L7 Function, Manipulate, Orthoslice viewer

1) Download Moodle/Week 5/bullet dataset (HDF5)
2) Download Moodle/Week 5/Pgm7_Function_Manipulate.nb

This lecture starts HW4 Manipulate, due-Wednesdayy15-FEeb-

index =1)

minintensity -

maxIntensity -

color | GrayTones @Thermometercmors BrightBands LightTemperatureMap

orientation | columns slices rows slices rowsaumnsl

slice: 16

Philosophy:

Near term goals are the use of a function to make our own connected components
command. We will use the label field as a mask to inspect each and every grain in
the bullet. We will use the simplifed algorith from Lohmann “Volumetric Image
Analysis”, page 26.

Longer term goal is coding of algorithms from Soille “Morphological Image
Analysis”. The problem is the dense syntax used to describe the algorithms.

Pgm7_Function_Manipulate.nb
13 Feb 2012
Les Butler

volume_bullet_p134.bin {243x243x227xunitl6, little endian, z-fastest}
volume_bullet_p134.h5

Clear[volume]

= Step 0 : Les’s notes on the Manipulate video
= Step 0 : Les’s notes on the Function video

= Step 1: Let’s talk about a function of the code used in the Manipulate video. This “expert” level
code can be simplified.

= Step 2: pull the code out of Manipulate. Make functions for each graphic element.
= Step 3: Import volume from the *.h5 file. In a pinch, *.bin will work, but prefer *.h5
= Step 4: Which orientation to plot?

= Step 5: Manipulate of one orientation.
Problem: cell will get too big with insertion of the Which code from Step 4.

= Step 6: Make of function of the orientation code .
= Step 7: Manipulate three orientations, using a Function for selecting orientations

3

http://www.wolfram.com/broadcast/screencasts/elementaryprogramming/

= Step 0 : Les’s notes on the Function video -

0:20 flx_]:=x%+ 1 '

2:10 fIx_,y_]

3:00 If[conditional, true condition, false condition] o Elementary Programming
4:55 Assignment with one equal sign. Conditional testing with in Mathematica

5:10 Do loops.

6:00 While loops

6:50 Functional programming introduction
7:00 Map

7:20 NestList

7:40 interest rate calculations

7:55 Map with interest rate
8:10 NestList with interest rate

8:40 Localization of variables (scope of variable definition)
9:40 Module (slang = leaking)

10:40 Making a package (will use this later)

Jon MclLoone
Sales & Marketing Manager

- WOLFRAMRESEARCH

http://www.wolfram.com/broadcast/screencasts/elementaryprogramming/

http://www.wolfram.com/broadcast/screencasts/makingmodels/

2121= Mamapulate[Plot[{f[x], f[x1] + £ "[x1]) = (x-x1)}, {x, -2, 2%},

The week 4 video about PlotRange — {-2, 2}, Epilog — {PointSize[0.025], Point [{x1, f[x1]1}1}],
Manipulate. {x1, -2, 2x}, {f, {Sin, Cos, Tan, Sec, Csc, Cot}}]
The plot command is gnarly. . .
, . . . % ‘ \
Let’s use tunctions to simplity. e Q0 AR S
One function for plotting the £ |Cos Lig
curve. -
A second function for plotting the ‘E
slope. oz | g}
And a third function for plotting . TR DN . . N
the black dot. = = ¥ 4 | : ' .

|
"

http://www.wolfram.com/broadcast/screencasts/makingmodels/

The function used in the video

Function name can be any name
with letters and numbers; must
start with a letter, and prefer
lowercase letter.

Arguments are listed in square
brackets with underscore.

Use colon-equal to assign the
definition to a function.

Use Clear|] to clear (remove) the
definition of a function. Notice
the blue text after the Clear

command was executed.

n@:= £[x]
n(10]= £[10]
Out[10]l= 101

IN[11]:=

Clear|[f]

+

1

The function used in the video

Function name can be any name
with letters and numbers; must
start with a letter, and prefer
lowercase letter.

Arguments are listed in square
brackets with underscore.

Use colon-equal to assign the
definition to a function.

Use Clear|] to clear (remove) the
definition of a function. Notice
the blue text after the Clear

command was executed.

n@:= £[x]
n(10]= £[10]
Out[10]l= 101

IN[11]:=

Clear|[f]

+

1

The manipulate used in the video uses

44 144
expert style pIOt commands. = Step 1: Let’s talk about a function of the code used in the Manipulate video. This “exj
code can be simplified.

