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Electronic Structure Calculations:

• Electrons at the microscopic level govern the behavior of
materials.

• Good description of many macroscopic properties are obtained in
terms of -

Born-Oppenheimer Approximation
Nuclei and the electrons to a good approximation may be treated
separately.

One-electron Approximation
Each electron behaves as an independent particle moving in the
mean field of the other electrons plus the field of the nuclei.
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LDA

Most satisfactory foundation of the one electron picture is provided
by the local approximation to the Hohenberg-Kohn-Sham density
functional formalism

≡ LDA

⇓

• LDA leads to an effective one electron potential which is a function
of local electron density.

• Leads to Self consistent solution to an one electron Schrödinger
Eqn.

1998 Nobel Prize to Walter Kohn for DFT

. – p.4/47



Flow-chart for LDA self-consistency

First principles information: atomic no., crystal structure
⇓

Choose initial electron density ρ(r)

Calculate effective potential through LDA:
Veff (r) = Vion(r)+

∫

d3r′Vee(r− r′)ρ(r′)+ δExc[ρ]
δr

Solve K-S eqns:
[−∆+Vion(r)++

∫

d3r′Vee(r−r′)ρ(r′)+ δExc[ρ]
δr ]φi(r) = ǫiφi(r)

Needs to expand K-S wavefunctions in terms of basis, Φilm

Calculate charge density: ρ(r) =
∑

|φi(r)|2

Iterate to selfconsistency
⇓

Total energy, inter-atomic forces, stress or pressure, band struc-
ture, . . .
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Muffin Tin Orbitals

V(r)
Gaussians

εV(r)

Condensed Matter

Plane Waves
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Existing Methods:

(A) Fixed Basis Set Methods:

⇒ The wave-function is determined as an expansion in some set of
fixed basis functions, like linear combination of atomic orbitals
(LCAO), plane waves, Gaussian orbitals etc.

⇒ One has to solve the eigenvalue problem : ( H -E O).a = 0

Disadvantages : The basis set may be large to be reasonably
complete.

Advantages : Computationally simple
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Existing Methods:

(B) Partial Wave Methods:

⇒ The wave-function is expanded in a set of energy and potential
dependent partial waves like the cellular method, the augmented
plane wave method and the Korringa-Kohn-Rostoker method.

⇒ One has to solve set of eqns of the form : M(E).b =0 with
complicated non-linear energy dependence .

Advantages :

⊙ The basis set is minimal.
⊙ Partial waves apply equally well to any atom in the periodic table.
⊙ Offers solution of arbitrary accuracy for closed packed systems.

Disadvantages : Computationally heavy

LMTO ≡ Linearized version of KKR
→ Combines the desirable features of the fixed basis method and that of partial
waves.
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Summary on Foundations

• Density functional theory

• Kohn, Sham ⇒ reduction to effective non-interacting system.

• Self consistent solution to an one electron Schrödinger eqn.

How do you do it ?
Matter is made from atoms ; Atoms are round

→ Plane wave basis sets are easy to use, but are not chemical
(Needs to post-processed in terms of construction of Wannier
functions, charge densities etc.)

→ LMTO basis, on the other hand, reflects the spherical and orbital
character of constituent atoms .

• minimal basis.

• chemical.

Ultimate goal is to understand. . – p.9/47
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Potentials in a Solid: Muffin Tin Approximation

• Potential is assumed to be spherically symmetric close to
nuclei/ion-core ⇒ Muffin tin sphere.

• Potential is assumed to be flat in between ⇒ Interstitial

Exact

MT

Ion Core

 for       > s   
R0

− R
− v

r
R

r
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MT Approximation
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MT orbital based basis: Basics

• Based on scattering theory.

• Spherical symmetry of the potential inside MT sphere allows for
working with Spherical Harmonics.

• The solutions of Schödinger equation inside MT sphere are
nothing but partial waves.

[
d2

dr2
R

− v(rR) +
l(l + 1)

r2
R

− ǫ]rRφRL(rR, ǫ) = 0

• The solutions of Schödinger equation outside MT sphere are
nothing but plane waves which can be expanded as spherical
Neumann and Bessel functions → solution of radial equation
with a constant potential.

