Mathematica: binary files and HDF5 files exploration of the bullet volume

To prepare:

1) Moodle: download Week 1/bullet dataset (binary, 26.8 MB) 2) Moodle: download Week 2/bullet dataset (HDF5, 107 MB) 3) Moodle: download Week 2/Pgm2_binary_HDF5.nb Note "Step number" for the subsections. These are our navigation guides for the lecture.

cartridge

Step 1: Filenames and files sizes

In[120]:= listOfFilenames = FileNames["volume*", NotebookDirectory[]] Map[FileByteCount, listOfFilenames]

Out[120]= {/Users/lesbutler/Documents/h4581/volume_bullet_p134.h5, /Users/lesbutler/Documents/h4581/volume_bullet_p134_uint16.bin}

Out[121]= $\{107235032, 26808246\}$

FileNames

FileNames[]
lists all files in the current working directory.

FileNames [form] lists all files in the current working directory whose names match the string pattern form.

FileNames[{form1, form2, ...}]
lists all files whose names match any of the formi.

FileNames [forms, { dir₁, dir₂, ... }]
lists files with names matching forms in any of the directories dir_i.

FileNames[forms, dirs, n]
includes files that are in subdirectories up to n levels down.

Map (/@)

Map[f, expr] or f /@ expr applies f to each element on the first level in expr.

Map [f, expr, levelspec]
applies f to parts of expr specified by levelspec.

Step 2: Import the HDF5 file

 Data represent 	sentation elements:			
"Data"		all datasets imported as a list of arr	_	
"Datasets		names of all datasets	Ou	

```
Basic Examples (4)
```

Show the datasets stored in a sample file:

```
Out[1]= {/image24bitpixel, /image8bit, /palette}
```

Import 8-bit RGB raster data and render it as an Image object:

In[1]:= Image[Import["ExampleData/image.h5", {"Datasets", "/image24bitpixel"}], "By

Out[1]=

```
Export a matrix to HDF5:
```

```
In[1]:= Export[ "matrix.h5", {{1, 2}, {2, 3}}]
```

```
Out[1]= matrix.h5
```

Show the datasets contained in this file:

Import "Dataset1":

[3]:= Import["matrix.h5", {"Datasets", "/Dataset1"}]

```
t[3] = \{\{1, 2\}, \{2, 3\}\}
```

Export a named dataset:

```
In[1]:= Export["m1.h5", {{1, 2}, {2, 3}}, {"Datasets", "m1"}]
```

```
Out[1]= m1.h5
```


Table, Range,

Part,

First, Last, Take, Drop, Append, Length, **Position**,

Flatten, Join, Partition, Transpose, Map

List Manipulation

Lists are central constructs in Mathematica, used to represent collections, arrays, sets, and se structure and size, and can routinely involve even millions of elements. Well over a thousand I operate directly on lists, making lists a powerful vehicle for interoperability.

```
{a, b, ...} (List) — specify a list explicitly
Table — make a table of values of an expression
Array — make an array of any dimension from a function
Range · SparseArray · Tuples · NestList · Sow · Reap · ...
```

```
list[[...]] (Part) - parts or sequences of parts (;;), resettable with =
First - Last - Take - Drop - Extract - Append - ReplacePart - ...
Select — select according to a function
Cases — give cases matching a pattern
Length - Position - MemberQ - DeleteDuplicates - ...
```

Rearranging & Restructuring Lists >>

```
Flatten — flatten out nested lists
```

```
Join • Partition • Transpose • Reverse • Sort • Split • Gather • Riffle • ...
```

Applying Functions to Lists »

Map (/@) — map a function over a list: $f / @ \{a, b, c\} \rightarrow \{f[a], f[b], f[c]\}$ Apply (@@, @@@) — apply a function to a list: $f @@ \{a, b, c\} \rightarrow f[a, b, c]$ MapIndexed - Scan - Thread - MapThread - Outer - FoldList - ...

Step 4: Plot a slice

```
28]:= aSlice = volume[[Round[rows / 2], All, All]];
   Dimensions[aSlice]
29 = \{243, 227\}
30]:= {Min[aSlice], Max[aSlice]}
```

```
30 = \{-0.0587507, 0.0814862\}
```

31]:= gSlice = ListDensityPlot[aSlice, ColorFunction → "GrayTones", PlotRange → {All, All, {-0.01, 0.03}}]

ListDensityPlot

ListDensityPlot[array]

generates a smooth density plot from an array of values.

```
ListDensityPlot[{\{x_1, y_1, f_1\}, \{x_2, y_2, f_2\}, ...\}]
   generates a density plot with values defined at specified points.
```

MORE INFORMATION ►

EXAMPLES

```
Basic Examples (3)
```

Use an array of values to define heights for a density:

In[1]:= ListDensityPlot[{{1, 1, 1, 1}, {1, 2, 1, 2}, {1, 1, 3, 1}, {1, 2, 1, 4}}, Mesh

Step 4: Plot a slice

```
28]:= aSlice = volume[[Round[rows / 2], All, All]];
   Dimensions[aSlice]
29]= {243, 227}
30]:= {Min[aSlice], Max[aSlice]}
```

```
30 = \{-0.0587507, 0.0814862\}
```

31]:= gSlice = ListDensityPlot[aSlice, ColorFunction → "GrayTones", PlotRange → {All, All, {-0.01, 0.03}}]

ColorFunction

ColorFunction

is an option for graphics functions that specifies a function to apply to determine colors of elements.

