Measuring the Fermi Surface

-- Physical Properties Depend on The Shape of the Fermi Surface

Recall: In the case of E(r,t)=0, $H=H_0$

$$T(\varepsilon,k_z) = \frac{\hbar^2 c}{eH} \frac{\Delta A(\varepsilon,k_z)}{\Delta \varepsilon}$$

$$m_c^*(\varepsilon,k_z) = \frac{\hbar^2}{2\pi} \frac{\Delta A(\varepsilon,k_z)}{\Delta \varepsilon}$$

$$\frac{\hbar^2}{\Delta \varepsilon}$$
Determined by the shape of the Fermi surface

If we are able to measure T (or frequency), we will obtain information about the shape of Fermi surface

Discovered 1930: de Haas – van Alphen Oscillations

W.J. de Haas (1878-1960)

P.M. van Alphen (1906-1967)

T (or frequency) depends on 1/H

Discovered 1930: Shubnikov-de Haas Oscillations

Lev Shubnikov (1901-1937)

W.J. de Haas (1878-1960)

Klaus von Klitzing

Nobel prize 1985

Similar oscillations are also observed in other Physical quantities...

What is the Origin of the Oscillation ?

Landau found that the cyclotron orbits are quantized in magnetic fields

$$\varepsilon_n^H = \hbar \omega_c \left(n + \frac{1}{2} \right)$$

Lev Landau Nobel prize 1962 $\omega_c = \frac{eH}{mc}$

Landau Levels

 $\Phi_0 = \frac{hc}{-} \leftarrow Flux quantum$

e

At each Landau Level, the maximum number of particles: $\Phi = HA$

$$N_{LL}^{M} = Z(2S+1)\frac{\Phi}{\Phi_{0}}$$

of electrons

Along the direction of applied magnetic field (z-direction):

$$E_{n,k_z} = \left(n + \frac{1}{2}\right)\hbar\omega_c + \frac{\hbar^2 k_z^2}{2m^*}$$

[⊗] In the presence of H, the Fermi sphere becomes a stack of cylinders (Landau tubes) If $E_n \sim 0.1$ meV, $E_F \sim 1$ eV \Rightarrow n ~ 10000

The radius is proportional to H

$$E_{n,k_{z}} = \left(n + \frac{1}{2}\right)\hbar\omega_{c} + \frac{\hbar^{2}k_{z}^{2}}{2m^{*}}$$

$$E_{n+1}(k_{z}) - E_{n}(k_{z}) = \hbar\omega_{c} = \frac{h}{T(E_{n}(k_{z}),k_{z})}$$

$$T(\varepsilon,k_{z}) = \frac{\hbar^{2}c}{eH}\frac{\Delta A(\varepsilon,k_{z})}{\Delta\varepsilon}$$

$$\Delta A = \frac{H}{\Phi_{0}}$$

The area change depends on H

In k-orbit:

$$A_n^k = \left(n + \frac{1}{2}\right) \frac{H}{\Phi_0}$$

Law Omsagen

Nobel Prize in Chemistry 1968

$$A(E_{n+1}) - A(E_n) = \Delta A = \frac{H}{\Phi_0}$$

$$A_n = \left(n + \frac{1}{2}\right) \frac{H}{\Phi_0}$$

$$A_{n+1} = \left((n+1) + \frac{1}{2}\right) \frac{H'}{\Phi_0}$$

$$\frac{A_{n+1}}{H'} - \frac{A_n}{H} = \frac{1}{\Phi_0}$$

$$A\left(\frac{1}{H'} - \frac{1}{H}\right) = A\Delta\left(\frac{1}{H}\right) = \frac{1}{\Phi_0}$$

$$\Delta\left(\frac{1}{H}\right) = \frac{1}{\Phi_0} \frac{1}{A}$$

$$\Delta \left(\frac{1}{H}\right) = \frac{1}{\Phi_0} \frac{1}{A}$$
$$A = A_{extreme} = \Phi_0 / \Delta \left(\frac{1}{H}\right)$$

A peak in the Density-of-states

w/o extremal orbit w/ extremal orbit

Determination of the Fermi Surface

- 1. Measure physical quantities, such as magnetization and/or magnetoresistance;
- 2. In order to observe quantum oscillations in these quantities, $\hbar \omega_c >> k_B T$

Require: • high field to increase $\omega_{\rm c}$ • low T

- 3. Determination of frequencies in 1/H
- 4. Determination of extreme areas via $A_e = \Phi_0 / \Delta \left(\frac{1}{H}\right)$

Example I: Silver

In the dHvA experiment of silver, the two different periods of oscillation are due two different extremal orbits

 \Rightarrow These allow us to determine the "neck" and "belly"

Example II: Sr₂RuO₄

YBa₂Cu₃O_{6+y}

Effects of spin-orbit coupling:

Pieter Zeeman (1965-1943)

Nobel Prize in 1902

Cancellation of oscillations

Other Fermi Surface Probes:

Azbel-Kaner cyclotron resonance (1956)

- = a steady magnetic field to make cyclotron motion
- + an oscillating electric field to induce resonance

Cyclotron Resonance:

Angle-Resolved Photoemission Spectroscopy

Energy-momentum dependence

Energy

3D

Χ

Μ

 Sr_2RuO_4

 $Na_{0.6}CoO_2$

Homework (due on 11/4/2010)

Explain how to measure Fermi surface using STM according to the article [Science **323**, 1190 (2009)]

1190

27 FEBRUARY 2009 VOL 323 SCIENCE

Seeing the Fermi Surface in Real Space by Nanoscale Electron Focusing

Alexander Weismann,^{1,2} Martin Wenderoth,¹* Samir Lounis,³ Peter Zahn,⁴ Norbert Quaas,¹ Rainer G. Ulbrich,¹ Peter H. Dederichs,³ Stefan Blügel³