• The solution at the entire space is obtained by matching the two
solutions.
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Envelope Functions

• Take an unscreened Neumann function

‖ Ko
RL

>= Ko
R

(rR)YL(r̂R)

Non-zero in all space, sited at R and has angular momentum
character L(lm).

• This can be expanded about a set of points {R′} as

‖ Ko
RL >= |Ko

RL > −
∑

R′L′ |Jo
R′L′ > So

R′L′ ,RL
+ |Ko

RL >i

| > → truncated outside the MT sphere, | >i → interstitial

R and L summation is over the entire crystal and spd angular
momentums respectively.

Introduction of Structure Matrix: SR′L′ ,RL → depends only on the lattice
structure; characterized by an energy κ2 (E − V0).

For κ
2 = 0, these functions become solutions of Laplace Equation.
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Screening

We wish to screen each Neumann function
by adding other Neumann functions at all sites.

• In this way we hope to localize them.

• The structure constants will then fall off rapidly with increasing
distance (localized structure matrix).

‖ Kα
RL >=

∑

R′L′

‖ Ko
R′L′ > (δR′L′ ,RL + αR′L′ Sα

R′L′ ,RL
)

Sα = So(1 − αSo)−1

⇒Kα
RL can be viewed as the field of a 2l-pole at R, screened by

multi-poles at the neighboring site.

Transformation is characterized by the diagonal matrix α (screening constant)
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Screening

| Jα
R’L’

>= |KRL
o >

| Jα
RL

> KRL
o >|= | J

RL
>o − α

KRL
α − Σ

R’L’
SRL
α

,R’L’ + KRL
α>i>

SUITABILITY FOR REAL−SPACE TECHNIQUES 

Recursion techniques

This gives us suitable envelope functions which we can then

(A) Augment to give MTO’s

(B) Linearize to give LMTO’s . – p.16/47



Augmentation

• Inside each MT sphere we have a spherical potential.

• We solve Schrödinger Equation for this potential.

• Pick an energy E and angular momentum l and integrate out from
r = 0 the radial equation. ⇒ this gives partial waves, |φRL(E) >.

r)φ ( 

r

V(r)

φ
α

|   > is the soln. in the spheres
and | K  > in the interstitial. We
therefore need to join them
and this join should be smooth!
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Augmentation

Augmentation involves replacing the |Ko > inside each sphere by
some other functions, matching continuously and differentiably the
angular momentum components at the surface of the sphere.

|Ko
RL >⇒ |φRL(E) > Nα

RL(E) + |Jα
RL > Pα

RL(E)

N(E): normalization function; P(E): potential function

Boundary Matching

Exterior Solution
Interior Solution

MT radius
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Augmentation

• N and P should be chosen to make the join smooth.

• Need to use Wronskians.

W{f, g} = s2[f ∂g
∂r − ∂f

∂r g]r=s

W{f, g} = sf(s)g(s)[D(g) − D(f)], where D(f) = ∂ln(f)
∂ln(r)

The normalization and potential functions:

Nα(E) =
W{Jα, K}
W{Jα, φ}

Pα(E) =
W{φ, K}
W{φ, Jα}
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Muffin Tin Orbital (MTO)

The augmented envelope function is the MTO

‖ χα
RL(E) > = |φRL(E) > Nα

RL(E) +
∑

R′L′

|Jα
R′L′ > [Pα

R′L′ (E)δR′L′ ,RL − Sα
R′L′ ,RL

] + |χα
RL >i

*

*

about potential.

  Head contains all informations

Tail contains information only

about the constant potential

outside the MT sphere.
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Muffin Tin Orbital (MTO)

MTO’s are energy dependent inside the spheres, because the
partial waves as defined are energy dependent.

(∗) Find a soln. using the energy dependent MTO’s ⇒ leads to KKR
eqns.

(∗) First linearize the MTO’s to give an energy independent basis
set, the LMTO’s. One can then use them to make the matrix
elements of the Hamiltonian which gives an eigenvalue problem
[Easier to Solve ]
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KKR

Consider linear superposition of the MTO’s :

‖ Ψ(E) >=
∑

RL

χα
RL(E) > [Nα

RL]−1uRL(E)

This will be a solution of the SE if inside each sphere all the J’s in
the tails from the different ‖ χα

RL >’s cancel.