EXAMPLES

▼ Basic Examples (4)

Color the surface by height:

```
In[1]:= Plot3D[Sin[xy], \{x, 0, 3\}, \{y, 0, 3\}, ColorFunction \rightarrow Function[\{x, y, z\}, Hue[z]]]
```


Use predefined gradients:

 $In[1]:= Plot3D[Sin[xy], \{x, 0, 3\}, \{y, 0, 3\}, ColorFunction \rightarrow "BlueGreenYellow"]$

In[2]:= DensityPlot[Sin[xy], {x, 0, 3}, {y, 0, 3}, ColorFunction → "BlueGreenYellow"]

Step 5: Plot a line

```
h[132]:= aLine = volume[[Round[rows/2], Round[columns/2], All]];
Dimensions[aLine]
ht[133]= {227}
```

```
n[134]:= {Min[aLine], Max[aLine]}
nt[134]= {-0.0587507, 0.0349275}
```

1[135]:= gLine = ListPlot[aLine, PlotRange \rightarrow {All, All}]

 $[136] = gLineV2 = ListPlot[aLine, PlotRange \rightarrow {All, All}, Joined \rightarrow True$

1[137]:= Show[{gLine, gLineV2}]

ListPlot

Show

Show[graphics, options]
shows graphics with the specified options added.

Show[g1, g2, ...]
shows several graphics combined.

Plot

d to correspond	Plot [f , { x , x_{min} , x_{max} }] generates a plot of f as a function of x from x_{min} to x_{max} .				
s.	Plot[$\{f_1, f_2,\}$, $\{x, x_{min}, x_{min}\}$ plots several functions f_i .	x _{max} }]			
٢	MORE INFORMATION				
	Plot treats the variable x as local	al, effectively using Block.			
	Plot has attribute HoldAll, and	d evaluates f only after assigning	ng specific numerical values to x .		
	In some cases it may be more ef	ficient to use Evaluate to eval	uate f symbolically before specific numerical values a		
	 No curve is drawn in any regions Plot has the same options as Ga 	where f evaluates to None.	litions and changes:		
	AspectRatio	1 / GoldenRatio	ratio of width to height		
1	Axes	True	whether to draw axes		
•	ClippingStyle	None	what to draw where curves are clipped		
	ColorFunction	Automatic	how to determine the coloring of curves		
	ColorFunctionScaling	True	whether to scale arguments to ColorFunction		
	EvaluationMonitor	None	expression to evaluate at every function evaluat		
	Exclusions	Automatic	points in x to exclude		
	ExclusionsStyle	None	what to draw at excluded points		
	Filling	None	filling to insert under each curve		
	FillingStyle	Automatic	style to use for filling		
	MaxRecursion	Automatic	the maximum number of recursive subdivisions		
	Mesh	None	how many mesh points to draw on each curve		
	MeshFunctions	{ #1 & }	how to determine the placement of mesh points		
11	MeshShading	None	how to shade regions between mesh points		
	MeshStyle	Automatic	the style for mesh points		
	Method	Automatic	the method to use for refining curves		
	PerformanceGoal	<pre>\$PerformanceGoal</pre>	aspects of performance to try to optimize		
	PlotPoints	Automatic	initial number of sample points		
	PlotRange	{Full, Automatic}	the range of y or other values to include		
	PlotRangeClipping	True	whether to clip at the plot range		
	PlotStyle	Automatic	graphics directives to specify the style for each		
	RegionFunction	(True &)	how to determine whether a point should be inc		
	WorkingPrecision	MachinePrecision	the precision used in internal computations		
	 Interactive labeling can be specif Plot[Tooltip[{f₁, f₂,}], curves. 	fied for curves using Tooltip, $\{x, x_{min}, x_{max}\}$ specifies that i	StatusArea, or Annotation. the f_i should be displayed as tooltip labels for the cor		

= Tooltip[f, label] specifies an explicit tooltip label for a curve.

- Plot initially evaluates f at a number of equally spaced sample points specified by PlotPoints. Then it uses an additional sample points, subdividing a given interval at most MaxRecursion times.
- You should realize that with the finite number of sample points used, it is possible for Plot to miss features in your f your results, you should try increasing the settings for PlotPoints and MaxRecursion.

In[138]:=

Time to take student requests for the ListPlot command. Change plot range? Change axes origin? Change plot marker? Change line width? Add axes labels? Add box around graph?

