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What is a Semiconductor?

Most condensed matter physicists make the distinction on the basis
of the conductivity and its temperature dependence. In the Drude
model (parabolic band)
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In semiconductors, the population of free carriers n is temperature
dependent. The exponential always will dominate the power law
dependence of 7.
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The same is true for insulators, of course, except here n is so small
that for all realistic purposes o ~ 0.



Temperature Dependence of Band Gaps
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Increase of the inter-atomic spacing leads to the decrease of potential



Sketch of the sp® bands in Si vs.
SI-Si separation
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Most semiconductors have co-valiant bonding

H 1 Periodic Table of the Elements © www.elementsdatabase.com HEE
3 4 B hydrogen B poor metals [ 5] 7 8 g 10
Be alkali metals B nonmetals B C N 9] F Ne
T 7 [ alkaliln?:arth metals B noble gases = 7 . = = =
Mg B transition metals B rare earth metals A Sj P g Cl | Ar
149 20 21 22 23 24 25 26 27 28 29 . a1 a2 33 34 35 36
Ca|Sc|Ti |V |Cr|Mn|{Fe |Co|Ni | CulZn |Ga|Ge| As| Se| Br | Kr
37 38| 30l 40 41 42 43 44 45 46 a7 4 49 50 21 52 53 54
Sr|Y |Zr [Nb|[Mo| Tc | Ru|Rh |Pd |Ag [Ca [In [ Sn|Sb| [le] | Xe
L] a6 a7 72 73 74 75 76 [ | 78 79 £ 81 82 & B4 85 86
Ba|lLa|Hf |Ta |W | Re|Os| Ir |Pt | AulHg | TI | Pb]| Bi| Po| At |Rn
a7 88 89 104 105 106 107 108 1091 110
Ra| Ac |Ung|Unp|Unh|Uns |UnojUne| Unnj|
58 59 &80 61 62 B3 B4 &5| (53] &7 B8 60 70 71
Ce| PrINd|Pm|Sm|Eu |Gd | Tb | Dy|Ho | Er | Tm|Yb | Lu
a0 a1 a2 83 94 95 96 a7 98 9] 100, 1M 102 103
Th|{Pal U |[Np|PulAm|Cm |Bk | Cf |Es | Fm| Md| No| Lr
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Direct vs. In-direct gap
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Charge Carrier Density in Intrinsic
Semiconductors

Both electrons and holes contribute to the conductivity
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Mobilities are assumed to be constant: all of the conducting
carriers are full near the top or bottom of bands, where E_~

h?k?/2m* and the effective mass approximation is valid y~er/m*
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The carrier concentrations are highly T -dependent since all of the
carriers in an intrinsic (un-doped) semiconductor are thermally induced
(le.n=p=0atT=0)
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For the parabolic approximation £/, ~ gm‘f we have
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Intrinsic (undoped) semiconductor n = p C> EF must lie in the
band gap.

However, if m* #m * (ie. D_#D,, ) :> the chemical potential, EF ,
must be adjusted up or down from the center of the gap so that n = p.



Furthermore, the carriers which are induced across the gap
are relatively high in energy, compared to k. T , since typically

E,=E, - E, > k,T.

E,(eV) mni(em™3)(300°K)
Ge 0.67 2.4 x 1013
Si 1.1 1.5 x 1010
GaAs 1.43 5% 107
leV
ke— ~ 10000°K > 300°K ~ T
B
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Thus, assuming that E — Ep > 79 > kgT
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: > Boltzmann statistics
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A similar relationship holds for holes where —(E — EFr) > 79 > kT
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In general, in the nondegenerate limit

keT\” 3
np =4 (2:7%2) (m* m*) 2 o —BEg

==>Law of mass action - holds for both doped and intrinsic
semiconductor so long as we remain in the nondegenerate limit.

For an intrinsic semiconductor, where n = p:
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However, we already have relationships for n and p involving
E.and E,
626EF — Neff ﬁ(Ev—l—Ec)
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Thus if m_*#m *, the chemical potential EF in a semiconductor is
temperature dependent.
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