

# NWChem: Hartree-Fock, Density Functional Theory, Time-Dependent Density Functional Theory







# Hartree-Fock & Density Functional Theory I



- The energy expression is derived from a single determinant wave function approximation
- Replace the exchange with a exchange-correlation functional to go from Hartree-Fock >DFT
- Implemented using various basis set approaches
  - Plane waves
  - Gaussian functions
  - Slater functions
  - Numerical atomic orbitals
  - Wavelets
  - Mixed basis sets.
  - · ...





# Hartree-Fock & Density Functional Theory II Local Basis



$$\varphi_i = \sum_{\mu} C_{\mu i} \phi_{\mu}(\mathbf{r})$$

$$E = \sum_{\mu\nu} F_{\mu\nu} D_{\mu\nu} + \sum_{i} \varepsilon_{i} \sum_{j} \left( \sum_{\mu\nu} C_{\mu i}^{*} S_{\mu\nu} C_{\nu j} - \delta_{ij} \right)$$

$$D_{\mu\nu} = \sum_{i \in \{occ\}} C_{\mu i}^* C_{\nu i}$$

$$F_{\mu\nu} = H_{\mu\nu}^{core} + G_{\mu\nu}^{J} + \alpha G_{\mu\nu}^{K} + \beta G_{\mu\nu}^{X-DFT} + \gamma G_{\mu\nu}^{C-DFT}$$

$$G_{\mu\nu}^{J} = \sum_{\sigma\tau} (\mu\nu \mid \sigma\tau) D_{\sigma\tau}$$

$$G_{\mu\nu}^{K} = -\frac{1}{2} \sum_{\sigma\tau} (\mu\tau \mid \sigma\nu) D_{\sigma\tau}$$

$$G_{\mu\nu}^{y-DFT} = \int \sum_{\xi \in \{\rho_{\alpha}, \rho_{\beta}, |\nabla \rho_{\alpha}|, |\nabla \rho_{\beta}|, \nabla \rho_{\alpha} \bullet \nabla \rho_{\beta}, ...\}} \frac{\partial f^{y}}{\partial \xi} \frac{\partial \xi}{\partial D_{\mu\nu}} d\vec{r}$$

- Minimize energy with respect to  $C_{\mu i}$  and  $\varepsilon_i$
- Gives
  - The total energy E
  - lacktriangle The molecular orbitals  $C_{\mu i}$
  - The orbital energies  $\varepsilon_i$





# Hartree-Fock & Density Functional Theory III Exchange-Correlation Functionals



- Pure Hartree-Fock
- Traditional functionals: Density & density gradient
  - ▶ LDA, BP, BLYP, PBE, PW91,...
- Hybrid functionals: Inclusion of HF exchange
  - ▶ B3LYP, PBE0, BeckeHalfandHalf,...
- Meta functionals: Inclusion of kinetic energy
  - TPSS, PKZB, Minnesota functionals,...
- Range-separated functionals
  - ► CAM-B3LYP, LC-PBE0,...
- DFT + empirical dispersion (DFT+ D)
  - Based on Grimme's implementation
- Double Hybrid functionals: DFT + MP2
  - Based on Grimme's implementation





# Hartree-Fock & Density Functional Theory IV Local Basis (Gaussian Basis Set)



## Memory requirements

- Largest quantities are the density, Fock, overlap, 1-electron matrices
- Memory needed O(N²)
  - Replicated data O(N²) per node
  - Distributed data O(N<sup>2</sup>) for whole calculation

## **Computational Complexity**

- Main cost is the evaluation of the 2-electron integrals
  - Takes O(N²)-O(N⁴) work
  - O(N<sup>4</sup>) for small-medium systems
  - ◆ O(N²) in the large N limit
    - Schwarz screening,...
  - For large N the linear algebra becomes dominant at O(N³)
    - Matrix multiplication, diagonalization







Phys. Chem. Chem. Phys. 12, 6896 (2010)

## **NWChem: Gaussian Basis HF/DFT**



### Gaussian based HF/DFT → Finite systems (molecules, clusters, nanostructures)

- Functionality
  - Exhaustive list of exchange-correlation functionals
    - Traditional xc functionals
    - Wide range of hybrid functionals (B3LYP, PBE0, BeckeH&H...)
    - HF Exchange
    - Meta-GGA functionals
    - Minnesota functionals (M05, M06)
    - SIC and OEP
    - Range separated functionals (CAMB3LYP, LC-PBE0, BNL,...)
    - DFT + D implementation (long-range empirical vdW)
    - Double hybrid functionals
  - Spin-orbit DFT
    - ECP, ZORA, DK
  - Constrained DFT
  - ◆ TDDFT for excited states → Optical spectroscopy
  - Various properties (NMR, Linear response,...)
- System sizes: ~150 atoms, 1500-2000 basis functions are routine





