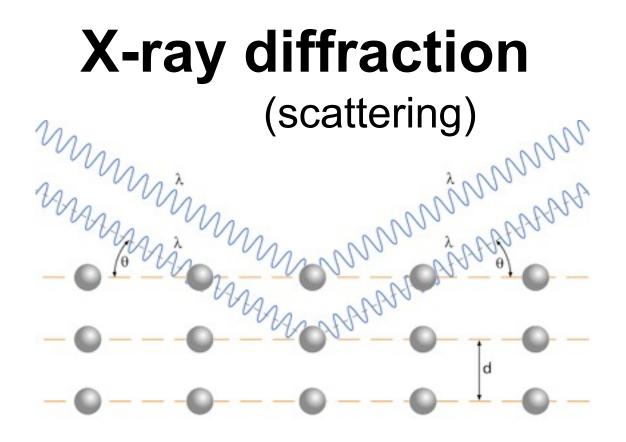
requires

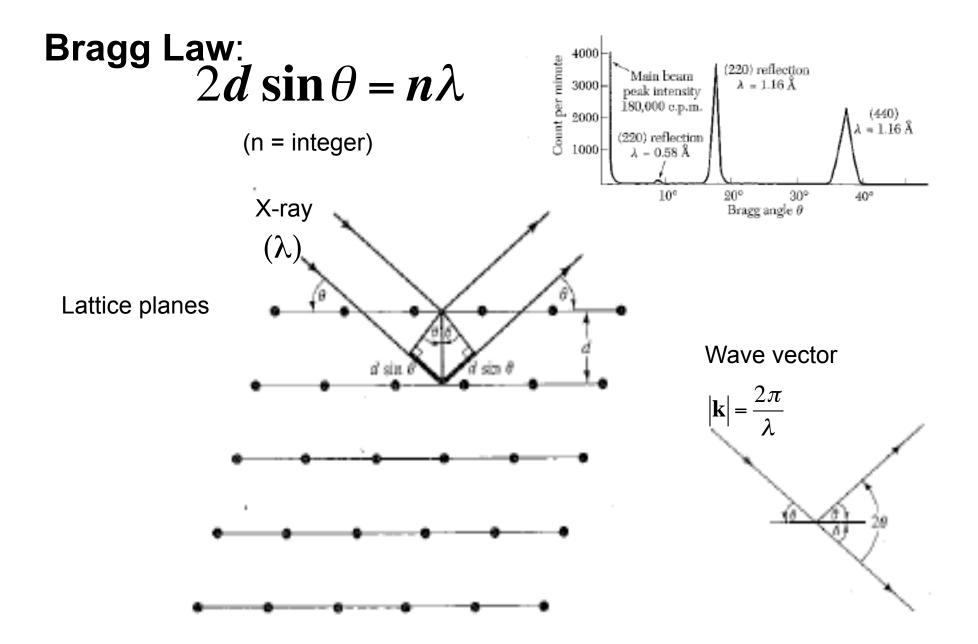
Wave length $\lambda \sim A$

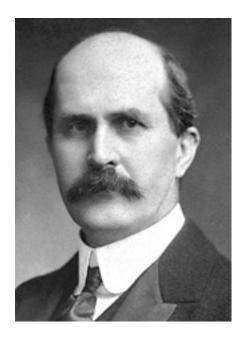


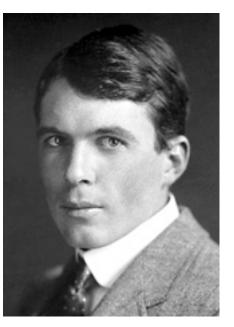


Determination of Crystal Structures:









1915:

The Nobel Prize in Physics was awarded jointly to Sir William Henry Bragg and William Lawrence Bragg

