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The Kohn-Sham problem

 Want to solve the Kohn-Sham equations:

 Note that self-consistent solution necessary, as H
depends on solution: 

 Convention (most of the time, in this talk): 
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Kohn-Sham Equations in a Basis

• Can choose to expand wavefunctions in a basis set:

• Now obtain a matrix equation:

Sb Hab cib =  i cia

• Solving  Have to diagonalize a matrix of size Nb x Nb

Size of basis

Matrix element Eigenvalue Eigenvector

)()(
1

rr a

a

a fc
bN

ii 






Shobhana Narasimhan, JNCASR

4

Some possible basis sets

• Various possible choices of basis:

- Plane waves eiK•r

- Localized sets:

e.g., Gaussians

e.g.,atomic orbitals

- Mixed basis

- Augmented basis

• Choose so that calculation is fast, accurate, convenient.

- Would like Nb to be small (within reason)? 

- Would like form of fa(r) to be simple?
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Advantages of a Plane Wave Basis

 Simple: Easy to take derivatives, etc. Coding is easy!

 Orthonormal: No overlap integrals.

 Independent of atomic positions  No “Pulay forces”; 
easy to calculate forces for structural relaxation & 
molecular dynamics.

 Unbiased: No assumption about where charge 
concentrated. (But  also wasteful?)

 Easy to control convergence w.r.t. size of basis: only one 
parameter Ecut.(energy cut-off for planewaves)

 Can easily take advantage of FFT‟s : r-space  k-space
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Disadvantages of a Plane Wave Basis

 Often need a HUGE number of plane waves 

to get an adequate expansion, 

i.e., Nb can be very large! (~105 per atom)

(Will discuss…

solution = introduction of pseudopotentials.)

 The set of plane waves is discrete only if the system is 
periodic!

(Will discuss tomorrow…solution = introduction of 
artificial supercell or periodic approximant.)

 Sometimes (chemical) interpretation harder.
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Some popular plane wave codes

• Quantum ESPRESSO (PWscf)

• VASP

• ABINIT

• CASTEP

• CPMD

(there are others too…)
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Periodic Systems 

• Periodic systems are characterized by a lattice of

- lattice vectors R in real (r-) space

- reciprocal lattice vectors G in reciprocal (k-) space

• Spacing of R‟s inversely proportional to spacing of G‟s

kx

ky

x
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Periodic Systems & Bloch’s Theorem

• For a periodic system, recall Bloch‟s Theorem:

• uk(r) has the periodicity of the system, i.e.,

• As for all lattice-periodic functions, only certain plane 

waves will appear in the Fourier expansion of uk(r) :
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Plane Waves & Periodic Systems 

• So, for a periodic system:

• The plane waves that appear in this expansion can 

be represented as a grid in k-space:
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lattice vector
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ky • Only true for periodic 

systems that grid is 

discrete.

• In principle, still need 

infinite number of 

plane waves.
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Truncating the Plane Wave Expansion

• In practice, the contribution from higher Fourier 

components (large |k+G|) is small.

• So truncate the expansion at some value of |k+G|.

• Traditional to express this cut-off in energy units:
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Kohn-Sham equations in plane wave basis

• Eigenvalue equation is now:

• Matrix elements are:

• Nuclear ( ionic) potential given by:
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Nuclear Potential

• Electrons experience a Coulomb potential due to the 
nuclei.

• This has a known and simple form:

• But this leads to computational problems!
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Electrons in Atoms

• Electrons in atoms are arranged in shells.

• Quantum numbers: 

n [principal], l [angular], ml [magnetic], ms [spin]

• Rare gas atoms

have certain complete subshells (inert configurations):

He: 1s2  Ne: [He], 2s2, 2p6 Ar: [Ne] 3s2, 3p6

Kr: [Ar], 3d10, 4s2,4p6 Xe: [Kr], 4d10, 5s2, 5p6

Rn: [Xe], 4f14, 5d10, 6s2,6p6

• Can divide electrons in any atom into core and valence.

• This division is not always clear-cut, but usually

core = rare gas configuration [+ filled d/f subshells]
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Atomic Wavefunctions

• For hydrogenic atoms, recall:

• Radial part & Angular Part.

• Being eigenfunctions of a Hermitian operator, lm‟s are 
orthonormal.

• Wavefunctions with same n, different l are orthogonal

due to the nature of the angular part of the wavefunction.

• Wavefunctions with different n, same l are orthogonal 
due to the nature of the radial part of the wavefunction.
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Example: Wavefunctions for Ag atom

• Core wavefunctions 
sharply peaked near 
nucleus.

• Valence wavefunctions
peaked far away from 
nucleus, lots of wiggles 
near nucleus.

• 1s, 2p, 3d, 4f,…  
nodeless.