# **NWChem: Gaussian DFT Scaling**



- Calculation on C<sub>240</sub>
  - PBE0 functional, 6-31G\*
  - Direct integral evaluation
  - Size 3600 basis functions
- Timings for different components of the Kohn-Sham matrix construction
  - Fock 2e two electron integrals
  - Fock xc the DFT contribution
  - Diagonalization eigenvector solver
- Scalability limited by diagonalization
- Can be improved with diagonalization free approaches









## Simple DFT Input Example



Input with default DFT input (single point LDA calculation)

```
echo # echoes the input in the output file
start silane # name of files
title silane # title of the calculation in output
geometry
  si
             0.0000000
                           0.0000000
                                         0.0000000
  h
             0.75252170
                          -0.75252170
                                         0.75252170
  h
            -0.75252170
                          0.75252170
                                         0.75252170
  h
            0.75252170
                          0.75252170
                                        -0.75252170
                          -0.75252170
  h
            -0.75252170
                                        -0.75252170
end
basis
    library cc-pvdz
end
           # specifies the task > energy by default
task dft
```

EMSL Basis Set Exchange: https://bse.pnl.gov/bse/portal





## Changing the exchange-correlation



```
echo
start silane
title silane
geometry
                  0.0000000
                                  0.0000000
      si
                                                  0.0000000
      h
                  0.75252170
                                 -0.75252170
                                                  0.75252170
      h
                 -0.75252170
                                  0.75252170
                                                  0.75252170
      h
                  0.75252170
                                  0.75252170
                                                 -0.75252170
                                 -0.75252170
      h
                 -0.75252170
                                                 -0.75252170
end
basis
                               dft
   library cc-pvdz
                                 xc becke88 lyp #BLYP
end
                               end
dft
                               dft
  xc b3lyp # B3LYP
end
```

task dft

```
xc becke88 perdew86 #BP
end
Many other combinations possible...
```



## Important DFT keywords



```
xc: controls the choice of the exchange-correlation
convergence: controls the convergence (energy, density...)
grid: specifies the grid
mult: specifies the multiplicity
odft: specify open shell calculation
iterations: controls the number of iterations
smear: useful for degenerate states
```

#### SINGLET

```
dft
    grid xfine
    convergence energy 1e-08
    xc b3lyp #B3LYP
    mult 1
end
```

#### TRIPLET

```
odft
   odft
   grid xfine
   convergence energy 1e-08
   xc b3lyp #B3LYP
   mult 3
end
```





## Putting it all together



```
echo
start silane
title silane
geometry
      si
                  0.0000000
                                  0.0000000
                                                  0.0000000
      h
                  0.75252170
                                 -0.75252170
                                                  0.75252170
      h
                 -0.75252170
                                  0.75252170
                                                  0.75252170
      h
                 0.75252170
                                  0.75252170
                                                 -0.75252170
      h
                 -0.75252170
                                 -0.75252170
                                                 -0.75252170
end
basis
  * library cc-pvdz
end
```

```
dft
  grid xfine
  convergence energy 1e-08
  xc b3lyp # B3LYP
  mult 1
end
task dft
```





## **Geometry Optimization**



0.0000000

0.75252170

0.75252170

-0.75252170

-0.75252170

```
echo
start silane
geometry
      si
                  0.0000000
      h
                  0.75252170
      h
                 -0.75252170
      h
                  0.75252170
      h
                 -0.75252170
end
basis
  * library cc-pvdz
end
dft
  grid xfine
  convergence energy 1e-08
  xc b3lyp # B3LYP
  mult 1
end
```



0.0000000

0.75252170

0.75252170

-0.75252170

-0.75252170



## Frequencies



```
echo
start silane
geometry
  si
             0.0000000
                             0.0000000
             0.75252170
                            -0.75252170
  h
 h
            -0.75252170
                             0.75252170
  h
             0.75252170
                             0.75252170
            -0.75252170
                            -0.75252170
  h
end
basis
  * library cc-pvdz
end
dft
  grid xfine
  convergence energy 1e-08
  xc b3lyp # B3LYP
 mult 1
end
```





0.0000000

0.75252170

0.75252170

-0.75252170

-0.75252170

## **Combining Calculations I**

mult 1

task dft optimize

task dft frequencies

end



```
echo
start silane
geometry
      si
                  0.0000000
                                 0.0000000
                                                 0.0000000
      h
                 0.75252170
                                -0.75252170
                                                 0.75252170
      h
                 -0.75252170
                                 0.75252170
                                                 0.75252170
      h
                 0.75252170
                                 0.75252170
                                                -0.75252170
                                -0.75252170
      h
                 -0.75252170
                                                -0.75252170
end
basis
   library cc-pvdz
end
dft
  grid xfine
  convergence energy 1e-08
  xc b3lyp # B3LYP
```





