

NWChem: Molecular Dynamics and QM/MM

Pacific Northwest

Proudly Operated by Battelle Since 1965

www.emsl.pnl.gov

Target systems:

biomolecules (proteins, DNA/RNA, biomembranes)

General features: energy evaluation (SP) energy minimization (EM) molecular dynamics simulation (MD) free energy evaluation (MSTP & MCTI) quantum molecular dynamics (QMD) hybrid molecular dynamics (QM/MM)

Force Fields

Classical empirical force fields

Bond-stretching, angle-bending, torsional, out-of-plane-bending, electrostatic, and van der Waals non-bonded interactions

Electronic polarization

First order

Self-consistent induced fields

Smooth particle-mesh Ewald electrostatics

Effective pair potential MD only

Self-guided MD

Simulation

Integration Newton's Equations of Motion

(leapfrog, Browne-Clark)

Constant Temperature and Pressure

(Berendsen weak coupling)

Periodic Boundary Conditions

(minimum image convention)

Geometry Optimization

(steepest descent, conjugate gradient)

Twin-Range Verlet Neighbor Lists

(cell index method)

Constraints

(SHAKE)

- Single Step Thermodynamic Perturbation (SSTP) $\Delta G = G_1 - G_0 = - RT \ln < exp (-\Delta H/RT) >_0 with \Delta H = H_1 - H_0$
- **Multiple Step Thermodynamic Perturbation** (MSTP) DG = S_i ($G_{i+1} - G_i$) = -S_i RT ln < exp (- $\Delta H_i / RT$)>_i with $\Delta H_i = H_{i+1} - H_i$
- **Multiconfiguration Thermodynamic Integration** (MCTI) DG = S_i (G_{i+1} - G_i) = S_i < ∂ H(λ) / $\partial\lambda$ >_i D λ _i

Single and dual topology Hamiltonians Double-wide sampling Separation-shifted scaling (SSS) Potentials of mean force over multiple processors Statistical error correlation analysis

ffield_lvl	ffield	force field e.g. amber, charmm	
		lvl	1, 2, 3, 4, 5, 6, 7, 8, or 9

Directories supplied with NWChem are named ffield_& where & is one of:

- s standard parameters as published for the force field
- x extensions as published in open literature
- q contributed parameters by NWChem team
- u user contributed parameters
- t temporary
- c current

Defined in input file or ~/.nwchemrc

ffield amber amber_1 /software/nwchem/share/data/amber/amber_s/ amber_2 /software/nwchem/share/data/amber/amber_x/ amber_3 /home/newton/data/amber/amber_q/ spce /software/nwchem/share/data/solvents/spce.rst

File Names

system.ext

system	user defined molecular system name				
ext	file type, e.g.	pdb	PDB file		
		top	topology file		
		seq	sequence file		

system_calc.ext

ext

system user defined molecular system name

file type, e.g.

- calc user defined identification for the calculation identification, e.g. em, md002, tiA
 - outoutput filerstrestart fileqrsenergy minimized restart fileprpproperty filetrjtrajectory filegibfree energy file

PREPARE Functionality and requirements

Functionality:

- •Topology and restart file generation
- Coordinates from pdb formatted file or geometry input
- Fragment and segment file generation from coordinates
- Solvation
- Potential of mean force functions
- Topology modification for free energy and QM/MM calculations
- File format conversion, e.g. from rst to pdb

Requirements

- PDB format, i.e. IUPAC atom names, residue names, etc.
- Automated atom typing based on force field typing rules
- Force field parameters from par file(s)
- Partial atomic charges from frg or sgm files

PREPARE Input Example

- PDB format, i.e. IUPAC atom names, residue names, etc.
- Automated atom typing based on force field typing rules
- Force field parameters from par file(s)
- Partial atomic charges from frg or sgm files

system crown_em modify atom 7:Na set 3 type K end task prepare Read coordinates from crown.pdb Specify atom type change in topology Generate topology file crown.top Restart file crown_em.rst

MD Input Example

md

system crown_md data 1000 isotherm isobar record rest 1000 coord 100 prop 10 end task md dynamics

task shell "cp crown_md.rst crown_ti.rst"

md system crown_ti equil 1000 data 2000 over 1000 step 0.002 isotherm isobar new forward 21 of 21 print step 100 stat 1000 record rest 1000 free 1 end task md thermodynamics Molecular dynamics input: NpT ensemble, 1000 steps

Copy restart file.

