Extrinsic Semiconductors

Impurities make Significant Contribution
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Doping of Semiconductors

o = neu ==) the conductivity depends linearly upon the doping

A typical metal has n__ ~ 10%/(cm)°® whereas we have seen
that a typical semiconductor has
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To increase n (or p) to ~ 10" or more, dopants are used.



Additional impurity charges will be localized around the FIXED

donor or acceptor ion (may be treated as having infinite
mass).
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2€2h?n?

The binding energy is given by FE =

m* = hole mass acceptor(B) OR electron mass donor(P )
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Since m*/m < 1 and ¢ ~ 10 these energies are often much less
than 13.6eV c.f.in SIiE ~ 30M eV ~ 300K or in Ge E ~ GMeV ~
60°K

== thermal excitations will often ionize these dopant sites!
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Carrier Densities in Doped
semiconductor

The law of mass action remains valid so long as the use of
Boltzmann statistics is valid i.e., if the degeneracy is small!
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In equilibrium, the semiconductor is charge neutral so that
n+ N,y =p+ N}

The probability that a donor/acceptor is occupied by an electron is
determined by Fermi statistics
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pa =Nj= Na(l—f(FEa))= Ny

Imagine that we have an n-type semiconductor (no p-type
dopants) so that N, = N°, = N* =0, then
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Furthermore, charge neutrality requires that
n:p+Ng

An excellent approximation is to assume that for a (commercially)
doped semiconductor

Nl_l)_>> n; m—> Ng>>p
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n ~ ND (1 — G’B(ED_EF) + 1)

Thermally induced carriers satisfy the Boltzmann equation,
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T n= D Es=FE.—E
1+ efBan/(NG,) Where fd=Ee—=LED

Which has only one meaningful solution
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and at higher 1" > s j> n = Np

At still higher T our approximation breaks down that N, >> n
since thermally excited carriers will dominate.



Inhomogeneous Semiconductors

one material doped differently
iIn different regions
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Doping Effects on the Band

Donors lower down the
conduction band level
to E-E,

Structure

Acceptors increase the
valence band level
to E +E,
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Electron Band Energies in a
Macropotential V(x)

Electrochemical
potential
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Poisson equation, the macropotential V(x) corresponds to a

space charge p(x)

y _9ap

J

04V (z) _

Ox?




For the concentration of majority carriers
0 Eg—EQ

n; = NpPp = NeffN rre FBT

The diffusion voltage V is the difference between the maximum

and minimum of the macropotential V(x) which is built up in thermal
equilibrium, is thus related to the carrier density by

n
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The corresponding current densities
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In the p and n regions electron-hole pairs are continually
created due to the finite temperature, and subsequently
recombine. The total current density obeys

jdiff _I_ jdrift — O

and thus the separate contributions of the electrons and holes
must vanish individually,
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The concentration of the electrons is position dependent with
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p-n junction in thermal
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How can a p-n Junction be Used to
Make a Diode?

* A device that passes current easily in one
direction

* Low resistance for voltage applied in one direction
(the forward direction)

 High resistance for voltage applied in the other
direction (the reverse direction)



Forward Bias

Apply a voltage V to reduce the difference between the
two sides to AE - eAV (AV >0) (AE=E°-ER?)
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Forward bias
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Reverse bias
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Homework
(due on 11/11/10)

Problem 6 (page 613)
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