L8 15 Feb, Assign HW4, HW5

1) Download Moodle/Week 5/bullet dataset (binary)

2) Download Moodle/Week 5/HW4_Manipulate_segment_grains.nb
3) Download Moodle/Week 5/HW5_Connected_Components.nb
This lecture starts HW4, HW5 Manipulate, due Friday, 24 Feb.

Objective of HW4: (a) review Avizo lecture of week 3: “Watershed segmentation
with Avizo Fire quantification module. (b) practice Module, functions, and
Manipulate.

Objective of HW5: (a) using a label field matrix, (b) practice Map

Philosophy:

Programming is like chess. It takes practice, practice, practice. Also, feel free to ask
for advice: “What's the next move?”

The best programs that you write will be the programs that you can re-use next
month, and re-use with understanding.

Grain segmentation uses a lot of image processing tools. The Avizo notes take 12
steps to generate the label field matrix and its colorized view.

http://pcaster.net/viz_software/avizofire-watershed.html

AVIZO FIRE EXAMPLE

Watershed segmentation

Separating the propellant grains in bullet dataset

(20yelume_bullet_p134_usiki6.om) —————=(C00rthe Slice ()
(EBimagel hres* D‘T_“‘ = ———«(00 0rtho Skee 2(-)
(EBumageDist™ V)r “Cueruiaben g —=(D 0Ortho Slice 3)
(Eleoge&wrged'L;;sjl — - — —_ —o{ D Ortho Slice 4[)
(LDlmageMarkers‘)M — —_ — — (CDOI"'OO Slice SC’)
[|
(2BimageDistReverse ™ L)
L QuanliKauon. iastwates stiedl . JfEorhe S
(ERimageWalerling”) — P -
(B unageGiains™ [- — - -« LD Ortho Slice 6(-)
(CBimagelabel - — «L00rtho Shce 71>)

http://pcaster.net/viz_software/avizofire-watershed.html

Grain segmentation uses a lot of image processing tools. The Mathematica code of
HW4 also takes many steps to generate the label field matrix and its colorized view.

Part 1: Study (30 minutes) the Mathematica version of
Lecture Week 3 “Watershed segmentation with Avizo
Fire quantification module”.

Clear["imagex«"]
Clear[volume]

= Step 1: Get a slice from the volume_bullet_p134.bin file

= Step 2: Convert from data to image format

= Step 3: Binarize (AvizoFire-Watershed step 3)

= Step 4: Distance Transform (AvizoFire-Watershed step 6)

= Step 5: MaxDetect (AvizoFire-Watershed step 7)

= Step 6: Connected Components (AvizoFire-Watershed step 8)

= Step 7: Negate the results of the distance transform (AvizoFire-
Watershed step 9)

"1
["'
;.-I. ‘

' v L " s
= Step 9: Extract the watershed lines (AvizoFire-Watershed step 11a) t .}“ ‘L "

= Step 8: Apply watershed with ImageMaximum as a binary marker
(AvizoFire-Watershed step 10)

= Step 10: Subtract watershed lines from binary image (AvizoFire-
Watershed step 11b)

= Step 11: Connected components analysis of the separated grains.
(AvizoFire-Watershed step 12)

= Step 12: Show images of the major steps (unlabeled figures)
= Step 13: Show images of the major steps (labeled figures)
= Step 14: Self-Study review questions

HW4. Apply Module, function, and Manipulate to Steps 3-11. The goal is (a) to
practice these commands and (b) to have a friendlier segmentation program.