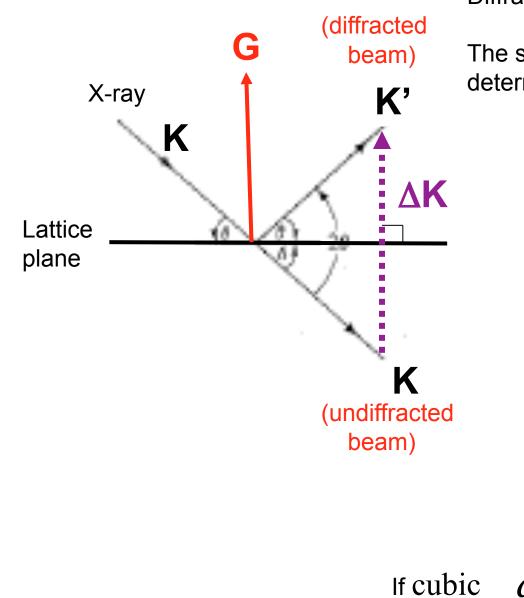
"for their services in the analysis of crystal structure by means of X-rays"

Sir W. Henry Bragg

W. Lawrence Bragg

Bragg Law: $2d\sin\theta = n\lambda$

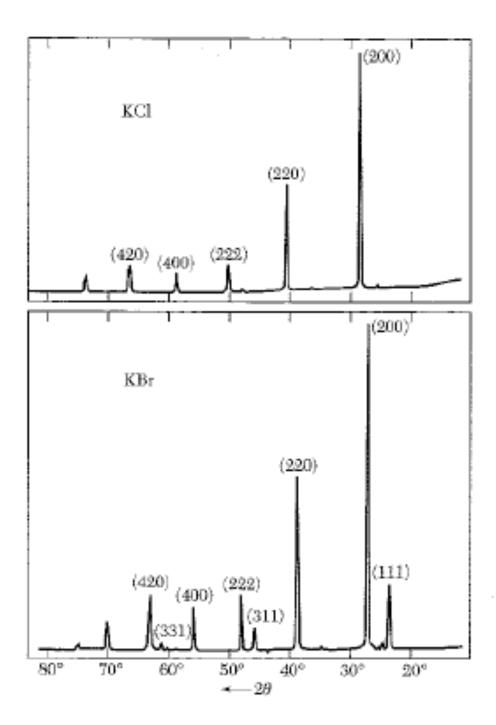
(n = integer)

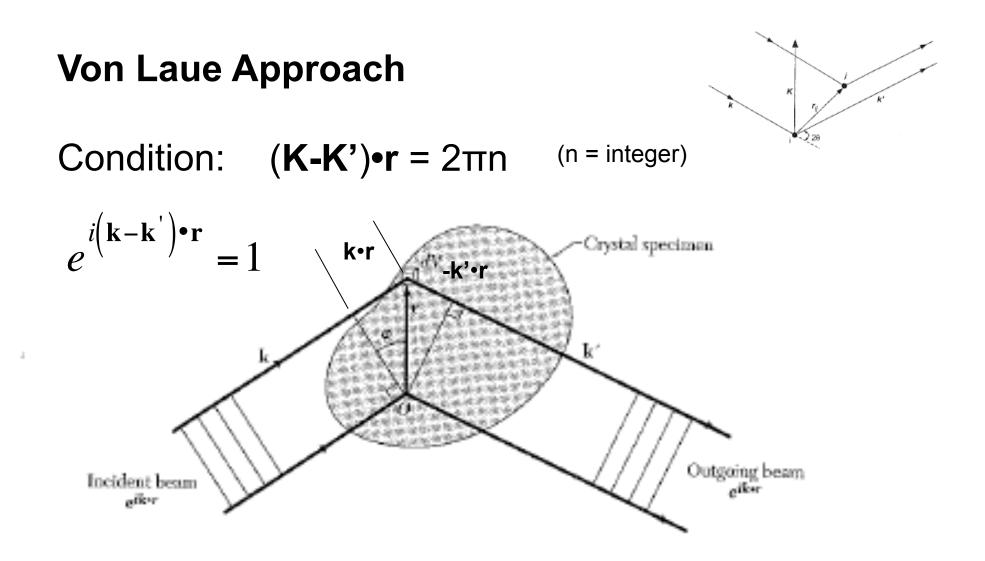


Diffraction conditions:

The set of reciprocal lattice vectors **G** determines the possible x-ray reflection