Free energy simulation MCTI: 21*(1000+2000) NpT ensemble

ANALYZE input

memory heap 8 mb stack 64 mb global 24 mb start job

analysis

system system_calc
reference system_calc.rst
file crown_md?.trj 0 10
select _C? _O?
essential
project 1 crown_vec1
project 2 crown_vec2
end

? Is wild card, replaced by series 0-10
select subset of atoms
Perform essential dynamics analysis Projection onto specified vector

task analyze

Files required:

system.top (molecular topology)
system_calc.rst (coordinates)

Relative solvation ΔG Input Example

Relative solvation ΔG Input Example (continued)

md

system crown_md data 1000 isotherm 298.15 trelax 0.1 0.1 isobar record rest 1000 scoor 100 prop 10 end task md dynamics

task shell "cp crown_md.rst crown_ti.rst"

md

system crown_ti equil 1000 data 2000 over 1000 step 0.002 isotherm 298.15 trelax 0.1 0.1 isobar new forward 21 of 21 print step 100 stat 1000 record rest 100 free 1 end task md thermodynamics Molecular dynamics input: NpT ensemble, 1000 steps

Copy restart file.

Free energy simulation input: MCTI: 21*(1000+2000**)** NpT ensemble

QM/MM approach

- Combines two different descriptions – quantummechanical and classical
- The level theory changes based on a particular region
- Reactive regions quantum mechanical description (QM)
- Regions where no chemical changes occur (or important) are treated a the classical molecular mechanics level (MM)

Structure of QM/MM energy functional

$$E_{qm/mm}(\mathbf{r}, \mathbf{R}; \psi) = E_{qm}(\mathbf{r}, \mathbf{R}; \psi) + E_{mm}(\mathbf{r}, \mathbf{R})$$

All QM-dependencies are in the first term

$$E_{qm}[\mathbf{r}, \mathbf{R}; \psi] = E_{qm}^{int}[\mathbf{r}, \mathbf{R}; \psi] + E_{qm}^{ext}[\mathbf{r}, \mathbf{R}; \rho]$$

Internal QM energy (theory dependent) Coulomb interactions with MM atoms

$$\frac{\sum_{I}\int \frac{Z_{I}\rho(\mathbf{r}')}{|R_{I}-\mathbf{r}'|}d\mathbf{r}'}{|\mathbf{r}|}$$

EM

- All other classical terms are in the second term
 - Bonded, angle, dihedral
 - Coulomb interactions
 - Vdw interactions

QM/MM Interface in NWChem

- Modular implementation
 - sits on top of molecular mechanics (MM) and quantum (QM) modules
 - Generic interface driven by function calls
- Manages data flow
 - domain decomposition of coordinates in MM module
 - replicated geometry data in QM module
 - all data transfers happen in core
- Dispatches high level operations (e.g. optimization)

- Ground and excited state properties
- Structural optimization
- Reaction Pathway Calculations
- Dynamical Simulations
- Statistical Sampling (free energies)

Example of QM/MM Single Point Calculation

Valiev, M., et al.JPC B, 2007. 111(47): p. 13455-13464.

