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Band Structure



  

Where are the carriers coming from 
in semiconductors ?

 Non-metallic Metallic

T = 0 K  no conduction  

T ≠ 0 K  may/may not

Valence 
band

conduction 
band



  

What is a Semiconductor?

Most condensed  matter physicists make the distinction on the basis 
of the conductivity and its temperature dependence. In the Drude 
model (parabolic band)

¾ =
ne2¿

m¤
; ¹ =

e¿

m¤
; ¾ = ne¿

metals ¾ » ¿ » 1

T
; ¾ # as T "



  

In semiconductors, the population of free carriers n is temperature 
dependent. The exponential always will dominate the power law 
dependence of τ .
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The same is true for insulators, of course, except here n is so small 
that for all realistic purposes σ  0.∼



  

Temperature Dependence of Band Gaps

Increase of the inter-atomic spacing leads to the decrease of potential



  

Sketch of the sp3 bands in Si vs. 
Si-Si separation
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Indirect, roughly Γ → L, 
minimum gap energy



  Most semiconductors have co-valiant bonding



  

material ¿exciton
GaAs 1ns(10¡9s)
Si 19¹s(10¡5s)
Ge 1ms(10¡3s)

Table 1:

Note the direct, Γ → Γ, 
minimum gap energy



  

Direct vs. In-direct gap



  

Charge Carrier Density in Intrinsic 
Semiconductors

Both electrons and holes contribute to the conductivity



  

Mobilities are assumed to be constant: all of the conducting 
carriers are full near the top or bottom of bands, where E

k
 ~ 

ℏ2k2/2m∗ and the effective mass approximation is valid μ eτ /m∼ ∗



  

The carrier concentrations are  highly T -dependent since all of the 
carriers in an intrinsic (un-doped) semiconductor are thermally induced 
(i.e. n = p = 0 at T = 0)
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For the parabolic approximation                      we have     Ek ' ~2k2
2m¤
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Intrinsic (undoped) semiconductor n = p              EF must lie in the 
band gap. 

However, if m
p

 ∗ ≠ m
n
∗ (ie. D

C
≠D

V
 )           the chemical potential, EF , 

must be adjusted up or down from the center of the gap so that n = p.



  

Furthermore, the carriers which are induced across the gap
are relatively high in energy, compared to k

B
T , since typically

E
g
 = E

C
 − E

V
  k≫

B
T .

Eg(eV ) ni(cm¡3)(300±K)
Ge 0:67 2:4£ 1013

Si 1:1 1:5£ 1010

GaAs 1:43 5£ 107

1eV

kB
» 10000±K À 300±K » T

Thus, assuming thatE ¡EF >
Eg
2

À kBT
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= e¡(E¡EF )=kBT

Boltzmann statistics



  

A similar relationship holds for holes where ¡(E ¡EF ) >
Eg
2

À kBT
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n
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Since (1¡ f(E)) = f(¡E) and e(E¡EF )=kBT is small
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In general, in the nondegenerate limit

np = 4

µ
kBT
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¤
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¢ 3
2 e¡¯Eg

Law of mass action - holds for both doped and intrinsic
semiconductor so long as we remain in the nondegenerate limit.

For an intrinsic semiconductor, where n = p:

ni = pi = 2

µ
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However, we already have relationships for n and p involving
E

C
 and E

V

n = p = NC
effe

¡¯(EC¡EF ) = NV
effe

¯(EV¡EF )

e2¯EF =
NV
eff

NC
eff

e¯(EV+EC)
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Thus if m
p

 ∗ ≠ m
n
∗ , the chemical potential EF in a semiconductor is 

temperature dependent. 
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