 $\Delta \mathbf{K} = \mathbf{K}' - \mathbf{K} = \mathbf{G}$ K+G = K'Elastic scattering: K = K' $(K+G)^2 = K^2$ $2K \cdot G = G^2$ $G = hb_1 + kb_2 + lb_3$ If cubic $d^{-1} \propto \sqrt{h^2 + k^2 + l^2}$

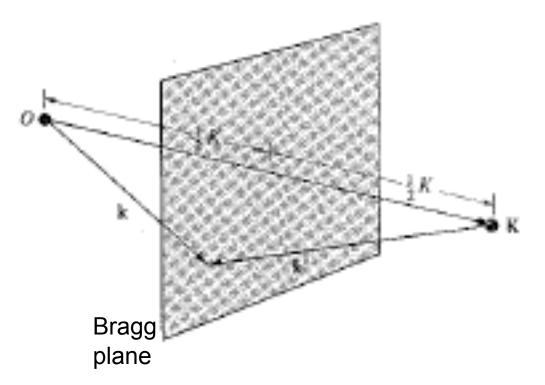




Constructive interference will occur if $\Delta K = K'-K$ is a vector of the reciprocal lattice.

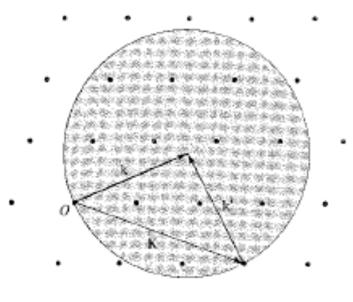
In the case of elastic scattering: K = K'

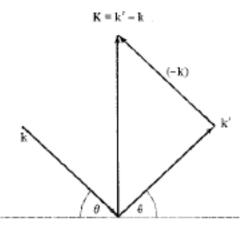
 $k = |\mathbf{k} - \Delta \mathbf{K}|$ $2\mathbf{k} \cdot \Delta \mathbf{K} = \mathbf{K}$



 ΔK is the reciprocal lattice vector: K=n(2 π /d)=2ksin Θ

The Ewald Construction

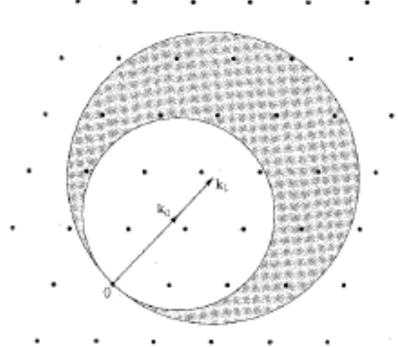




The Laue Method

sample position and incident beam (direction) - unchanged

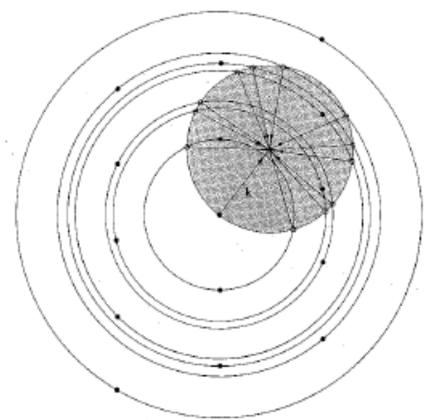
wave length - from λ_1 to λ_0



The Rotating - Crystal Method

Monochromic beam (same λ)