Step 7: Plot one isosurface (speed, quality)

19]:= Timing[ListContourPlot3D[volume, Contours \rightarrow {0.02},

MaxPlotPoints \rightarrow 50,

PerformanceGoal → "Speed"]]

Interrupting Calculations

There will probably be times when you want to stop *Mathematica* in the middle of a calculation. Perhaps you realize that you asked *Mathematica* to do the wrong thing. Or perhaps the calculation is just taking a long time, and you want to find out what is going on.

The way that you interrupt a Mathematica calculation depends on what kind of interface you are using.

Alt+, or Cmd+Option+. Ctrl+C

ARL LTON TUTORILLO

Typical keys to interrupt calculations in Mathematica.

When doing some operations, it may take *Mathematica* some time to respond to your interrupt. When *Mathematica* does respond, it will give you a menu of possible things to do. This will typically include not only aborting your computation, but also entering a subsession or "dialog" to inspect its state.

18]:= Timing[ListContourPlot3D[volume, Contours \rightarrow {0.02}, MaxPlotPoints \rightarrow 100,

notebook interfaces text-based interfaces

Step 8: Plot several isosurfaces

Out[148]= /Users/lesbutler/Documents/h4581/temp.jpg

Step 3: Import the binary file

```
In[149]:= 243 × 243 × 227
```

ut[149]= 13404123

```
In[162]:= listOfFilenames = FileNames["volume*bin", NotebookDirectory[]]
```

```
ut[162]= {/Users/lesbutler/Documents/h4581/volume_bullet_p134_uint16.bin}
```

Step 3a: explore partition step by step

In[165]:= volume = BinaryReadList[listOfFilenames[[1]], "UnsignedInteger16"]
Dimensions[volume]

lut[166]= {13404123}

```
In[167]:= temp = Partition[volume, 227];
Dimensions[temp]
```

```
ut[168]= {59049, 227}
```

```
In[169]:= temp = Partition[temp, 243];
Dimensions[temp]
```

```
lut[170]= {243, 243, 227}
```

```
In[171]:= volume = temp;
Clear[temp]
{rows, columns, slices} = Dimensions[volume]
```

 $ut[173] = \{243, 243, 227\}$

BinaryReadList

```
BinaryReadList["file"]
```

reads all remaining bytes from a file, and returns them as a list of integers from 0 to 255.

```
BinaryReadList["file", type]
```

reads objects of the specified type from a file, until the end of the file is reached. The list of objects read is returned.

```
BinaryReadList["file", {type1, type2, ...}]
```

reads objects with a sequence of types, until the end of the file is reached.

BinaryReadList["file", types, n]
reads only the first n objects of the specified types.

BinaryRead

BinaryRead [stream] reads one byte of raw binary data from an input stream, and returns an integer from 0 to 2

```
BinaryRead[stream, type]
reads an object of the specified type.
```

```
BinaryRead[stream, {type1, type2, ...}]
reads a sequence of objects of the specified types.
```

MORE INFORMATION

Possible types to read are:

"Byte"	8-bit unsigned integer
 "Character8"	8-bit character
"Character16"	16-bit character
"Complex64"	IEEE single-precision complex number
"Complex128"	IEEE double-precision complex number
"Complex256"	IEEE quad-precision complex number
"Integer8"	8-bit signed integer
"Integer16"	16-bit signed integer
"Integer24"	24-bit signed integer
"Integer32"	32-bit signed integer
"Integer64"	64-bit signed integer
"Integer128"	128-bit signed integer
"Real32"	IEEE single-precision real number
"Real64"	IEEE double-precision real number
"Reall28"	IEEE quad-precision real number
"TerminatedString"	null-terminated string of 8-bit characters
"UnsignedInteger8"	8-bit unsigned integer
"UnsignedInteger16"	16-bit unsigned integer
"UnsignedInteger24"	24-bit unsigned integer
"UnsignedInteger32"	32-bit unsigned integer
 "UnsignedInteger64"	64-bit unsigned integer
 "UnsignedInteger128"	128-bit unsigned integer

Step 3b: do the both partitions in one big step

```
In[174]:= volume = BinaryReadList[listOfFilenames[[1]], "UnsignedInteger16"];
      volume = Partition[Partition[volume, 227], 243];
      Dimensions[volume]
```

Out[176]= {243, 243, 227}

Step 3c: make slice and line plots

```
[177]:= aSlice = volume[[Round[rows/2], All, All]];
     Dimensions[aSlice]
```

[178]= {243, 227}

```
{Min[aSlice], Max[aSlice]}
179]:=
```

```
[179] = \{14855, 44899\}
```

[180]:= gSlice = ListDensityPlot[aSlice, ColorFunction → "GrayTones", PlotRange → {All, All, {28000, 33000}}, ClippingStyle \rightarrow {Red, Blue}]