## **Combining Calculations II**



```
geometry
end
basis
  * library cc-pvdz
end
dft
   xc b3lyp #B3LYP
   mult 1
end
task dft optimize
task dft frequencies
dft
   odft
   xc becke88 lyp #BLYP
   mult 3
end
task dft optimize
```





# **Restarting Calculations**



#### echo

#### restart silane

```
geometry
                  0.0000000
      si
      h
                  0.75252170
      h
                 -0.75252170
      h
                  0.75252170
      h
                 -0.75252170
end
basis
   library cc-pvdz
end
dft
  grid xfine
  convergence energy 1e-08
  xc b3lyp # B3LYP
 mult 1
end
task dft
```

### Restart files

0.0000000

-0.75252170

0.75252170

0.75252170

-0.75252170

- •silane.db
- •silane.movecs

0.0000000

0.75252170

0.75252170

-0.75252170

-0.75252170





## **Using Old Vectors**



```
echo
start silane
geometry
                  0.0000000
                                   0.0000000
                                                    0.0000000
      si
      h
                  0.75252170
                                  -0.75252170
                                                    0.75252170
      h
                 -0.75252170
                                   0.75252170
                                                    0.75252170
      h
                  0.75252170
                                   0.75252170
                                                  -0.75252170
      h
                 -0.75252170
                                  -0.75252170
                                                  -0.75252170
end
basis
   library cc-pvdz
end
dft
  grid xfine
  convergence energy 1e-08
  xc b3lyp # B3LYP
  mult 1
  vectors input old.movecs output b3lyp.movecs
end
                                             Pacific Northwest
task dft
                                               NATIONAL LABORATORY
```

## **Organizing Your Files**



0.0000000

0.75252170

0.75252170

-0.75252170

-0.75252170

```
echo
start silane
```

geometry

si h

permanent\_dir /home/yourname/silane/b3lyp
scratch\_dir /scratch

0.0000000

0.75252170

```
h
                -0.75252170
                 0.75252170
      h
      h
                -0.75252170
end
basis
  * library cc-pvdz
end
dft
  grid xfine
  convergence energy 1e-08
  xc b3lyp #B3LYP
 mult 1
end
task dft optimize
```



0.0000000

-0.75252170

0.75252170

-0.75252170

0.75252170



## **Customizing The Basis**



```
• • •
```

```
geometry
      si
                   0.0000000
                                   0.0000000
                                                  0.0000000
      h1
                   0.75252170
                                  -0.75252170
                                                  0.75252170
      h2
                  -0.75252170
                                   0.75252170
                                                  0.75252170
      h3
                  0.75252170
                                   0.75252170
                                                 -0.75252170
                  -0.75252170
      h4
                                  -0.75252170
                                                 -0.75252170
end
```

```
basis

si library 6-31G

h1 library h sto-3g

h2 library h 6-31g

h3 library h 3-21g

h4 library h "6-31g*"

end
```

. . .





# Including empirical dispersion in DFT



```
geometry
end
basis
end

dft
xc b3lyp
disp vdw 2 s6 1.05
end
```

S. Grimme J. Comp. Chem. 25 1463 (2004)

task dft optimize

S. Grimme J. Comp. Chem. 271787 (2006)





## Semi-empirical hybrid DFT + MP2 Double Hybrid Functionals



```
geometry
end
basis
end
dft
  xc HFexch 0.53 becke88 0.47 lyp 0.73 mp2 0.27
  dftmp2 direct
  direct
  convergence energy 1e-8
  iterations 100
end
```

S. Grimme, J. Chem. Phys., 124, 034108 (2006)





## **Other Capabilities**



- Charge density fitting (Dunlap scheme)
  - ▶ 4-center, 2-electron Coulomb integrals → 3-center integrals (N³)
  - Very fast for traditional DFT (pure density based functionals)
- Direct or on-the-fly evaluation of integrals
  - All integrals evaluated as needed
  - Useful for large systems on large numbers of processors
- Effective Core Potentials
- ...