• Not immediately clear 
whether 4d should be 
considered core / 
valence?

• Ground state configuration: [Kr], 4d10, 5s1, 5p0, 5d0

(r)
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Electrons in molecules/solids

• Chemical bonds between atoms are formed by sharing / 
transferring electrons.

• Only the valence electrons participate in bonding.

• Wavefunctions of valence electrons can change 

significantly once the bond is formed.

• e.g., when Ag is a constituent of a solid, the wavefunction 

may also acquire some 5p or 5d character?

• Wavefunctions of core electrons change only slightly 

when the bond is formed.
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Problem for Plane-Wave Basis

Core wavefunctions:
sharply peaked near 
nucleus.

High Fourier components present

i.e., need large Ecut  

Valence wavefunctions:
lots of wiggles near 
nucleus.
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Solutions for Plane-Wave Basis

Core wavefunctions: 
sharply peaked near 
nucleus.

High Fourier components present

i.e., need large Ecut  

Valence wavefunctions:
lots of wiggles near 
nucleus.

Don‟t solve for the 
core electrons!

Remove wiggles from 
valence electrons.
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The Pseudopotential  Approximation

• Frozen core: remove core-electron degrees of freedom

i.e., NOT an “All-electron” calculation.

• Valence electrons see a weaker potential than the full 

Coulomb potential.

Vnuc(r)  Vion(r)

• Further tailor this potential so that wavefunctions behave

„properly‟ in region of interest, yet computationally cheap.
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How the Pseudopotential Helps

(Numerical) Advantages when solving Kohn-Sham eqns.:

• When solving using a basis (especially plane waves),

basis size drastically reduced (smaller matrices to 

diagonalize).

• Have to solve  for fewer eigenvalues.

• No Coulomb singularity (cusp in wavefunction) at origin.

Disadvantages:

• Can lose accuracy.
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An analogy!

• “Dummy cops” used by some law-enforcement agencies!

• Don‟t care about internal structure as long as it works ~ 

right!

• But cheaper!!

• Obviously it can‟t reproduce all the

functions of a real cop, but should

be convincing enough to produce

desired results….
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Wish List for a Good Pseudopotential

For accuracy:

• Should reproduce scattering properties

of true potential.

• Transferable: Nice to have one pseudo-

potential per element, to use in variety 

of chemical environments.

• Norm conserving? (will explain)

• Ab initio? (no fitting to experimental data)

For (computational) cheapness:

• Smooth / Soft: Need smaller basis set  (esp. plane waves)

• „Separable‟‟? (will skip!) but „Ghost free‟ (should not 
introduce spurious states when making separable!)
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Generating an Ab Initio Pseudopotential

•For the element of interest, pick a reference 

configuration.

•Perform an “all-electron” calculation for this 

reference configuration.


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All-Electron Wavefunction

l(r)

r

Pick core radius rc

all-electron wavefunction (for some reference configuration)
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Pseudowavefunction Outside rc

l(r)

all-electron wavefunction pseudowavefunction

• Pseudowavefunction & all-electron wavefunction are

identical outside  cut-off radius rc

r
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Pseudowavefunction 

l(r)

all-electron wavefunction pseudowavefunction

• Inside rc , 

r

)()( rfrPS

l 

Choose  to get desired properties
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Norm-Conservation

• Norm conservation:

• Imposing norm conservation improves transferability!
(Hamann, Schlüter, Chiang, 1979)

all-electron wavefunction

l(r)

r

pseudowavefunction
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Pseudowavefunction  Pseudopotential

• Invert the radial Schrödinger equation to get a 

“screened” potential for each l, 

• This “screened” potential includes Hartree and 

XC contributions; “unscreen” to get 

pseudopotential.
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What does a pseudopotential look like?

Example for Mo:

Hamann, Schluter & Chiang, 1979.

• Weaker than full
Coulomb potential

• No singularity at r=0

• Different 

pseudopotential 

for each l (example of 

semilocal

pseudopotential)

• Will be Vion

(replacing

nuclear potential)



Shobhana Narasimhan, JNCASR

31

Some Popular Pseudopotentials: BHS

• Bachelet, Hamann, Schlüter, PRB 26, 4199 (1982).

• “Pseudopotentials that work: from H to Pu”

• Ab initio, norm conserving, so good transferability (?)

• Semilocal Vl(r) [local in radial coordinates, nonlocal in 
angular coordinates]

• Parametrized form: chosen to give nice analytical 
expressions with many basis sets, 9 parameters, 
tabulated for all elements.

• Non-linear fitting procedure, caution needed!

• Fairly hard pseudopotentials since smoothness not built 
in explicitly, frequently need high cut-off.
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How to Make Softer?

• Increase radial cut-off rc?? Softer, but transferability 
suffers.