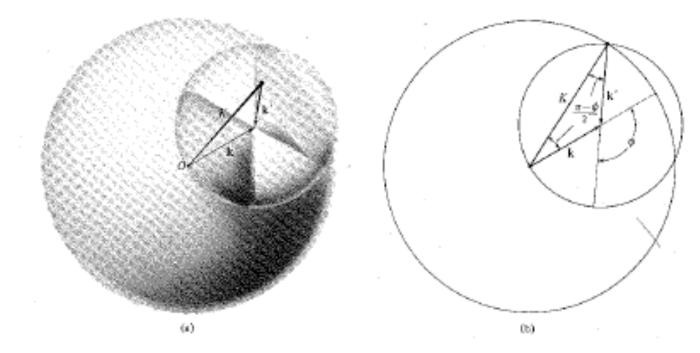
Rotate sample: change angle Θ



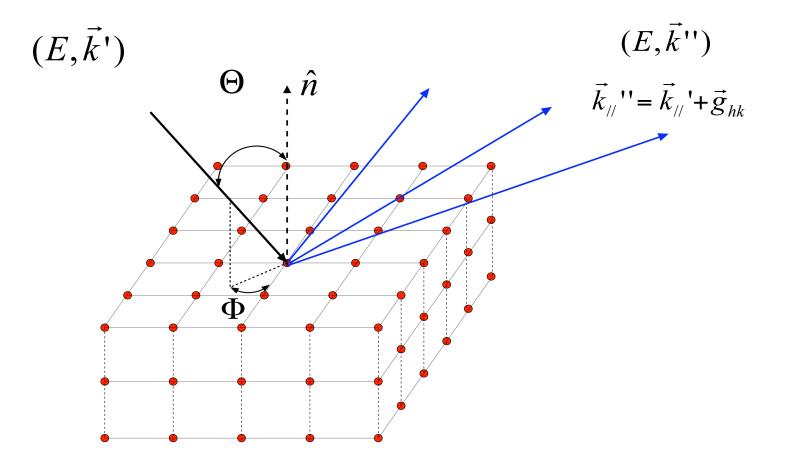
The Debye -Scherrer Method -- for Powder X-ray Diffraction

Monochromic beam (same λ)

