Symmetry

The basic symmetries of the dispersion

* The translational invariance of the lattice and reciprocal
lattice.

* The point group symmetries of the lattice and reciprocal
lattice.

 Time-reversal invariance.



Complex Properties of the
dispersion and Eigenmodes

Due to the symmetric properties of the second derivative
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Thus, D™* = D" = D so D is hermitian and its eigenvalues w?
are real.
Suppose that the plane wave is moving to the right so that
qg=q,, then the plane of stationary phase travels to the right
with . _ %,
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= DSi(a) = D5 (~q)

Return to the previous secular equation and associated
orthogonality and completeness relations
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Taking the complex conjugate of the secular equation
(D (—a) = w*(—a)3] ) 5;(q) = 0

s e5,(q) = €pi(—Q)




Point-Group Symmetry and the
Dispersion

From the definition of D
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and since G'r, = 2mn, (where n is an integer) it follows
el D(q+G) = D(a)

And in turn that the eigenvalues (and eigenvectors)
must also be periodic.

w™(K+G)=wm™(K)
epi(K+ G ) = €g;(K)



Symmetry and the Need for
Acoustic modes

Translational invariance
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Since we know that Si1i IS finite, it must be that
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Now consider a strain on the system V_ ., described by

the strain matrix m o
Vin8g = 3 MG 5 Sm.a,i
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Net-force on the central (n=0) atom
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Since this applies for an arbitrary strain matrix m for
each m must be zero

::> E maﬁaj _
®0,0é,’l: Sm7’77k5 T O
™m

O




The Counting of Modes

» Periodicity and the Quantization of States

We were looking for solutions to the phonon problem of

the form .
s = €(q)et ™=t where 1, = na

Requiring Sp+nN = Sp OF
g(n + N)a = gna + 2rm where m is an integer

 Translational Invariance: First Brillouin Zone
* Point Group Symmetry and Density of States

(a)
® @

© O

OO.

o

© © & © © O
© O & © & O
© & © © © ©
© 0 © 0 ©

© & O
© O O




Normal Modes and Quantization

Any lattice displacement may be expressed as a sum over
the eigen-vectors of the dynamical matrix D.
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The kinetic energy of the lattice
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The potential energy may be rewritten in a similar fashion
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This can be shown to reduce to

V_ Zw ‘Qs

Thus we may wrlte the Lagrangian of the ionic system as
L:T—V— -~ ()Q ) —wi(K) [Qs(K) )

where the Q (k) may be regarded as canonical
coordinates, and
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The equations of motion are

ﬁ dt <8Q* >_65;L(k) or Qs(k) +w?(k)Qs(k) =0

P*(K) =
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= Q1 (K)




Quantization and Second
Quantization

1. First, identify the classical canonically conjugate set of
variables {q:,p:}

2.These have Poisson Brackets

{{u,v}} = Z (au v Ou 81})
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3.Then define the quantum Poisson Bracket (the
commutator)

u, v] = uv — vu = th{{u,v}}

4.In particular, |g:,p;] = thd; ;, and |qs:, q;] = [pi, ;] =0
) @7 (K), Ps(q)] = thdk q0rs where the other commutators vanish .




Furthermore, since we have a system of 3rN uncoupled
harmonic oscillators we may immediately second quantize
by introducing
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This transformation {Q,P} — {a,a’} is canonical, since is
preserves the commutator algebra, and the Hamiltonian

becomes 1
H =3 (9 (a0, () + 3 )

which is a sum over 3rN independent quantum
oscillators, each one referred to as a phonon mode!

The number of phonons in ns(K) = aT(k)a (k)

state (k,s) ° ST

Phonon creation and al(K) |ns(K)) = +/ns(K) +1|ns(K) 4+ 1)
destruction operators

.1(k) and a. (k) as(K) Ins(K)) = /ns(K) Ins(k) — 1)

N[
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State with {n_(k)} phonons {ns(K)}) = (H o (lk)!) H (al(k))”s(k) 0)

in each state (k,s) is k,s k,s
The lattice point displacement:
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