Detailed documentation information available on www.nwchem-sw.org







## **Excited State Calculations with TDDFT**





# Time-Dependent DFT



### Casida Formulation

Perturbed density → first-order correction Linear response approach → frequency domain

Cannot be used to describe excitations in intense fields

- Working equations have N<sub>occ</sub>\*N<sub>virt</sub> solutions
- Dimension  $\rightarrow$  tetradic (N<sup>2</sup>xN<sup>2</sup>)
- Every root > cost of a HF or hybrid DFT calculation
- Note that the vectors are normalized but differently so than your usual wavefunction
- The orbital energy difference is a main term in the excitation energy
- In the case of pure DFT with large molecules most of the integrals involving F<sub>xc</sub> vanish as this is a local kernel

$$\begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \omega \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}$$

$$1 = (X|X) - (Y|Y)$$

$$A_{ia,jb} = \delta_{ij}\delta_{ab}\left(\varepsilon_a - \varepsilon_i\right) + \left(ia\left|F_H + F_{xc}\right|jb\right)$$

$$B_{ia,jb} = \left(ia\left|F_H + F_{xc}\right|jb\right)$$

$$F_{xc}(r_1, r_2) = \frac{\partial^2 f}{\partial \rho(r_1) \partial \rho(r_2)}$$





## **Excited State Calculations with TDDFT**



```
start tddft_h2o
echo
title "TDDFT H2O B3LYP/6-31G**"
geometry
0
      0.0000000
                     0.0000000
                                     0.12982363
Н
      0.75933475
                     0.0000000
                                    -0.46621158
     -0.75933475
                     0.00000000
                                    -0.46621158
Н
end
basis
O library 6-31G**
H library 6-31G**
end
```

```
dft
xc b3lyp
end

tddft
nroots 10
notriplet
end

task tddft energy
```





## **Excited State Sample Output**



```
Root 1 singlet b2 0.294221372 a.u. ( 8.0061743 eV)
  Transition Moments X 0.00000 Y -0.26890 Z 0.00000
  Transition Moments XX 0.00000 XY 0.00000 XZ
                                                  0.00000
  Transition Moments YY 0.00000 YZ 0.08066 ZZ 0.00000
  Transition Moments XXX 0.00000 XXY -0.93672 XXZ
                                                 0.00000
  Transition Moments XYY
                         0.00000 XYZ 0.00000 XZZ
                                                  0.00000
  Transition Moments YYY -1.60959 YYZ 0.00000 YZZ -0.72276
  Transition Moments 777
                        0.00000
  Dipole Oscillator Strength
                                                   0.01418
  Occ. 5 b2 --- Virt. 6 a1 -1.00002 X
Root 2 singlet a2 0.369097477 a.u. ( 10.0436576 eV)
  Transition Moments X 0.00000 Y 0.00000 Z
                                                  0.00000
  Transition Moments XX 0.00000 XY 0.24936 XZ
                                                  0.00000
  Transition Moments YY
                         0.00000 YZ
                                    0.00000 ZZ
                                                  0.00000
  Transition Moments
                         0.00000 XXY 0.00000 XXZ
                                                  0.00000
                    XXX
  Transition Moments XYY 0.00000 XYZ -0.34740 XZZ
                                                  0.00000
  Transition Moments YYY
                         0.00000 YYZ 0.00000 YZZ
                                                  0.00000
  Transition Moments ZZZ
                         0.00000
  Dipole Oscillator Strength
                                                   0.00000
  Occ. 5 b2
              --- Virt. 7 bl -0.99936 X
```





# **Excited State Spectrum**





Energy (eV)





# Recent Applications (1)





Formyl cation bound to a Bronsted acid site in a zeolite cavity



Ground & Excited state properties of pure and N-doped TiO<sub>2</sub> rutile



Adsorption of aminotriazines on graphene using dispersion corrected DFT



Dipole polarizabilities of water clusters





## Recent Applications (2)





Charge transfer excitations in zinc porphyrin in aqueous solution



Excitations energies in the oligoporphyrin dimer



Correct lowest excitation in the Adenine-Thymine base pair using range-separated functionals



Optical properties of silver clusters





## **Hands-On Exercises**



Tutorial exercises

hf-dft

b3lyp: Shows how to perform a single point energy, geometry

optimization and frequency calculation

**combined:** Shows how to perform single point energy calculations

with various exchange-correlation functionals

restart: Shows how to restart a calculation

files: Shows how to use the scratch and permanent directories

multiplicity: Shows how to set the multiplicity in a calculation

convergence: Shows how to specify other useful keywords in the dft

block

ecp: Shows how to use effective core potentials (ECP)

**direct:** Shows how to perform direct calculations

**densityfitting:** Shows how to use charge density fitting basis sets

sodft: Shows how to perform calculation with a spin-orbit ecp

explicitbasis: Shows how to specify the basis explicitly multiplestructures: Shows how to specify multiple structures multiplebasis: Shows how to specify multiple basis sets

tddft

h2o,2h2o,ethane,butane

properties







# Questions?