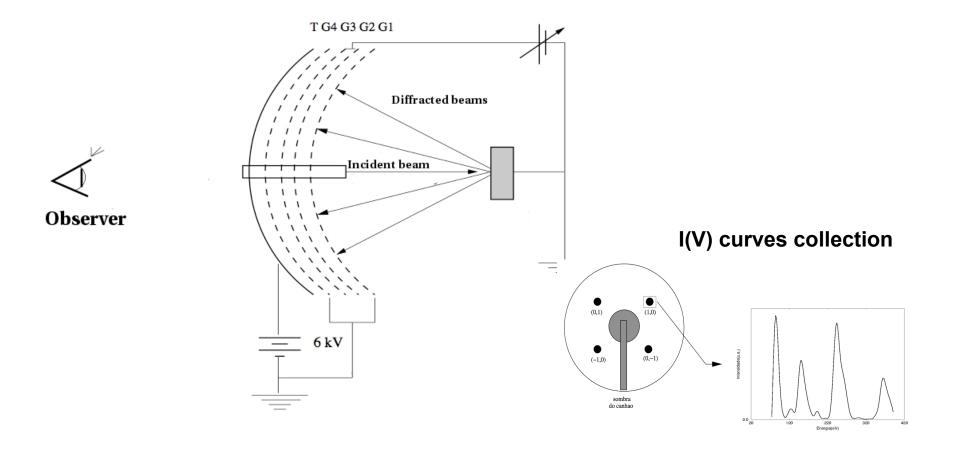
change angle Θ



2D Structure Determination Low-Energy Electron Diffraction

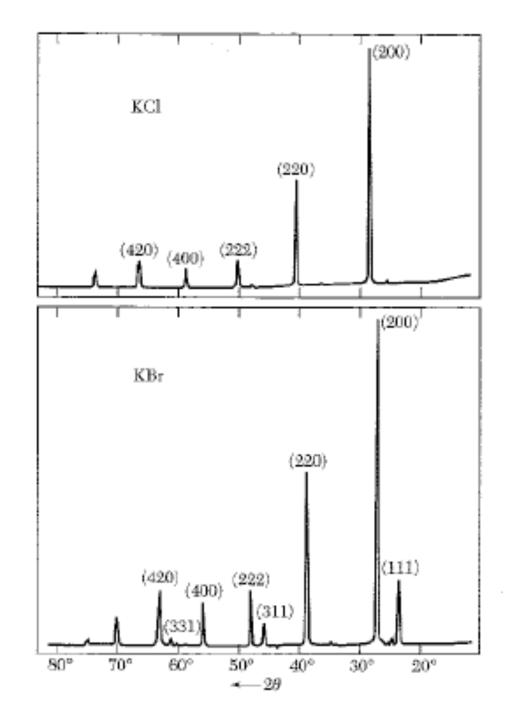


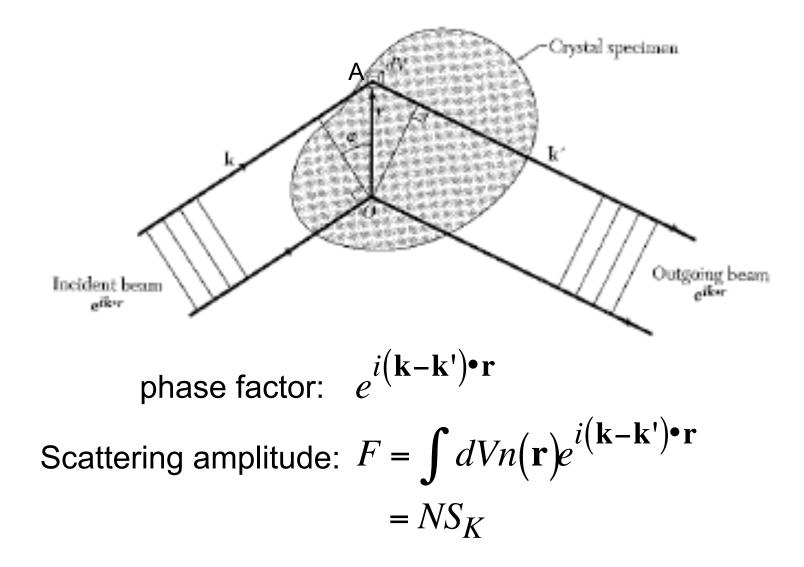
Retarding Field Analyzer



Are all Bragg peaks revealed in the x-ray diffraction pattern?

Why?





J.

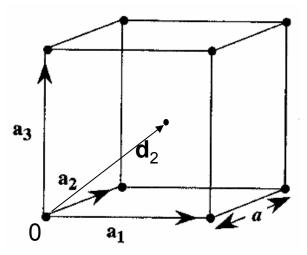
Structural factor:
$$S_K = \sum_{j=1}^n e^{i\Delta \mathbf{K} \cdot \mathbf{d}_j}$$

 $\Delta \mathbf{K} = \mathbf{k} - \mathbf{k'}$ - vector of reciprocal lattice \mathbf{d}_{j} - jth basis point in Bravais lattice

Bragg peak intensity $\propto |S_K|^2$

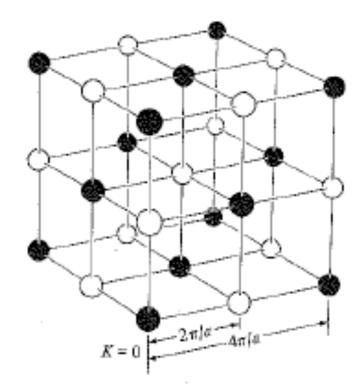
Can predict when the peak vanishes

Body-centered cubic Bravais lattice



 $a_1 = ax$, $a_2 = ay$, $a_3 = az$ $b_1 = (2\pi/a)x$, $b_2 = (2\pi/a)y$, $b_3 = (2\pi/a)z$ Two basis points: $d_1 = 0$, $d_2 = (a/2)(x+y+z)$ $\Delta K = (2\pi/a)(nx+my+lz)$

$$S_{K} = \sum_{j=1}^{n} e^{i\Delta \mathbf{K} \cdot \mathbf{d}_{j}} = 1 + (-1)^{n+m+l} = \begin{cases} 2, n+m+l = \text{even} \\ 0, n+m+l = \text{odd} \end{cases}$$



$$S_{K} = \sum_{j=1}^{n} e^{i\Delta \mathbf{K} \cdot \mathbf{d}_{j}} = 1 + (-1)^{n+m+l} = \begin{cases} 2, n+m+l = even \\ 0, n+m+l = odd \end{cases}$$