Tail cancellation :
∑

RL(Pα
R′L′ (E)δR′L′ ,RL − Sα

R′L′ ,RL
)[Nα

RL(E)]−1uRL(E) = 0
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KKR

⊗ A solution can only by found at certain discrete energies, the
eigenvalues.

⊗ This equation is hard to solve because it is a complicated
function of E.
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The LMTO’s

Andersen 1975

• Pick an energy Eν .

• Augment the |Jα >’s in such a way that the MTO does not change
to 1st order in energy about Eν .

• We can then use |χ(Eν) > as an energy independent basis sets ⇒
LMTOs.

• With these we take matrix elements of the Hamiltonian.

• The resulting eigenvalue problem gives the solutions to SE in the
region around Eν .
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The LMTO’s

Differentiating the expansion for the MTO w.r.t energy we obtain:

‖ χ̇α
RL >= |φ̇α(E) > Nα

RL(E) + |Jα
RL > Ṗα

RL(E)

where |φ̇α(E) >= 1
Nα

RL

∂
∂E [|φ(E) > Nα

RL(E)] = |φ̇ > +oα|φ >

This implies, |Jα
RL >→ −|φ̇α

RL(Eν) > Nα
RL(Eν)[Ṗα

RL(Eν)]−1

LMTO :

‖ χα
RL > = |φRL(Eν) > Nα

RL(Eν) −
∑

R′L′

|φ̇α
RL(Eν) > Nα

RL(Eν)

[Ṗα
RL(Eν)]−1[Pα

R′L′ (Eν)δR′L′ ,RL − Sα
R′L′ ,RL

] + |χα
RL >i

LMTO is made up of and 
. αφ, φ χ

φ, φ. αχ

R

φ, φ.

R’
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The LMTO Hamiltonian

Starting with LMTO expression,

‖ χα
RL > = |φRL(Eν) > Nα

RL(Eν) −
∑

R′L′

|φ̇α
RL(Eν) > Nα

RL(Eν)

[Ṗα
RL(Eν)]−1[Pα

R′L′ (Eν)δR′L′ ,RL − Sα
R′L′ ,RL

] + |χα
RL >i

one can easily show that,

‖ χα
RL > [Nα

RL]−1 = |φRL > −
∑

R′L′

|φ̇α
RL >

√

w

2
[Ṗα

RL]−1/2[Pα
R′L′ δR′L′ ,RL

−Sα
R′L′ ,RL

]

√

2

w
[Ṗα

RL]−1/2 + |χα
RL >i [Nα

RL]−1

= |φRL > −
∑

R′L′

hα
R′L′ |φ̇α

RL > +|χα
RL >i [Nα

RL]−1
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The LMTO Hamiltonian

where, hα = −(Ṗα)−1/2[Pα − Sα](Ṗα)−1/2 = Cα − Eν +
√

∆αSα
√

∆α

Cα = Eν − P α

Ṗ α
;
√

∆α = 1
Ṗ α

are the potential parameters.

hα + Eν = Cα +
√

∆αSα
√

∆α : Division of Chemistry and Geometry

With ASA approximation (replace the MT spheres by space-filling
spheres):

‖ χα
RL > [Nα

RL]−1 = |φRL(Eν) > −
∑

R′L′ hα
R′L′ |φ̇α

RL(Eν) >

Define function ϕ, |φ(E) > = N(E)N−1|ϕ(E) >

so that |φ > = |ϕ > and |φ̇ > = ϕ̇ + o|φ >

This gives, ‖ χ > = Πϕ + hϕ̇, where Π = I + ho

Finally orthogonalizing the LMTOs ‖ χ̃ > = Π−1 ‖ χ > , gives the
Hamiltonian form (neglecting few small terms),

H = Eν + h(I + ho)−1 = Eν + h − hoh − . . .
. – p.27/47



Steps to LMTO

Envelope function, ‖ K >

⇓
Screen to localize them:

‖ Kα >= |Ko > −|Jα > Sα + |Kα >i

⇓
Replace |Ko > by |φ(E) > N(E) + |Jα > Pα(E) ⇒ Defines MTO

⇓
Linearization [MTO does not change to (E -

Eν)]

|Jα >→ - |φ̇α > Nα[Ṗα]−1

⇓
Defines LMTO → leads to eigenvalue problem
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DOWNFOLDING

Procedure to get few band Hamiltonian starting from many band
complicated Hamiltonian.