Pacific Northwest

Example: QM/MM Excited State Calculations of cytosine base in DNA

• QM/MM coupled-cluster CR-EOMCCSD(T) calculations of two lowest excited states

- Protein environment has a significant influence on the excitation leading to a 0.4 eV stabilization of the $\pi\pi^*$ excited state compared to gas phase
- M. Valiev, K. Kowalski, JCP, 125(21), (2006)

EMS

- Large system sizes (10³-10⁶) makes direct optimizations impractical even with QM/MM approximation
- Key observations
 - Most of degrees of freedom are in MM region
 - The structure of far away MM regions has a little effect on the structure of QM region
 - Small displacements of MM atoms affect little the electronic structure of QM region.
- Decouple optimization of QM and MM regions

Optimization Algorithm

1. QM Region Optimization

- a. MM region is fixed
- b. Typically 20-30 steps
- c. Requires solution of Schrödinger Equation
- 2. MM Region Optimization
 - a. QM region is fixed
 - b. 1000-3000 steps
 - c. QM region is represented either as effective point charges or static electron density distribution
- 3. Repeat the cycle until convergence

Example: Optimization of Zn-porphyrin in solution

- QM region Zn-porphyrin (37 atoms) DFT/B3LYP
- MM region 869 SPC/E waters
- 4.5 hours on 48 processors versus direct optimization would take ~ 2 days

```
qmmm
region qm solvent
maxiter 10 3000
method lbfgs sd
ncycles 20
density espfit
end
task qmmm dft optimize
```

....

Input File

Reaction Pathway II

- Nudged Elastic Band Method
- Pathway approximated discrete set of intermediate structures
- Beads represent different snapshots of reactive QM region along the pathway
- Forces on beads are calculated at the relaxed solvent configuration

- Accurate quantum mechanical description is a major challenge especially for high level methods (10⁴ – 10⁵ energy evaluations)
- The solution
 - Introduce intermediate less expensive representation(s)
 - Redistribute sampling using thermodynamic cycles

QM/MM Representations

Different QM/MM representations

Example of MM/MM representation - QM atoms are replaced by effective point charges Q_i reproducing correct field

$$E_{qm} = \sum_{i,I} \frac{Z_I Q_i}{|\mathbf{R}_I - \mathbf{r}_i|} \qquad \qquad \sum_{I} \int \frac{Z_I \rho(\mathbf{r}')}{|\mathbf{R}_I - \mathbf{r}'|} d\mathbf{r}' = \sum_{i,I} \frac{Z_I Q_i}{|\mathbf{R}_I - \mathbf{r}_i|}$$
Pacific Northwest

NATIONAL LABORATORY
Proudly Operated by Battelle Since 1965

Free Energy Ladder

Valiev et al JCP 127, 051102 (2007)

Free Energy Ladder

Calculation of MM/MM free energy

- Can use any of the methods developed for classical free energy calculations
- Transformation between A and B configurations

$$\mathbf{r}_{\lambda} = (1 - \lambda)\mathbf{r}_{A} + \lambda\mathbf{r}_{B}$$
$$Q_{\lambda} = (1 - \lambda)Q_{A} + \lambda Q_{B}$$

Free Energy Perturbation

$$\Delta W_{AB}^{ESP} = -\sum_{i} \frac{1}{\beta} \ln \left\langle e^{-\beta \Delta E_{\lambda_{i} \to \lambda_{i+1}}^{ESP}} \right\rangle_{\lambda_{i}}$$

Calculation of DFT->MM free energy

- "Vertical" change of transformation (fixed QM region)
- MM representation is closely tailored to DFT by point charge fitting
- Approximate by the energy difference
- Can utilize free energy perturbation approach by resampling MM/MM trajectory

Example : Free energy barrier for the phosphorylation reaction in kinase protein EMSL*

- cAPK protein kinase catalyze the transfer of the g-phosphoryl
- Determination of the reaction pathway using NEB QM/MM ap
- Calculation of free energy using effective charge approximation
- Valiev et al J. Phys Chem B. 111(47):13455-64. (2007) PREFER

(Cheng et al JACS, 127, 1553, 2005)

Questions?

www.**emsl**.pnl.gov