Part 1: Study (30 minutes) the Mathematica version of

thresholdBinarization

Lecture Week 3 “Watershed segmentation with Avizo

thresholdExtendedMaximum

Fire quantification module”.

thresholdBinarizationWatershed
Clear["imagex"]
Clear [volume]

= Step 1: Get a slice from the volume_bullet_p134.bin file

= Step 2: Convert from data to image format

= Step 3: Binarize (AvizoFire-Watershed step 3)

= Step 4: Distance Transform (AvizoFire-Watershed step 6)

= Step 5: MaxDetect (AvizoFire-Watershed step 7)

= Step 6: Connected Components (AvizoFire-Watershed step 8)

= Step 7: Negate the results of the distance transform (AvizoFire-
Watershed step 9)

= Step 8: Apply watershed with ImageMaximum as a binary marker
(AvizoFire-Watershed step 10)

= Step 9: Extract the watershed lines (AvizoFire-Watershed step 11a)

= Step 10: Subtract watershed lines from binary image (AvizoFire-
Watershed step 11b)

= Step 11: Connected components analysis of the separated grains.
(AvizoFire-Watershed step 12)

= Step 12: Show images of the major steps (unlabeled figures)
= Step 13: Show images of the major steps (labeled figures)
= Step 14: Self-Study review questions

HW4. Apply Module, function, and Manipulate to Steps 3-11. The goal is (a) to
practice these commands and (b) to have a friendlier segmentation program.

Comments about HW4 (page 1 of 4):

e Use volume_bullet_p134.bin The pixels range from 20,000 to 40,000. The code is
expecting values in this range.

e Step 1 extracts a slice, with grains, from the volume. The slice is randomly chosen
based on your student ID number (or any number you pick). Everyone has a slightly
different HW problem.

e Mathematica uses data type “image”. A 2D array of numbers is converted into
“image” in Step 2 with the command imageSlice = Image[myNewSlice, "Bit16"]

e Most of the Step 14 self-study questions are based on histograms of the “image”.

A function for plotting linear and log histograms is defined in Step 1.

e If the Part 1 code runs weirdly, clear all images and the volume and re-start at
Step 1.

More comments about HW4 (page 2 of 4)

e Step 2: Explore the effect of ImageAdjust on image called imageSlice. Note how
ImageAdjust changes the small histogram.

e Step 3: The Binarize command uses a threshold. Great place for Manipulate

e Step 5: The MaxDetect (the extended maximum algorithm) command uses a
threshold. Great place for Manipulate

* Step 6: Note the values in the linear histogram. Why? This is covered in the self-
study.

* Step 7: You could compare results of ImageHistogram|imageDistance] and

ImageHistogram[imageDistanceNegate]

e Step 8: A pretty image:
ArrayPlot[dataWatershedLines, ColorFunction -> "Rainbow"]
The command WatersheComponents as two inputs:

(a) the image, imageDistanceNegate
(b) markers (or starting points), imageMaximum

More comments about HW4 (page 3 of 4)

e Step 9: This code needs improvement. The goal is white lines on a black

background, but the code is way too sensitive to the value of the binarization
threshold. Any suggestions for code improvement?

imageWatershedLines
imageWatershedLines

Image [dataWatershedLines, "Bitl6"];
ColorNegate[Binarize[imageWatershedLines, 0.00001]]

e Step 10: Subtraction (sort of).
In image arithmetic, note that:

black - white = black
or

0-1=0 (not-1)
Anyway, we get a nice binary image.

More comments about HW4 (page 4 of 4)

e Step 11: Connected components. The variable “dataComponents” is numbers (not
image format). It's mostly 0 (background). Get comfortable with the range and
distribution of numbers in this label field matrix. HW5 starts with this label field
matrix and goes on.

(243, 243)
100000 E_, —
100005~

""...’[—1 - ‘ 1000-
ﬂ"E-ll I)
J t v ! ".. 100
oL T E ;
10. £ H|||| | ||H |H||| ||

0 50 00 150

More comments about HW4 (page 5 of 4) (extras)
e Step 12 the figures

GraphicsGrid [{{imageSlice, imageBinary}, {imageDistance, imageMaximum},
{imageWatershedLines, imageSegmentedGrains}}]

10

More comments about HW4 (page 6 of 4) (extras)
e Step 13 the labeled figures

gTextSlice = Text [Style["slice", 14, White, Background -» Black]];

gTextBinary = Text [Style["binarize", 14, White, Background -» Black]];

gTextDistance = Text [Style["distance transform", 14, White, Background -» Black]];
gTextMaximum = Text [Style["extended maximum", 14, White, Background -» Black]];
gTextWatershedLines = Text [Style["watershed transform", 14, White, Background -» Black]];
gTextSegmented = Text [Style["segmented grains", 14, White, Background -» Black]];