LMTO’s are divided into 2 sets :

Lower : Kept in the basis → dimension ldim

Intermediate : Downfolded → dimension idim

• Removed from the Hamiltonian but information is retained in the
Structure matrix.

• Downfolded orbitals are provided by the tails of LMTO
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DOWNFOLDING

* Take the KKR eqns.

* Shuffle the rows and columns so that they are grouped in order
into low and intermediate.

* This leaves:
(

Pα
ll - Sα

ll −Sα
li

−Sα
il Pα

ii - Sα
ii

) (

(Nα
l )−1 ul

(Nα
i )−1 ui

)

=

(

0
0

)

* If we linearize at this point we get ldim+idim solution, so instead
we first eliminate the ui . From the lower eq. :
[Nα

i ]−1ui = [Pα
ii − Sα

ii]
−1Sα

il [N
α
l ]−1ul

* This gives in the upper eqn :

(Pα
ll − Sα

ll − Sα
li(P

α
ii − Sα

ii)
−1Sα

il)(N
α
l )−1ul = 0

If we now linearize and solve this eqn. we get ldim solns.
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Disadvantages:

⊙

The basis is complete to (E- Eν) ( i.e.1st order) inside the sphere
while it is only complete to to (E- Eν)0 = 1 ( 0-th order ) in the
interstitial ⇒ INCONSISTENT
Can be made consistent by removing the interstitial ⇒ ASA

⊙

The non-ASA corrections ( combined correction) may of course be
included in the Hamiltonian and in the Overlap matrices. BUT,

(i) This makes the formalism heavy
(ii) Basis must often be increased by multi-panel calculation.

⊙

The expansion of the Hamiltonian H in the orthogonal
representation as a power series in the two-centered
tight-binding Hamiltonian h :

< χ̃|(H − Eν)|χ̃ >= h − hoh + . . .

is obtained only within ASA and excluding downfolding.
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Improved LMTO – NMTO Method:

• Still has a Muffin tin potential.

• Still use the partial waves, φ in the atomic sphere.

• Instead of Neumann function use Screened spherical waves
(SSW) in the interstitial region.

• Define the kinked partial waves (KPWs) out of partial waves and
screened spherical waves.

• Construct energy-independent NMTOs, which are
superpositions of KPW’s evaluated at N+1 energy points.
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Screened Spherical Waves: SSW’s

R’
.

a
R"

0
R"

0
.

0

.

YL

R.

• Position a spherical wave YL(θ, φ)ηl(κr) at site R

• Screen at all other sites R
′

.
aR = hard core radii (non-overlapping) < MT radii

• Mathematical definition : ▽2|ψ >= −κ2|ψ > (Soln.ofwaveeqn)

With boundary conditions: |ψRL(aR′ ) >= δR,R′ δL,L′ YL

• The specific b.c.( hard spheres) and energy-independent
normalization chosen for SSWs reduces their energy
dependence to a minimum. . – p.33/47



Augmentation of a SSW

ψ

a s

K

SD

φ
φ0

• The partial wave |φ > form soln. of SE inside the MT sphere. →
|φ > is given by numerical integration of SE out to the MT sphere s in the

potential v(r).

• Continue the integration, but now backwards to the screening
sphere a and using the flat interstitial potential VMTZ ⇒ defines
|φo >.

• Attach the screened spherical wave |ψ > at the screening
sphere, continuously but not differentially. . – p.34/47



Augmentation of a SSW: KPW

⇓
Kinked Partial Wave : |ψ̄ >= |φ > −|φo > +|ψ >

Soln to SE at energy E for its own MT potential and for the flat
interstitial potential

but

Has a kink (discontinuous spatial derivative) at all screening spheres.
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Kink Matrix and Kink Cancellation

Kink Matrix: K = a [ D - S ]; D = a
φo(a)

dφo(a)
dr

Kink matrix K contains the values of the kinks of all the |ψ̄ > at all
screening spheres.

