Lecture 2: Crystal Lattices

Crystals -- Atoms are ordered & have periodicity

Solids Quasi - Crystals -- ordered but no periodicity

Amorphous Solids -- not ordered, no periodicity

Introduce "Crystal Lattices"

describe "Crystal Structures"

Question: Crystal Lattice = Crystal Structure ?

Basic concepts

- Basis
- Lattice (mathematic constructions)
- Crystal structure = basis + lattice
- Primitive cell = unit cell: one lattice point
- Lattice translation vectors
- Coordination number

Crystal structure: built of atoms Crystal Lattice: an infinite pattern of points

Basis: A group of atoms that can be repeated to construct a crystal.

Bravais lattice:

The distinct lattice types which can fill the whole space when repeated . The lattice can therefore be generated by three unit vectors, $\mathbf{a_1}$, $\mathbf{a_2}$ and $\mathbf{a_3}$ and a set of integers k, l and m so that each lattice point, identified by a vector **r**, can be obtained from:

$$\mathbf{r} = \mathbf{k} \mathbf{a}_1 + \mathbf{l} \mathbf{a}_2 + \mathbf{m} \mathbf{a}_3$$

Lattice translation vectors: **a**₁, **a**₂ and **a**₃

Primitive cell ←→ Wigner-Seize cell

Two-dimensional Lattice Types 5 Bravais lattice:

- $a_1 = a_2$, $\phi = 120^\circ$ (hexagonal lattice)
- a₁ ≠ a₂, φ = 90°
- $a_1 \neq a_2$, $\phi = 90^\circ$ (centered)
- a₁ ≠ a₂, φ ≠ 90°

Two-dimensional Lattice Types

What is the unit cell of a System with pentagonal symmetry?

3D <u>C</u> r	rystal system	Lattice symbol	Lattice parameters
Tr	riclinic	aP	$a \neq b \neq c, \alpha \neq 90^{\circ},$ $\beta \neq 90^{\circ}, \gamma \neq 90^{\circ};$
Μ	onoclinic primitive	mP	$a \neq b \neq c, \alpha = 90^{\circ},$ $\beta \neq 90^{\circ}, \gamma = 90^{\circ};$
M	onoclinic centred	mC	
Or	thorhombic primitive	oP	$a \neq b \neq c, \ \alpha = \beta = \gamma = 90^{\circ}$
Or	thorhombic C-face-centred	оС	
Or	thorhombic body-centred	oI	
Or	thorhombic face-centred	oF	
Te	tragonal primitive	tP	$a = b \neq c, \ \alpha = \beta = \gamma = 90^{\circ}$
Te	tragonal body-centred	tI	
Tri	igonal (Rhombohedral)	hR	$a = b = c, \alpha = \beta = \gamma$
			(primitive cell);
			$a' = b' \neq c', \alpha' = \beta' = 90^{\circ},$
			$\gamma' = 120^{\circ}$ (hexagonal cell)
He	exagonal primitive	hP	$a = b \neq c, \ \alpha = \beta = 90^{\circ},$
			$\gamma = 120^{\circ}$
Cu	bic primitive	cP	$a = b = c, \alpha = \beta = \gamma = 90^{\circ}$
Cu	bic body-centred	cI	. , ,
Cu	bic face-centred	cF	

Table 2.2 Bravais lattices

• Cubic:

$$a_1 = a_2 = a_3, \alpha = \beta = \gamma = 90^{\circ}$$

Simple cubic Body-centered cubic Face-center cubic

Simple Cubic

Body-Centered Cubic

Face-Centered Cubic

Basis: (0,0,0) and (1/2,0,0)

Basis: (0,0,0) and (1/4,1/4,1/4)

• Tetragonal:

$$a_1 = a_2 \neq a_3$$
, $\alpha = \beta = \gamma = 90^\circ$

$$a_1 \neq a_2 \neq a_3, \alpha = \beta = \gamma = 90^\circ$$

• Hexagonal:

 $a_1 = a_2 \neq a_3$, $\alpha = \beta = 90^\circ$, $\gamma = 120^\circ$

HCP Structure: Stacking sequence ABAB

Hexagonal Structure

• Trigonal:

 $a_1 = a_2 = a_3, \alpha = \beta = \gamma < 120^\circ, \neq 90^\circ$,

• Monoclinic:

 $a_1 \neq a_2 \neq a_3$, $\alpha = \gamma = 90^\circ$, $\beta \neq 90^\circ$,

• Triclinic:

$$\mathbf{a}_1 \neq \mathbf{a}_2 \neq \mathbf{a}_3, \ \alpha \neq \beta \neq \gamma$$

Direct Imaging of Atomic Structure

- Transmission electron microscopy
- Scanning tunneling microscopy (reflected by local electronic density of states – surface only)

TEM

STM

Homework today (due on Sept. 2, 2010)

Problems 1 and 5 in page 82 (Ashcroft/Mermin)

The Reciprocal Lattice

A set of wave vectors ${\boldsymbol{\mathsf{K}}}$ that ensure

$$e^{iK \bullet R} = 1$$

Direct lattice (Bravais lattice): $\mathbf{R} = n_1 \mathbf{a_1} + n_2 \mathbf{a_2} + n_3 \mathbf{a_3}$

Reciprocal lattice: $\mathbf{K} = \mathbf{k}_1 \mathbf{b}_1 + \mathbf{k}_2 \mathbf{b}_2 + \mathbf{k}_3 \mathbf{b}_3$

Direct lattice (Bravais lattice): $\mathbf{R} = n_1 \mathbf{a_1} + n_2 \mathbf{a_2} + n_3 \mathbf{a_3}$ Reciprocal lattice: $\mathbf{K} = k_1 \mathbf{b_1} + k_2 \mathbf{b_2} + k_3 \mathbf{b_3}$

$$b_1 = 2\pi \frac{a_2 \times a_3}{a_1 \cdot (a_2 \times a_3)}$$
$$b_2 = 2\pi \frac{a_3 \times a_1}{a_1 \cdot (a_2 \times a_3)}$$

$$\boldsymbol{b}_3 = 2\pi \frac{\boldsymbol{a}_1 \times \boldsymbol{a}_2}{\boldsymbol{a}_1 \cdot (\boldsymbol{a}_2 \times \boldsymbol{a}_3)}$$

$$b_i \bullet a_j = 2\pi \delta_{ij}$$

volume

Direct lattice (Bravais lattice): v Reciprocal lattice: $(2\pi)^3/v$

Reciprocal lattice itself is also a Bravais lattice

 $a_1 = ax$, $a_2 = ay$, $a_3 = az$

 $b_1 = (2\pi/a)x$, $b_2 = (2\pi/a)y$, $b_3 = (2\pi/a)z$

Face-centered cubic Bravais lattice:

$$a_1 = (a/2)(y+z),$$
 $a_2 = (a/2)(z+x),$ $a_3 = (a/2)(x+y)$

b₁=
$$(4\pi/a)[(1/2)(y+z-x)]$$

b₂= $(4\pi/a)[(1/2)(z+x-y)]$
b₃= $(4\pi/a)[(1/2)(x+y-z)]$

Face-centered cubic reciprocal lattice:

Body-centered cubic Bravais lattice

$$b_{1} = (4\pi/a)[(1/2)(y+z-x)] \qquad \qquad a_{1} = (a/2)(y+z-x)] \\ b_{2} = (4\pi/a)[(1/2)(z+x-y)] \qquad \qquad a_{2} = (a/2)(z+x-y)] \\ a_{3} = (a/2)(x+y-z)] \qquad \qquad a_{3} = (a/2)(x+y-z)]$$

Lattice Planes

- Any lattice plane that contains ≥ 3 non-collinear Bravais lattice points
- Separated by distance d
- Perpendicular to its reciprocal lattice vector
- Not unique

Application: Name Lattice Planes - Miller Indices

The smallest three integers having the same ratio as 1/3: 1/2: 1/2 = 2:3:3

The plane is called (233) plane - Miller Indices

The end of lecture today!