GraphicsGrid|[{{
Show [imageSlice, Epilog -» Inset [gTextSlice, Scaled[{0.25, 0.95}]11]1,
Show [imageBinary, Epilog -» Inset [gTextBinary, Scaled[{0.25, 0.95}]]]
} . distance transform
{Show [imageDistance, Epilog -» Inset [gTextDistance, Scaled[{0.25, 0.95}]11,
Show [imageMaximum, Epilog -» Inset [gTextMaximum, Scaled[{0.25, 0.95}]1]
} s
{Show [imageWatershedLines, Epilog -» Inset [gTextWatershedLines, Scaled[{0.25, 0.95}]1]1,
Show [imageSegmentedGrains, Epilog -» Inset [gTextSegmented, Scaled[{0.25, 0.95}]1]]
}}, ImageSize -» {500, 700}]

a a -

o ’. ' “‘
"ii}‘. iy -\

%
of o

¢
'1 o 7

!

More comments about HW4 (page 7 of 4) (extras)

= Step 14: Self-Study review questions

ImageQ is a test of whether or not an object is an image or not. What is the result of
ImageQ[imageSlice]. Is this answer consistent with the commands used to make imageSlice?

In Mathematica, each pixel in a grayscale image has a value between [0,1]. Consider Step 3. What color
image do you get with threshold = -1, or -2, or -37 Why no change for these three threshold values?

Can you see any similar patterns shared by Step 2 imageSlice and Step 5 imageMaximum (it’s tough, but
I hope the answer is yes).

Can you see any similar patterns shared by Step 2 imageSlice and Step 5 imageMaximum (it’s tough, but
I hope the answer is yes).

If you were to count the number of colored objects in Step 6 imageComponents and note the largest x-axis
value in the histogram, is there any connection between these two values?

Step 7: If you were to do ImageHistogram[imageDistanceNegate], would the bin for +1 (far right) be the
largest bin? Is this consistent the dominant color of imageDistanceNegate. What about

ImageHistogram[imageDistance] and the dominant color of imageDistance? (Please allow me to use the
word “color” with grayscale images.)

Step 11: Do you think the command Colorize randomly chooses colors for each interger value in the label
field matrix? Want to try Colorize[dataComponents, ColorFunction->"ThermometerColors™] ?

More color schemes are listed in the help file under “colorschemes”

|2

More comments about HW4 (page 7 of 4) (extras)

= Step 14: Self-Study review questions

ImageQ is a test of whether or not an object is an image or not. What is the result of
ImageQ[imageSlice]. Is this answer consistent with the commands used to make imageSlice?

In Mathematica, each pixel in a grayscale image has a value between [0,1]. Consider Step 3. What color
image do you get with threshold = -1, or -2, or -37 Why no change for these three threshold values?

Can you see any similar patterns shared by Step 2 imageSlice and Step 5 imageMaximum (it’s tough, but
I hope the answer is yes).

Can you see any similar patterns shared by Step 2 imageSlice and Step 5 imageMaximum (it’s tough, but
I hope the answer is yes).

If you were to count the number of colored objects in Step 6 imageComponents and note the largest x-axis
value in the histogram, is there any connection between these two values?

Step 7: If you were to do ImageHistogram[imageDistanceNegate], would the bin for +1 (far right) be the
largest bin? Is this consistent the dominant color of imageDistanceNegate. What about

ImageHistogram[imageDistance] and the dominant color of imageDistance? (Please allow me to use the
word “color” with grayscale images.)

Step 11: Do you think the command Colorize randomly chooses colors for each interger value in the label
field matrix? Want to try Colorize[dataComponents, ColorFunction->"ThermometerColors™] ?

More color schemes are listed in the help file under “colorschemes”

| 3