Kink Cancellation:

a

Σ

s

ψφ
φ0Σ

Σ

|ψ(E) >=
∑

i |ψ̄i(E) > vi solution of SE in all space at E

|ψ > must be differentiable, so the sum of the kinks of |ψ̄ > must
vanish : K.v = 0

a[D − S].v = 0 c.f. tail cancellation condition : [P − S].v = 0
. – p.36/47



NMTOs

• The members (labeled by R′L′) of the NMTO basis set for the
energy mesh ǫ0, ..., ǫN are superpositions,

χ
(N)
R′L′ (r) =

N
∑

n=0

∑

RL∈A

φRL (ǫn, r) L
(N)
nRL,R′L′

of the kinked partial waves, φRL (ε, r) , at the N + 1 points (labeled
by n) of the energy mesh.
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NMTOs

• The expression is the energy-quantized form of Lagrange
interpolation,

χ(N) (ε) ≈
N

∑

n=0

φ (ǫn) l(N)
n (ε) , l(N)

n (ε) ≡
N
∏

m=0, 6=n

ε − ǫm

ǫn − ǫm
,

N th-degree polynomial, l
(N)
n (ε) → matrix with elements, L

(N)
nRL,R′L′

φ (ε) → φRL (ε, r), χ(N) (ε) →χ
(N)
R′L′ (r)

Φ(ε, 

εε ε

Lagrange

0 1 ε2

r)TaylorΦ(ε, 

ν εε

r)
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NMTOs

• By virtue of the variational principle, the errors of the energies εi is
proportional to (εi − ǫ0)

2
... (εi − ǫN )

2.

• The Lagrange coefficients, L
(N)
n , as well as the Hamiltonian and

overlap matrices in the NMTO basis are expressed solely in terms of
the KKR resolvent, K (ε)

−1
, and its first energy derivative, K̇ (ε)

−1
,

evaluated at the energy mesh, ε = ǫ0, ..., ǫN .

This method gives rise to an energetically accurate and compact f ormalism
for intelligible electronic structure calculation.
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What we have done ?
Constructed an NMTO basis that is complete to (εi − ǫ0) ... (εi − ǫN )
EVERYWHERE.

What is new (improvements) ?
• A consistent description both inside and outside MT.

• Error in the eigenvalue is of order (εi − ǫ0)
2
... (εi − ǫN )

2 rather than
(εi − ǫν)

2. ⇒ Leads to improved accuracy in energy (Needed for

massive downfolding purpose).

• The tight-binding Hamiltonian representation can be obtained both
in presence of downfolding (Imp for generation of effective hopping
interactions, onsite energies) and moving beyond ASA (Imp for
handling complex systems).
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NMTO: truly minimal set and Wannier functions

• The energy selective and localized nature of NMTO basis makes
the NMTO set flexible and may be chosen as truly minimal(≡ span
selected bands with as few basis functions as there are bands).

• If these bands are isolated, the NMTO set spans the Hilbert space
of the Wannier functions and the orthonormalized NMTOs are the
Wannier functions.

• Even if the bands overlap with other bands, it is possible to pick
out those few bands and their corresponding Wannier-like functions
with NMTO method.

• The NMTO method can thus be used for direct generation of
Wannier or Wannier-like functions.
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Scheme to Get Few Band, TB Description

• Start with full LMTO band structure keeping all the orbitals of all
the constituent atoms.

7→ This is the truth but complicated to analysis. Total no. of
bands is at least 9 × N, [N is the no. of atoms in a unit cell ].

7→ We want to reproduce it over an energy window with a
simple tight-binding Hamiltonian.

• Import the LMTO potentials to NMTO code (NOTE: NMTO IS
STILL NON-SCF!). We want to take adv. of higher energy
accuracy in NMTO.

• Apply downfolding procedure keeping only the relevant orbitals
and integrating out all other high energy degrees of freedom to
get few-orbital band structure.

• Make the FT to extract the tight-binding parameters. . – p.42/47



V2O3: Corundum Structure

V t2g xy V eg x2−y2 V eg 3z2−1
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HTSC
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HTSC- Wannier-like functions

2
HgBa  CuOLa CuO

4 42

Tc = 40 K Tc = 90 K
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