$$a_{1} = (a/2)(y+z),$$

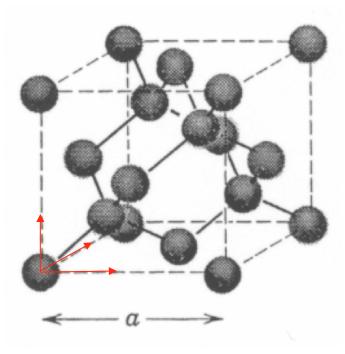
$$a_{2} = (a/2)(z+x),$$

$$a_{3} = (a/2)(x+y)$$

$$b_{1} = (2\pi/a)(y+z-x),$$

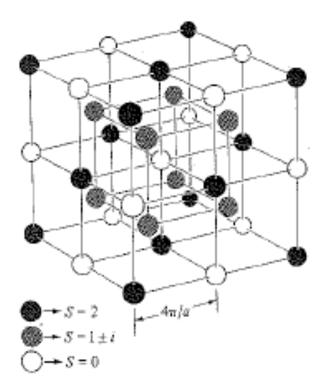
$$b_{2} = (2\pi/a)(z+x-y),$$

$$b_{3} = (2\pi/a)(x+y-z),$$



Two basis points: $d_1 = 0$, $d_2 = (a/4) (x+y+z)$

 $\Delta \mathbf{K} = (4\pi/a)(n\mathbf{x}+m\mathbf{y}+l\mathbf{z})$ $S_{K} = \sum_{j=1}^{n} e^{i\Delta \mathbf{K} \cdot \mathbf{d}_{j}} = 1 + e^{\left[\frac{1}{2}i\pi(n+m+l)\right]} = \begin{cases} 2, (n+m+l)/2 = \text{even} \\ 1 \pm i, n+m+l = \text{odd} \\ 0, (n+m+l)/2 = \text{odd} \end{cases}$



$$S_{K} = \sum_{j=1}^{n} e^{i\Delta \mathbf{K} \cdot \mathbf{d}_{j}} = 1 + e^{\left[\frac{1}{2}i\pi(n+m+l)\right]} = \begin{cases} 2, (n+m+l)/2 = \text{even} \\ 1 \pm i, n+m+l = \text{odd} \\ 0, (n+m+l)/2 = \text{odd} \end{cases}$$

Symmetry element	Reflection affected	Systematic-absence condition
Centred cells Body-centred, I Face-centred, F Side-centred, C	hkl hkl hkl	$\begin{array}{l} h+k+l = 2n+1 \\ h+k, h+l, k+l = 2n+1 \\ h+k = 2n+1 \end{array}$
Screw axis 2 ₁ along a	h00	h = 2n + 1
Glide planes $\perp b$ Translation (a/2) (a-glide) Translation (a/2 + c/2) (n-glide) Translation (a/4 + c/4) (d-glide)	401 h01 h01	h = 2n + 1 h + l = 2n + 1 h + l = 4n + 1, 2, 3

In case of powder sample:

$$S_K = \sum_{j=1}^n f_j (\Delta \mathbf{K}) e^{i\Delta \mathbf{K} \cdot \mathbf{d}_j}$$

Atomic form factor

$$\left|S_{K}\right|\neq0$$

- 1. Problem 1 in page 93 (Ashcroft/Mermin)
- Hexagonal space lattice: The primitive translation vectors of the hexagonal space lattice may be taken as: a₁= (3^{1/2}a/2)**x**+(a/2)**y**; a₂=-(3^{1/2}a/2)**x**+(a/2)**y**; a₃= cz.

(a) Show that the volume of the primitive cell is $(3^{1/2}/2)a^2c$;

(b) Show that the primitive translations of the reciprocal lattice are

 $\mathbf{b_1} = (3^{1/2}2\pi/a)\mathbf{x} + (2\pi/a)\mathbf{y}; \mathbf{b_2} = -(3^{1/2}2\pi/a)\mathbf{x} + (2\pi/a)\mathbf{y}; \mathbf{b_3} = (2\pi/c)\mathbf{z}.$

so that the lattice is its own reciprocal, but with a rotation of axes.