
Symmetry

The basic symmetries of the dispersion 

• The translational invariance of the lattice and reciprocal 
lattice.
• The point group symmetries of the lattice and reciprocal 
lattice.
• Time-reversal invariance.



Complex Properties of the 
dispersion and Eigenmodes
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Due to the symmetric properties of the second derivative

Thus, DT ∗ = D† = D so D is hermitian and its eigenvalues ω2 
are real. 
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Return to the previous secular equation and associated 
orthogonality and completeness relations
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Point-Group Symmetry and the 
Dispersion

From the definition of D

and since G·r
p
 = 2πn, (where n is an integer) it follows 

that

And in turn that the eigenvalues (and eigenvectors) 
must also be periodic.
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Symmetry and the Need for 
Acoustic modes

Translational invariance

Since we know that s
1,1,i

 is finite, it must be that
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Now consider a strain on the system V
m,β,j

, described by 
the strain matrix m

Net-force on the central (n=0) atom

Since this applies for an arbitrary strain matrix m for 
each m must be zero
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The Counting of Modes
● Periodicity and the Quantization of States

sn = ²(q)ei(qrn¡!t) where rn = na

We were looking for solutions to the phonon problem of 
the form

Requiring or sn+N = sn

q(n+N)a = qna+ 2¼m where m is an integer

● Translational Invariance: First Brillouin Zone
● Point Group Symmetry and Density of States



Normal Modes and Quantization
Any lattice displacement may be expressed as a sum over 
the eigen-vectors of the dynamical matrix D.
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1

N

X

n

ei(k+q)¢rn = ±k;¡q and
X

®;i

²r®;i²
¤s
®;i = ±rsUsing

T =
1

2

X

q;r

¯̄
¯ _Qr(q)

¯̄
¯
2



The potential energy may be rewritten in a similar fashion
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The equations of motion are
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Quantization and Second 
Quantization

1. First, identify the classical canonically conjugate set of 
variables

2.These have Poisson Brackets

3.Then define the quantum Poisson Bracket (the 
commutator)

4.In particular,
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Furthermore, since we have a system of 3rN uncoupled 
harmonic oscillators we may immediately second quantize 
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Or,
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Where



This transformation {Q,P} → {a,a†} is canonical, since is 
preserves the commutator algebra, and the Hamiltonian 
becomes
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which is a sum over 3rN independent quantum 
oscillators, each one referred to as a phonon mode!
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The lattice point displacement:
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