1) Plot[{function 1, function 2}, ...] is plotting
two functions, the curve and the straight line.

Manipulate [Module[{},
Plot[{£f[x], £[x1] + £ " [x1] » (x-x1)}, {x, -2 7x, 2 %},
PlotRange » {-2, 2}, Epilog - {PointSize[0.05], Point[{x1l, £[x1]1}1}] 1,
{{x1, 0}, -2 x, 2 x},

2) The Epllog iS plottlng a POlnt[] at the le {f, {Sin, Cos, Tan, (Sin[#] +Cos[#]) &, Sin[#]% &, Csc, Cot}}]
location of the slider “x1” and the value of the

function at x1. 1

f Sin[t1)? &

[look at this code as three graphics elements.

Each graphic element could be drawn . /\ S\ /-

separately, and then combined in a Show(]

command. Let’s give it a try.

First graphic element

Here, we are passing two arguments, the
name of the function and a list of min and
max values for the plot range.

= Step 2: pull the code out of Manipulate. Make functions for each graphic element.

Clear[fun, f]

graphFunction[fun , xRange] :=
Plot[fun[x], {x, xRange[[1l]], xRange[[2]]}, PlotRange » {-2, 2}]

f = Cos;
graphFunction[f, {-2 x, 2 x}]

2

Second graphic element

Here, we are passing three arguments, the
name of the function, x1, and a list of min

and max values for the plot range
graphStraightLineAtAPoint[fun , x1 , xRange] :=

Plot[fun[x1] + fun'[x1] » (x-x1), {x, xRange[[1]], xRange[[2]]}]

f = Cos;
x1l=1;
graphStraightLineAtAPoint[f, x1, {-2 x, 2 7}]

10

Testing first and second graphic elements

Just debugging. Do the two lines coincide at

the right point?
Show [{graphFunction[f, {-2x, 2 7}],
graphStraightLineAtAPoint[f, x1, {-2x, 2 7}] }]

¢ R

Third graphic element is a point.

See the point?
Graphics[{PointSize[0.01], Point[{0, 0}]}]

12

Third graphic element is a point, now as a

function.

graphAPoint[fun , x1] := Module[{x, v},
X = x1;
vy = fun[x1];
Graphics[{PointSize[0.05], Point[{x, v}1}]]

See the point now?

f = Cos;
xl=1;
graphAPoint[f, x1]

|3

Combining all three graphics elements in
one cell.

f = Cos;

xl =1;

Show [{graphFunction[f, {-2x, 2 7}],
graphStraightLineAtAPoint[f, x1, {-2 n, 2 7}],
graphAPoint[f, x1] }]

Looks good.

Putting into a Manipulate, and we get a

error message |
Manipulate [Module[{},

Why the error? Show [{graphFunction[£f, {-2 7, 2 7}],
graphStraightLineAtAPoint[f, x1, {-2x, 2 }],
Hint. Notice the color graphAPoint[f, x1] }] 1,
{{x1, 0}, -2 x, 2 1},
of the functions!! {£, {sin, Cos, Tan, (Sin[#] +Cos[#]) &, Sin[#]? &, Csc, Cot}}]
x1 ¢ ()

f Sin _3]

Show [{graphFunction([Sin, {-2 i, 2t}],
graphStraightLineAtAPoint [Sin, 3.15416, {-2 s, 2t}],
graphAPoint [Sin, 3.15416] }]

Show::gcomb : Could not combine the graphics objects in
Show([{graphFunction|Sin, {-2 x, 2 n}], graphStraightLineAtAPoint([Sin, 3.15416, {-2x, 2
graphAPoint[Sin, 3.15416]}]. >

|5

Putting into a Manipulate, define the

. . Manipulate |Module[{},
functions, and now it works. [

Show [{graphFunction([f, {-2 x, 2 r}],

D . I f 5 graphStraightLineAtAPoint[£f, x1, {-2 7w, 2 }],
oes 1t work for you: graphAPoint[£, x1] }]],

{{x1, 0}, -2 x, 2},
{£, {sin, Cos, Tan, (Sin[#] +Cos[#]) &, sin[#]% &, Csc, Cot}}]

x] { Y

f Sin

>

