
Measuring the Fermi Surface 

‐‐ Physical Proper8es Depend on 
The Shape of the Fermi Surface 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In the case of E(r,t)=0, H=H0 

If we are able to measure T (or frequency), we will 
obtain information about the shape of Fermi surface 
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W.J. de Haas 
(1878-1960) 

P.M. van Alphen 
(1906-1967) 

Discovered 1930: 
de Haas – van Alphen Oscillations 
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1/H 

T (or frequency)  
depends on 1/H 



Lev Shubnikov 
(1901-1937) 

W.J. de Haas 
(1878-1960) 

Discovered 1930: 
Shubnikov-de Haas Oscillations 



GaAs/AlGaAs 

Klaus von Klitzing 

Nobel prize 1985 



Similar oscillations are also observed in other 
Physical quantities… 



What is the Origin of the Oscillation ? 
Landau found that the 
cyclotron orbits 
are quantized in 
magnetic fields 
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At each Landau Level, the maximum 
number of particles:  
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Lev Landau 
Nobel prize 1962 

# of electrons 



Along the direction of  
applied magnetic field  
(z-direction): 

  In the presence of H, the Fermi sphere 
 becomes a stack of cylinders (Landau tubes) 
 If En ~ 0.1meV, EF ~ 1eV ⇒ n ~ 10000 

   The radius is proportional to H  
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   The area change depends on H 



In k-orbit: 
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Φ0

Nobel Prize in Chemistry 
1968 
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Determination of the Fermi Surface 
1.  Measure physical quantities, such as  

 magnetization and/or magnetoresistance; 

2.  In order to observe quantum oscillations in these 
 quantities,    
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ωc >> kBT

Require:  •  high field to increase ωc  
      •  low T           

3. Determination of frequencies in 1/H 
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In the dHvA experiment of silver, the two different 

periods of oscillation are due two different extremal orbits 


Example I: Silver 
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⇒ These allow us to determine the “neck” and “belly” 




Example II: Sr2RuO4 



YBa2Cu3O6+y 



Effects of spin-orbit coupling: 

Pieter Zeeman 
(1965-1943) 

Nobel Prize in 1902 

En 

En+µBgH 

En-µBgH 

Zeeman Splitting 
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Cancellation of oscillations 



Other Fermi Surface Probes: 

(ωE) 



Cyclotron Resonance: 
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Electrons can  
absorb energy  
from the field 

Cyclotron 
resonance 
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I ∝ f ω( )
indicating that 
ARPES measures 
the occupied states 

(photoelectron) 

Work function of the analyzer 
Kinetic energy of the outgoing electron 

Gives information about distribution of  
electronic states 



Energy-momentum dependence 



2D 

3D 

Sr2RuO4 



Na0.6CoO2 



              Homework (due on 11/4/2010) 

Explain how to measure Fermi surface using STM 
according to the article [Science 323, 1190 (2009)] 