David Vanderbilt
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Soft / Smooth Pseudopotentials

• Want to lower Ecut (cut-off for plane wave basis).

• Various strategies:

- Optimize so as to minimize error in KE introduced by 

truncating basis (Rappe, Rabe, Kaxiras & Joannopoulos,  

[RRKJ] 1990)

- Make smooth near origin (Troullier & Martins, 1991)

• Cut-offs lowered considerably, but still higher than we 

would like, especially for

> first row elements (1s, 2p nodeless)

> transition metals (3d nodeless)

> rare-earths (4f nodeless)
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Need lower Ecut with soft pseudopotentials

e.g. Cu: localized d orbitals →

high cut-off needed with BHS pseudopotential

Troullier-Martins RRKJ
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Nodeless Wavefunctions & Norm Conservation

Cut-offs still higher than we would like, especially for

> first row elements (1s, 2p nodeless)

> transition metals (3d nodeless)

> rare-earths (4f nodeless)

This is because of the constraint of norm conservation...

David Vanderbilt
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Ultrasoft Pseudopotentials

• David Vanderbilt, Phys. Rev. B 41 7892 (1990).

• Do away with norm conservation!!

• Can make PS extremely soft!

• Drastically reduces Ecut, especially

for “difficult” elements.

• New separable form.

• Choose multiple energy references

(to improve transferability).

Vanderbilt

Laasonen, Car, Lee & Vanderbilt
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POPULAR Pseudopotentials!

• GB Bachelet, DR Hamann and M. Schluter, “Pseudopotentials

that Work- From H to Pu”, Phys. Rev. B, 1982. Times Cited: 2,536.

•N. Troullier and JL Martins, “Efficient Pseudopotentials for Plane-

Wave Calculations”, Phys. Rev. B, 1991. Times Cited: 6,347

•AM Rappe, KM Rabe, E Kaxiras and J Joannopoulos, “Optimized 

Pseudopotentials”, Phys. Rev. B, 1990, Times Cited: 592.

• D. Vanderbilt: “Soft Self-Consistent Pseudopotentials in a 

Generalized Eigenvalue Formalism”, Phys. Rev. B, 1990. Times 

Cited: 8,355.
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Transferability

•Condition that pseudoatom reproduces behavior of all-
electron atom in wide variety of chemical environments..

• Recall, pseudopotential derived for reference config. 

(atom with given occ of levels), using ref eigenvalue.

• When eigenvalue changes from  reference one:

- do scattering properties of potential change correctly? 

(Look at log derivatives)

•When the filling changes:

- do eigenvalues shift correctly? 

(look at chemical hardness)

- do scattering properties change correctly?

38
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Transferability: log derivatives

• Log derivatives guaranteed

to match at reference energy, 

check how log derivatives 

change with energy .

Log derivatives don‟t match 

Ag

Has ghost 

39
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Transferability: Occupation Changes

•See how eigenvalues change with occupation    

Chemical Hardness matrix:                    [Teter, 1993] .

•See how 'tail norms' change with 

occupation:             should be reproduced

e.g.: check 
transferability
of a pseudopotential for
Ag with 4d in core:





cr

ii drN 2||

40

Shobhana Narasimhan, JNCASR



Non-Linear Core Correction

•Working only with val corresponds to linearizing the XC

potential, but  VXC(val+core) ≠ VXC(val)+Vxc(core)

•This is particularly a problem when there is significant 

overlap between val and core

•Correction: [Louie, Froyen & Cohen, Phys. Rev. B 26 1738 (1982)]:

- When unscreening, subtract out VH(val)

and VXC(val+core)

- Store core from atomic calculation

- Use VXC(val+core) in all calculations

- Okay to just use partial core (in region of overlap)

41
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Recall (from a quantum mechanics course?):

•Scattering properties of a potential described by phase 

shift l .

• Related to logarithmic derivatives: [see, e.g. Eq. J.6, Martin]

•Weaker potentials will have fewer bound states.

•In the pseudopotential approximation: want to make the 

potential weak enough that the valence electron is the 

lowest bound state (with that l), while reproducing log 

derivatives to the extent possible....

Extra Stuff: Scattering

43
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•By construction, log derivatives satisfy:

•In addition, if we impose norm conservation:

then from the identity (see e.g. pg. 214 of Martin for derivation):

we have*

i.e., if energy is shifted slightly from that of reference 

eigenvalue, log derivatives ~ unchanged →

improved transferability!

. *
Extra Stuff: Norm Conservation & Transferability

44
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. *
Terminology: Local, Semilocal, Separable, etc.
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. *
Extra Stuff: Relativistic Pseudopotentials

46

Shobhana Narasimhan, JNCASR

David Vanderbilt


